Nanoscience and Genomics

Total Page:16

File Type:pdf, Size:1020Kb

Nanoscience and Genomics NANOSCIENCE AND GENOMICS LIST OF NEW COURSES (2020) Sl. No Course Code Name of the Course Credits 1 20NT3001 Vacuum and Thin Film Technology 3:0:0 2 20NT3002 Semiconductors, Instrumentation and Advanced Design 3:0:0 3 20NT3003 Analytical Methods and Spectroscopy 3:0:0 4 20NT3004 Nanomaterials in Biology and Medicine 3:0:0 5 20NT3005 Synthesis and Functionalization of Nanomaterials 3:0:0 6 20NT3006 Biomolecules in Nanoscience 3:0:0 7 20NT3007 Thin Film Lab 0:0:2 8 20NT3008 Synthesis and Functionalization of Nanomaterials Laboratory 0:0:2 9 20NT3009 Magnetic Nanomaterials 3:0:0 10 20NT3010 Human Physiology 3:0:0 11 20NT3011 Nanoelectronics and Micro-Nanofabrications 3:0:0 12 20NT3012 Microbiology and Immunology 3:0:0 13 20NT3013 Self-assembled and Functional Nanostructures 3:0:0 14 20NT3014 Molecular and Nanoscale Thermodynamics 3:0:0 15 20NT3015 Nanoelectronics Lab 0:0:2 16 20NT3016 Characterization of Nanomaterials Laboratory 0:0:2 17 20NT3017 Luminescent Nanomaterials 3:0:0 18 20NT3018 Commercialization of Nanotechnology Products 3:0:0 19 20NT3019 Cancer Nanomedicine 3:0:0 20 20NT3020 Nanomaterial-Based Energy Devices 3:0:0 21 20NT3021 Nano-Bio Lab 0:0:2 L T P C 20NT3001 VACUUM AND THIN FILM TECHNOLOGY 3 0 0 3 Course objectives: 1. To introduce students to the theory and practice of high vacuum systems as well as thin film deposition 2. To study the physical behavior of gases and the technology of vacuum systems including system operation and design 3. To learn the thin film deposition techniques including physical, chemical methods and its applications in various fields. Course outcomes: The students will be able to 1. Understand the importance of various vacuum pumps in thin film technology 2. Appreciate the measurement of vacuum using suitable pressure gauges 3. Identify the physical and chemical methods of thin film deposition 4. Compare the vacuum and non-vacuum techniques for thin film deposition 5. Understand the process of thin film growth 6. Apply the properties of thin film coatings for various applications Unit I: Vacuum technology (9 hours) Principle of different vacuum pumps: rotary, diffusion, turbo molecular pump, cryogenic-pump, importance of measurement of Pressure, Concept of different gauges: Direct gauges – Bourdon gauge, Diaphragm gauge, spinning rotor gauge, indirect gauges- Pirani gauge, ionization gauges -hot cathode gauge and cold cathode gauge. NANOSCIENCE AND GENOMICS (2020) Unit II: Physical Vapor Deposition techniques (9 hours) Thermal evaporation – Evaporation rate, Alloys, compounds and sources, Transport, deposition monitoring, Electron beam evaporation, Pulsed LASER Deposition, Molecular Beam Epitaxy, Electrical discharges used in thin film deposition: DC sputtering, RF sputtering, Magnetron sputtering. Unit III: Chemical methods of thin film deposition (9 hours) Electro deposition, Chemical vapor deposition techniques: Advantages and disadvantages of Chemical Vapor deposition (CVD) techniques over PVD techniques, reaction types, Different kinds of CVD techniques: Metalorganic CVD (MOCVD), Plasma Enhanced CVD (PECVD), Spray pyrolysis, sol-gel coating, Spin coating, Successive Ionic Layer Adsorption and Reaction- SILAR Unit IV: Formation and growth of thin films (9 hours) Substrates- Material properties, substrate cleaning, Thin film deposition parameters and their effects on film growth, formation of thin films- Adsorption, surface diffusion, nucleation, Growth modes, Factors affecting film growth and Film properties, Adhesion of the film, Interfaces, Lattice mismatch, Super lattices. Unit V: Properties and Application of thin films in solar cells (9 hours) Structural, electrical and optical properties of thin films, Applications in optics - Antireflection coatings, solar cells, Electronics- Thin Film Field Effect Transistors (TFTs), Mechanics - ‘Hard’ layers on tools, Chemistry- Anticorrosive layers, gas sensors. Text Books 1. L. N. Rozanov, Vacuum Technique, Taylor and Francis, London, 2002, ISBN No: 0-415-27351-x. 2. D. L. Smith Thin film deposition Principles & Practice, McGraw Hill, 1995. ISBN No: 0- 07-058502-4. References 1. J. F. O’ Hanlon, A user’s guide to Vacuum Technology, 3rd Ed., John Wiley & Sons Inc, 2003. 