Carinotetraodon Travancoricus) Endemic to Southwest India and Its Implications in the Phylogeny of Tetraodontidae

Total Page:16

File Type:pdf, Size:1020Kb

Carinotetraodon Travancoricus) Endemic to Southwest India and Its Implications in the Phylogeny of Tetraodontidae Journal of Genetics (2019) 98:105 Ó Indian Academy of Sciences https://doi.org/10.1007/s12041-019-1151-9 (0123456789().,-volV)(0123456789().,-volV) RESEARCH ARTICLE Mitogenome analysis of dwarf pufferfish (Carinotetraodon travancoricus) endemic to southwest India and its implications in the phylogeny of Tetraodontidae CHANDHINI SATHYAJITH1, YUSUKE YAMANOUE2, SHIN-ICHI YOKOBORI3, SUNESH THAMPY4 and REJISH KUMAR VATTIRINGAL JAYADRADHAN1* 1Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad 682 506, India 2The University Museum, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 3School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan 4Planet Earth Aquarium, Mysuru 571 606, India *For correspondence. E-mail: [email protected]. Received 26 March 2019; revised 12 July 2019; accepted 23 August 2019; published online 15 November 2019 Abstract. The Tetraodontidae (pufferfishes), is primarily a family of marine and estuarine fishes with a limited number of freshwater species. Freshwater invasions can be observed in South America, Southeast Asia and central Africa. In the present study, we have analysed the complete mitogenome of freshwater pufferfish, Carinotetraodon travancoricus (dwarf pufferfish or Malabar pufferfish) endemic to southwest India. The genome is 16487 bp in length and consist of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and one control region like all the other vertebrate mitogenomes. The protein-coding genes ranged from 165 bp (ATP synthase subunit 8) to 1812 bp (NADH dehydrogenase subunit 5) and comprised of 11310 bp in total, constituting 68.5% of the complete mitogenome. Some overlaps have been observed in protein-coding genes by a total of 7 bp. The AT skew (0.032166) and GC skew (-0.29746) of the mitogenome indicated that heavy strand consists equal amount of A and T, but the overall base composition was mainly C skewed. The noncoding D-loop region comprised 869 bp. The conserved motifs ATGTA and its complement TACAT associated with thermostable hairpin structure formation were identified in the control region. The phylogenetic analysis depicted a sister group relationship of C. travancoricus with euryhaline species Dichotomyctere nigroviridis and D. ocellatus with 100% bootstrap value rather than with the other freshwater members of Carinotetraodon species from Southeast Asia. The data from this study will be useful for proper identification, genetic differentiation, management and conservation of the dwarf Indian pufferfish. Keywords. dwarf pufferfish; Malabar pufferfish; mitogenome; phylogenetic analysis; Tetraodontidae; Carinotetraodon travancoricus. Introduction million years ago (Alfaro et al. 2007). Various evolutionary studies have been conducted to elucidate the causes of Tetraodontiforms are widely distributed in freshwater, deep diversification of pufferfishes (Yamanoue et al. 2011; Santini sea, coastal, open water pelagic and reef habitat, especially et al. 2013). Tetraodontid pufferfishes have caught the across the tropical seas of South America, central Africa and attention of many researchers in various fields, because of Southeast Asia. They consist of 10 extant families and 349 their morphological peculiarity, tetrodotoxin and as a model species in which Tetraodontidae family (pufferfish) is rep- organism in molecular biology research (Hedges 2002). resented by 29 genera with 191 species (Tyler 1980; Although several studies on pufferfish phylogeny have been Yamanoue et al. 2011; Matsura 2015). Tetraodontids were conducted, the phylogenetic status of many species is still said to have diverged from diodontids between 89 and 139 obscure. Exploring mitochondrial genome sequencing of Electronic supplementary material: The online version of this article (https://doi.org/10.1007/s12041-019-1151-9) contains supplementary material, which is available to authorized users. 1 105 Page 2 of 11 S. Chandhini et al. pufferfish has significant implications in investigating its Long AMP Taq DNA polymerase. The library was prepared evolutionary aspects because of its unique mitochondrial by NEB Next Ultra DNA library prep kit. The product was features (Boore 1999; Boore et al. 2005). Yamanoue et al. then sequenced on HiSeq 2500 in Rapid Run V2 Chemistry (2011) performed whole mitochondrial genome sequencing (2 x 250 bp PE). A total of 366,252 reads were generated of 50 tetraodontid species and described four main lineages, and processed before performing de novo whole genome two of which included freshwater fishes from different assembly. First, the Illumina adapter sequences were continent. Southeast Asian freshwater pufferfishes