2. A. Chambers, Modern Vacuum Physics, Chapman & Hall/CRC, Taylor and Francis, London, 2005, ISBN No: 0-8493-2438-6. 3. K. Seshan, Hand book of thin film deposition processes & Technologies Noyes publications/William Andrew publishing, 2nd Ed., 2002. 4. M. Ohring, The materials Science of thin films, Academic Press, 2016. 5. L.B. Freund, S. Suresh Thin film Materials – Stress, Defect Formation & Surface Evolution, Cambridge University Press, 2003, ISBN No: 0-521-822815. SEMICONDUCTORS, INSTRUMENTATION L T P C 20NT3002 AND ADVANCED DESIGN 3 0 0 3 Course objectives: To impart knowledge on 1. Semiconductors for devices 2. Sensors and advanced Instrumentations 3. VLSI Design and industry 4.0 Course outcomes: Ability to 1. Understand the basic concepts of semiconductors for devices 2. Applying the knowledge in design of various semiconductor devices 3. Evaluating the various sensors and data acquisition tools 4. Understanding the concepts of VLSI design 5. Design the programs using HDL’s 6. Role of electronics in industry 4.0 NANOSCIENCE AND GENOMICS (2020) Unit I: Introduction to Semiconductor Properties of semiconductor, Intrinsic Semiconductor, Extrinsic Semiconductor, Energy band diagram, temperature dependence, formation of PN junction. PN junction diode, Current equations, forward and reverse bias characteristics. Unit II: Semiconductor Devices Current-Voltage analysis of UJT and Thyristor - Special Semiconductor Devices – Zener Diode, Gunn Diode, Varactor diode, Tunnel Diode. BJT, I-V analysis, Field Effect Transistor, I-V analysis of FET, MOSFET – Enhancement and Depletion Mode MOSFET, I-V analysis. Unit III: Sensors and Instrumentations Classification, linear Actuators, Rotary Actuators, Magnetic sensors, Motors, Thermal Sensors Principle, Sensors based on Thermal measurements- Micro calorimeter, IR sensor, EM field sensor, Acceleration sensors. Data Acquisition for time domain and frequency domain sensors Introduction, DAQ boards, other data acquisition tools. Unit IV: VLSI Design VLSI Design Process – Architectural Design – Logical Design – Physical Design – Layout Styles – Full Custom Semi Custom Approaches. NMOS, PMOS Inverter, CMOS Inverter - MOS & CMOS Layers – stick diagram – design rules & layout - Finite state machine – Hardware description Language - FPGA. Unit V: Electronics 4.0 Introduction to IoT, Communication Protocols, IoT with Arduino, Internet of things: Raspberry Pi Approach, Real Time IoT Applications, Introduction to machine learning, Application of machine learning, Artificial intelligence. Text Books 1. D. Neamen, D. Biswas, Semiconductor Physics and Devices, 4th edition, McGraw-Hill Education, 2012. 2. R. Boylestad, L. Nashelsky, Electron Devices and Circuit Theory‖ Pearson, Prentice Hall, 10th edition, July 2008. References 1. M. S. Tyagi, Introduction to Semiconductor Materials and Devices, John Wiley & Sons, 2008 2. G. Streetman, S. K. Banerjee, Solid State Electronic Devices, 7th edition, Pearson, 2014. 3. Y. Tsividis, M. Colin, “Operation and Modeling of the MOS Transistor,” Oxford Univ.Press, 2011. 4. R. B. Northrop, Introduction to Instrumentation and Measurements, CRC Press, Taylor and Francis group, Second Edition 2011. 5. Pucknell, K. Eshraghian, BASIC VLSI DESIGN Third edition, Prentice Hall of India, 2007. 6. M. D. Sautoy, The creativity code by March 7, 2019, Fourth Estate Publishers 7. T. Ozim, P. Davim, Intelligent Machining by First Edition, Wiley ISBN: 9781848211292, May 2009. ANALYTICAL METHODS AND L T P C 20NT3003 SPECTROSCOPY 3 0 0 3 Course objectives: 1. To impart knowledge on accuracy and precision of experiments. 2. To make the students proficient with specialized instruction on analysis of molecules and nanomaterials employing spectroscopic techniques 3. To provide the students with knowledge on the selection of instrumental techniques to analyze nanomaterials Course outcomes: 1. Ability to express scientific data in proper forms and calculate errors in measurements. 2. Advanced level knowledge on the interactions of electromagnetic radiation with matter and their applications. NANOSCIENCE AND GENOMICS (2020) 3. Ability to interpret IR spectral data and detect functional groups in molecules and functionalized nanomaterials. 4. Analytical skill on various electronic transitions and thereby derive the ground state electronic properties of molecules and materials. 