con- removed from the reads using Cutadapt, further, low-quality sist *21 species and are represented by four lineages bases (Phred score, Q [ 20) were trimmed using sickle, and Carinotetraodon spp. (south India to Sunda Islands), Aur- duplicate reads were removed from the data using FastUniq. iglobus spp. (Indochina, Malay peninsula and Sunda The preprocessed paired end reads were assembled using Islands), Tetraodon cutcutia (east India to Myanmar), and IVA 1.0.8 (Hunt et al. 2015). Then SEQuel (Ronen et al. other Tetraodon species (Indochina, Malay peninsula and 2012) was used for correcting errors (i.e. insertions, dele- Sunda Islands) (Ebert 2001). Among the freshwater puffer- tions and substitutions) in the assembled contigs. fishes, Carinotetraodon imitator, C. travancoricus and Te- traodon cutcutia are endemic to Indian subcontinent (Yamanoue et al. 2011). Mitogenome analysis The Carinotetraodon is a genus of small freshwater South Asian pufferfishes consisting of six species: C. borneensis, The assembled mitochondrial genome was annotated using C. imitator, C. irrubesco, C. lorteti, C. salivator and C. MITOS Webserver (Bernt et al. 2013). Annotation of the travancoricus. Among them, C. travancoricus and C. imi- transfer RNA (tRNA) was conducted using tRNA scan-SE tator are endemic to southwest India. C. travancoricus is (Lowe and Chan 2016). The codon usage of the 13 protein- mainly distributed in Chalakudy, Pamba, Periyar, Kabani, coding genes was summarized using MEGA 7 (Kumar et al. Bharathapuzha and Muvattupuzha rivers (Beevi and 2016). Statistical analysis of distributions and visualization of Ramachandran 2009), lake Vembanad and kole wetlands of codon usage was performed with heatmapper (Babicki et al. Thrissur, Kallar stream and Neyyar wildlife sanctuary of 2016). The AT-skew [(A - T)/ (A ? T)] and GC-skew south Kerala (Prasad et al. 2012). Due to its ovoid body [(G - C)/ (G ? C)] values were used to calculate the shape, colour and puppy dog eyes, this fish has been mar- nucleotide compositional differences among the genes. Sum- keted as aquarium fish (Jayalal and Ramachandran 2013), mary statistics including gene boundaries and length, strand, but due to the overexploitation and habitat loss IUCN has nucleotide composition, intergenic nucleotides and the number categorized it as ‘vulnerable’ (Dahanukar 2011). The present of genes were analysed. The conserved motif in the noncoding study undertook sequencing and analyses of the complete region and P genetic distance were studied using MEGA7. mitochondrial genome of freshwater dwarf Indian pufferfish, AlongwiththeC. travancoricus mitogenome, complete C. travancoricus, to get a deeper insight into mitochondrial mitogenomes of C. lorteti and C. salivator were obtained from genome structure, evolution, phylogeny and conservation. NCBI which were used for comparative analysis. The mitochondrial genome data could be useful to establish the proper phylogenetic position of C. travancoricus. Phylogenetic analysis Materials and methods The complete mitochondrial sequences of C. travancoricus was added to those of 50 tetraodontids plus three outgroups, Amplification and sequencing of the mitogenome a triodontid Triodon macropterus and two molids, Mola mola and Ranzania laevis, all were used in Yamanoue et al. The C. travancoricus collected from Periyar river, Kerala, (2011) (table 1 in electronic supplementary material at http:// India was used for the analysis. Total genomic DNA was www.ias.ac.in/jgenet/). The dataset was aligned using extracted from the fins using the DNeasy tissue kit (Qiagen, MAFFT v.7 (Katoh and Standley 2013) and the aligned Germany). Long polymerase chain reaction (PCR) was sequences were trimmed using trimAL (Capella-Gutie´rrez carried out to elucidate the complete mitogenome sequence et al. 2009). Based on the patterns of sequence variations, of C. travancoricus. Different homology-degenerate primers the dataset with the third codon positions converted by RY- were designed based on the aligned mitogenome sequences coding (12n3rRTn) was expected to effectively remove the of C. lorteti (GenBank: AP011918) and C. salivator (Gen- likely noise from quickly saturated transitional changes in Bank: AP011918). Approximately 100 ng of DNA sample the third codon positions (Phillips and Penny 2003). was used for PCR. The PCR cycle consisted of an initial Accordingly, two datasets of 123nRTn and 12n3rRTn were denaturation step at 94°C for 30 s, followed by 30 cycles of prepared and subjected to the phylogenetic analysis. Phy- denaturation at 94°C for 20 s, annealing at 59°C for 30 s and logenetic relationships were inferred using maximum like- extension at 65°C for 7 min. A final extension was carried lihood method (ML) by RAxML v.8 (Stamatakis 2014) with out at 65°C for 10 min. Amplification
Recommended publications
  • Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role.
    [Show full text]
  • Jorge Carlos PENICHE-PÉREZ1, Carlos GONZÁLEZ-SALAS2, Harold VILLEGAS-HERNÁNDEZ2, Raúl DÍAZ-GAMBOA2, Alfonso AGUILAR-PERERA2, Sergio GUILLEN-HERNÁNDEZ2, and Gaspar R
    ACTA ICHTHYOLOGICA ET PISCATORIA (2019) 49 (2): 133–146 DOI: 10.3750/AIEP/02516 REPRODUCTIVE BIOLOGY OF THE SOUTHERN PUFFERFISH, SPHOEROIDES NEPHELUS (ACTINOPTERYGII: TETRAODONTIFORMES: TETRAODONTIDAE), IN THE NORTHERN COAST OFF THE YUCATAN PENINSULA, MEXICO Jorge Carlos PENICHE-PÉREZ1, Carlos GONZÁLEZ-SALAS2, Harold VILLEGAS-HERNÁNDEZ2, Raúl DÍAZ-GAMBOA2, Alfonso AGUILAR-PERERA2, Sergio GUILLEN-HERNÁNDEZ2, and Gaspar R. POOT-LÓPEZ2* 1Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán, Cancún, Quintana Roo, México 2Departamento de Biología Marina, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México Peniche-Pérez J.C., González-Salas C., Villegas-Hernández H., Díaz-Gamboa R., Aguilar-Perera A., Guillen- Hernández S., Poot-López G.R. 2019. Reproductive biology of the southern pufferfish, Sphoeroides nephelus (Actinopterygii: Tetraodontiformes: Tetraodontidae), in the northern coast off the Yucatan Peninsula, Mexico. Acta Ichthyol. Piscat. 49 (2): 133–146. Background. Overexploitation of fishery resources has led to the capture of alternative species of a lower trophic level, considered previously unprofitable or unfit for human consumption. The southern pufferfish, Sphoeroides nephelus (Goode et Bean, 1882), is a bycatch species of the recreational fishery in the USA and Mexico. Unlike other species of the genus Sphoeroides, there is no background on their reproductive cycle. Therefore, this study aimed to describe several reproductive traits (sex ratio, gonadal development, annual reproductive cycle, and fecundity) of specimens from the northern coast of the Yucatan Peninsula, Mexico. This kind of information might serve as a point of reference for its potential use either in the pharmaceutical industry, aquarium trade, as well as in aquaculture.
    [Show full text]
  • Measuring Productivity of Australian Tropical Estuaries Using Standing Stock Analysis
    ResearchOnline@JCU This file is part of the following work: Fries, Jakob (2019) Measuring productivity of Australian tropical estuaries using standing stock analysis. Masters (Research) Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/km1r%2D5n34 Copyright © 2019 Jakob Fries. The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] Measuring productivity of Australian tropical estuaries using standing stock analysis Thesis submitted by Jakob Fries December 2019 For the degree of Master of Philosophy College of Science and Engineering School of Marine Biology and Aquaculture James Cook University Abstract Increasingly, anthropogenic use of ecosystems is resulting in cumulative degradation of ecosystem functions and the values held by these systems. Threats from nutrient pollution, catchment scale modifications to land use and water flows are increasing. This is concerning for estuarine and coastal fisheries as estuarine producers are inextricably linked to land-derived nutrients and freshwater flows. In tropical estuarine ecosystems the complexity and variability of environmental, biological, and ecological factors culminate in a matrix of largely unknown causal relationships. Because of this, our knowledge of land use impacts on fisheries is limited. Additionally, the disjunction of current measurement scales and impact scales has reduced our ability to measure the resultant impacts on estuarine ecosystems. Therefore, to fully understand anthropogenic impacts on estuarine ecosystems, integrative measures of ecosystem health, functioning, and productive output are required.
    [Show full text]
  • The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
    lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae.