5. Application of fluorescent molecules in suitable areas with an articulation of their excited state behavior and radiative property. 6. Skill on solving problems related to the structure of organic compounds and molecular interactions by NMR spectroscopy. Unit I: IR and Raman spectroscopy Description of molecular vibrations – the classical harmonic oscillator – selection rules – anharmonic vibrations and Morse oscillator – isotopic shift – factors affecting vibrational frequencies – vibration of polyatomic molecules – characteristic group vibrational energies – IR spectra of surface modified nanoparticles: selected cases. Principles and applications of Raman spectroscopy. Unit II: UV-visible and photoelectron spectroscopy Energy of electronic transition, Franck-Condon principle, term symbols for describing atomic and molecular states, Russel-Saunders spin-orbit coupling, absorption intensity, probability of light absorption – types of electronic transitions
Recommended publications
  • Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications** Andrew N
    18 WILEY-VCH-Verlag GmbH, D-69451 Weinheim, 2000 1439-4235/00/01/01 $ 17.50+.50/0 CHEMPHYSCHEM 2000,1,18±52 Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications** Andrew N. Shipway,[a] Eugenii Katz,[a] and Itamar Willner*[a] Particles in the nanometer size range are attracting increasing their organization on surfaces for the construction of functional attention with the growth of interest in nanotechnological interfaces. In this review, we address the research that has led to disciplines. Nanoparticles display fascinating electronic and optical numerous sensing, electronic, optoelectronic, and photoelectronic properties as a consequence of their dimensions and they may be interfaces, and also take time to cover the synthesis and easily synthesized from a wide range of materials. The dimensions characterization of nanoparticles and nanoparticle arrays. of these particles makes them ideal candidates for the nano- engineering of surfaces and the fabrication of functional nano- KEYWORDS: structures. In the last five years, much effort has been expended on colloids ´ interfaces ´ monolayers ´ nanostructures ´ sensors 1. Introduction The emerging disciplines of nanoengineering,[1] nanoelectron- optical,[7, 10±13] and catalytic[14] properties originating from their ics,[2] and nanobioelectronics[3] require suitably sized and func- quantum-scale dimensions.[15] tional building blocks with which to construct their architectures In order to tailor the new generation of nanodevices and and devices. This need has encouraged
    [Show full text]
  • GURPS4E Ultra-Tech.Qxp
    Written by DAVID PULVER, with KENNETH PETERS Additional Material by WILLIAM BARTON, LOYD BLANKENSHIP, and STEVE JACKSON Edited by CHRISTOPHER AYLOTT, STEVE JACKSON, SEAN PUNCH, WIL UPCHURCH, and NIKOLA VRTIS Cover Art by SIMON LISSAMAN, DREW MORROW, BOB STEVLIC, and JOHN ZELEZNIK Illustrated by JESSE DEGRAFF, IGOR FIORENTINI, SIMON LISSAMAN, DREW MORROW, E. JON NETHERLAND, AARON PANAGOS, CHRISTOPHER SHY, BOB STEVLIC, and JOHN ZELEZNIK Stock # 31-0104 Version 1.0 – May 22, 2007 STEVE JACKSON GAMES CONTENTS INTRODUCTION . 4 Adjusting for SM . 16 PERSONAL GEAR AND About the Authors . 4 EQUIPMENT STATISTICS . 16 CONSUMER GOODS . 38 About GURPS . 4 Personal Items . 38 2. CORE TECHNOLOGIES . 18 Clothing . 38 1. ULTRA-TECHNOLOGY . 5 POWER . 18 Entertainment . 40 AGES OF TECHNOLOGY . 6 Power Cells. 18 Recreation and TL9 – The Microtech Age . 6 Generators . 20 Personal Robots. 41 TL10 – The Robotic Age . 6 Energy Collection . 20 TL11 – The Age of Beamed and 3. COMMUNICATIONS, SENSORS, Exotic Matter . 7 Broadcast Power . 21 AND MEDIA . 42 TL12 – The Age of Miracles . 7 Civilization and Power . 21 COMMUNICATION AND INTERFACE . 42 Even Higher TLs. 7 COMPUTERS . 21 Communicators. 43 TECH LEVEL . 8 Hardware . 21 Encryption . 46 Technological Progression . 8 AI: Hardware or Software? . 23 Receive-Only or TECHNOLOGY PATHS . 8 Software . 24 Transmit-Only Comms. 46 Conservative Hard SF. 9 Using a HUD . 24 Translators . 47 Radical Hard SF . 9 Ubiquitous Computing . 25 Neural Interfaces. 48 CyberPunk . 9 ROBOTS AND TOTAL CYBORGS . 26 Networks . 49 Nanotech Revolution . 9 Digital Intelligences. 26 Mail and Freight . 50 Unlimited Technology. 9 Drones . 26 MEDIA AND EDUCATION . 51 Emergent Superscience .