    [Show full text]
  • Characterization of the G Protein-Coupled Receptor Family
    www.nature.com/scientificreports OPEN Characterization of the G protein‑coupled receptor family SREB across fsh evolution Timothy S. Breton1*, William G. B. Sampson1, Benjamin Cliford2, Anyssa M. Phaneuf1, Ilze Smidt3, Tamera True1, Andrew R. Wilcox1, Taylor Lipscomb4,5, Casey Murray4 & Matthew A. DiMaggio4 The SREB (Super‑conserved Receptors Expressed in Brain) family of G protein‑coupled receptors is highly conserved across vertebrates and consists of three members: SREB1 (orphan receptor GPR27), SREB2 (GPR85), and SREB3 (GPR173). Ligands for these receptors are largely unknown or only recently identifed, and functions for all three are still beginning to be understood, including roles in glucose homeostasis, neurogenesis, and hypothalamic control of reproduction. In addition to the brain, all three are expressed in gonads, but relatively few studies have focused on this, especially in non‑mammalian models or in an integrated approach across the entire receptor family. The purpose of this study was to more fully characterize sreb genes in fsh, using comparative genomics and gonadal expression analyses in fve diverse ray‑fnned (Actinopterygii) species across evolution. Several unique characteristics were identifed in fsh, including: (1) a novel, fourth euteleost‑specifc gene (sreb3b or gpr173b) that likely emerged from a copy of sreb3 in a separate event after the teleost whole genome duplication, (2) sreb3a gene loss in Order Cyprinodontiformes, and (3) expression diferences between a gar species and teleosts. Overall, gonadal patterns suggested an important role for all sreb genes in teleost testicular development, while gar were characterized by greater ovarian expression that may refect similar roles to mammals. The novel sreb3b gene was also characterized by several unique features, including divergent but highly conserved amino acid positions, and elevated brain expression in pufer (Dichotomyctere nigroviridis) that more closely matched sreb2, not sreb3a.
    [Show full text]
  • Cambodian Journal of Natural History
    Cambodian Journal of Natural History Artisanal Fisheries Tiger Beetles & Herpetofauna Coral Reefs & Seagrass Meadows June 2019 Vol. 2019 No. 1 Cambodian Journal of Natural History Editors Email: [email protected], [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Alison Behie, Australia National University, • Dr Keo Omaliss, Forestry Administration, Cambodia. Australia. • Ms Meas Seanghun, Royal University of Phnom Penh, • Dr Stephen J. Browne, Fauna & Flora International, Cambodia. UK. • Dr Ou Chouly, Virginia Polytechnic Institute and State • Dr Chet Chealy, Royal University of Phnom Penh, University, USA. Cambodia. • Dr Nophea Sasaki, Asian Institute of Technology, • Mr Chhin Sophea, Ministry of Environment, Cambodia. Thailand. • Dr Martin Fisher, Editor of Oryx – The International • Dr Sok Serey, Royal University of Phnom Penh, Journal of Conservation, UK. Cambodia. • Dr Thomas N.E. Gray, Wildlife Alliance, Cambodia. • Dr Bryan L. Stuart, North Carolina Museum of Natural Sciences, USA. • Mr Khou Eang Hourt, National Authority for Preah Vihear, Cambodia. • Dr Sor Ratha, Ghent University, Belgium. Cover image: Chinese water dragon Physignathus cocincinus (© Jeremy Holden). The occurrence of this species and other herpetofauna in Phnom Kulen National Park is described in this issue by Geissler et al. (pages 40–63). News 1 News Save Cambodia’s Wildlife launches new project to New Master of Science in protect forest and biodiversity Sustainable Agriculture in Cambodia Agriculture forms the backbone of the Cambodian Between January 2019 and December 2022, Save Cambo- economy and is a priority sector in government policy.
    [Show full text]
  • Esox Lucius) Ecological Risk Screening Summary
    Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri).
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Reproductive Biology of the Yellowspotted Puffer Torquigener Flavimaculosus (Osteichthyes: Tetraodontidae) from Gulf of Suez, Egypt
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 23(3): 503 – 511 (2019) www.ejabf.journals.ekb.eg Reproductive biology of the Yellowspotted Puffer Torquigener flavimaculosus (Osteichthyes: Tetraodontidae) from Gulf of Suez, Egypt. Amal M. Ramadan* and Magdy M. Elhalfawy Fish reproduction and spawning laboratory, Aquaculture Division, National Institute of Oceanography and Fisheries, Egypt. *Corresponding author: [email protected] ARTICLE INFO ABSTRACT Article History: The present study assesses reproductive biology of Yellowspotted Received: May 1, 2019 Puffer Torquigener flavimaculosus, were collected seasonally from Accepted: Aug. 29, 2019 commercial catches at the Attaka fishing harbor in Suez from winter 2017 Online: Sept. 2019 until autumn 2018. The sex ratio was found 1:1.08 for male and female, _______________ respectively. The fish length at first sexual maturity (L50) was 8.2 cm for males and 9.5 cm for females. In addition, the allometric pattern of gonadal Keywords: growth was studied to validate the use of the gonado-somatic index (GSI) in Gulf Suez assessments of the reproductive cycle. The highest peak of GSI (10.5 ± T. flavimaculosus 1.012%) and (4.3 ± 0.084%) for female and male were recorded in summer, Yellowspotted Puffer respectively. Values for hepato-somatic index (HSI) is very high and strong Gonado-somatic index inverse relationship with gonado-somatic index (GSI) we inferred that lipid Hepato-somatic index reserves in the liver play an important role in gonad maturation and Somatic condition factor spawning. Somatic condition factor (Kr) also varied, albeit less so, Spawning throughout the year, suggesting that body fat and muscle play lesser roles in providing energy for reproduction.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Journal Threatened
    Journal ofThreatened JoTT TBuilding evidenceaxa for conservation globally 10.11609/jott.2020.12.1.15091-15218 www.threatenedtaxa.org 26 January 2020 (Online & Print) Vol. 12 | No. 1 | 15091–15218 ISSN 0974-7907 (Online) ISSN 0974-7893 (Print) PLATINUM OPEN ACCESS ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Publisher Host Wildlife Information Liaison Development Society Zoo Outreach Organization www.wild.zooreach.org www.zooreach.org No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India Ph: +91 9385339863 | www.threatenedtaxa.org Email: [email protected] EDITORS English Editors Mrs. Mira Bhojwani, Pune, India Founder & Chief Editor Dr. Fred Pluthero, Toronto, Canada Dr. Sanjay Molur Mr. P. Ilangovan, Chennai, India Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), 12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, Web Design India Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India Deputy Chief Editor Typesetting Dr. Neelesh Dahanukar Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India Mr. Arul Jagadish, ZOO, Coimbatore, India Mrs. Radhika, ZOO, Coimbatore, India Managing Editor Mrs. Geetha, ZOO, Coimbatore India Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India Mr. Ravindran, ZOO, Coimbatore India Associate Editors Fundraising/Communications Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Mrs. Payal B. Molur, Coimbatore, India Dr. Mandar Paingankar, Department of Zoology, Government Science College Gadchiroli, Chamorshi Road, Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Editors/Reviewers Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Subject Editors 2016–2018 Fungi Editorial Board Ms. Sally Walker Dr. B. Shivaraju, Bengaluru, Karnataka, India Founder/Secretary, ZOO, Coimbatore, India Prof.
    [Show full text]
  • Fish Species Composition and Catch Per Unit Effort in Nong Han Wetland, Sakon Nakhon Province, Thailand
    Songklanakarin J. Sci. Technol. 42 (4), 795-801, Jul. - Aug. 2020 Original Article Fish species composition and catch per unit effort in Nong Han wetland, Sakon Nakhon Province, Thailand Somsak Rayan1*, Boonthiwa Chartchumni1, Saifon Kaewdonree1, and Wirawan Rayan2 1 Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Phang Khon, Sakon Nakhon, 47160 Thailand 2 Sakon Nakhon Inland Fisheries Research and Development Center, Mueang, Sakon Nakhon, 47000 Thailand Received: 6 August 2018; Revised: 19 March 2019; Accepted: 17 April 2019 Abstract A study on fish species composition and catch per unit effort (CPUE) was conducted at the Nong Han wetland in Sakon Nakhon Province, Thailand. Fish were collected with 3 randomized samplings per season at 6 stations using 6 sets of gillnets. A total of 45 fish species were found and most were in the Cyprinidae family. The catch by gillnets was dominated by Parambassis siamensis with an average CPUE for gillnets set at night of 807.77 g/100 m2/night. No differences were detected on CPUE between the seasonal surveys. However, the CPUEs were significantly different (P<0.05) between the stations. The Pak Narmkam station had a higher CPUE compared to the Pak Narmpung station (1,609.25±1,461.26 g/100 m2/night vs. 297.38±343.21 g/100 m2/night). The results of the study showed that the Nong Han Wetlands is a lentic lake and the fish abundance was found to be medium. There were a few small fish species that could adapt to living in the ecosystem. Keywords: fish species, fish composition, abundance, CPUE, Nong Han wetland 1.
    [Show full text]