    [Show full text]
  • Designing a Nanoelectronic Circuit to Control a Millimeter-Scale Walking Robot
    Designing a Nanoelectronic Circuit to Control a Millimeter-scale Walking Robot Alexander J. Gates November 2004 MP 04W0000312 McLean, Virginia Designing a Nanoelectronic Circuit to Control a Millimeter-scale Walking Robot Alexander J. Gates November 2004 MP 04W0000312 MITRE Nanosystems Group e-mail: [email protected] WWW: http://www.mitre.org/tech/nanotech Sponsor MITRE MSR Program Project No. 51MSR89G Dept. W809 Approved for public release; distribution unlimited. Copyright © 2004 by The MITRE Corporation. All rights reserved. Gates, Alexander Abstract A novel nanoelectronic digital logic circuit was designed to control a millimeter-scale walking robot using a nanowire circuit architecture. This nanoelectronic circuit has a number of benefits, including extremely small size and relatively low power consumption. These make it ideal for controlling microelectromechnical systems (MEMS), such as a millirobot. Simulations were performed using a SPICE circuit simulator, and unique device models were constructed in this research to assess the function and integrity of the nanoelectronic circuit’s output. It was determined that the output signals predicted for the nanocircuit by these simulations meet the requirements of the design, although there was a minor signal stability issue. A proposal is made to ameliorate this potential problem. Based on this proposal and the results of the simulations, the nanoelectronic circuit designed in this research could be used to begin to address the broader issue of further miniaturizing circuit-micromachine systems. i Gates, Alexander I. Introduction The purpose of this paper is to describe the novel nanoelectronic digital logic circuit shown in Figure 1, which has been designed by this author to control a millimeter-scale walking robot.
    [Show full text]
  • DNA-Based Artificial Nanostructures: Fabrication, Properties And
    (Invited) Chapter V in “Handbook of Nanostructured Biomaterials and Their Applications in Nanobiotechnology,” Vols. 1-2 (ISBN: 1-58883-033-0), edited by Nalwa, American Scientific Publishers (2005). DNA-based Artificial Nanostructures: Fabrication, Properties, and Applications Young Sun and Ching-Hwa Kiang* Department of Physics & Astronomy, Rice University 6100 Main Street - MS61, Houston, TX 77005, USA Phone: (713) 348-4130, Fax: (713) 348-4150, E-mail: [email protected] Keywords: DNA; nanostructure; self-assembly; nanoparticle; carbon nanotube; biosensor. *To whom correspondence should be addressed: [email protected]. 1 Table of Content 1. Introduction 2. DNA fundamentals 3. Attachment of DNA to surface 4. Fabrication of nanostructures using DNA 4.1 Nanostructures of pure DNA 4.2 DNA-based assembly of metal nanoparticles 4.3 Construction of semiconductor particle arrays using DNA 4.4 DNA-directed nanowires 4.5 DNA-functionalized carbon nanotubes 4.6 Field-transistor based on DNA 4.7 Nanofabrication using artificial DNA 5. DNA-based nanostructures as biosensors 6. Properties of DNA-linked gold nanoparticles 6.1 Aggregation of DNA-modified gold nanoparticles 6.2 Melting of DNA-linked gold nanoparticle aggregations 6.3 Effects of external variables on the melting properties 7. Conclusion 2 1. Introduction The integration of nanotechnology with biology and bioengineering is producing many advances. The essence of nanotechnology is to produce and manipulate well- defined structures on the nanometer scale with high accuracy. Conventional technologies based on the "top-down” approaches, such as the photolithographyic method, are difficult to continue to scale down due to real physical limitations including size of atoms, wavelengths of radiation used for lithography, and interconnect schemes.
    [Show full text]
  • Nanotechnology in Prosthodontics
    IP Annals of Prosthodontics and Restorative Dentistry 2021;7(1):22–28 Content available at: https://www.ipinnovative.com/open-access-journals IP Annals of Prosthodontics and Restorative Dentistry Journal homepage: https://www.ipinnovative.com/journals/APRD Review Article Nanotechnology in prosthodontics 1, 1 1 1 1 K.Sowmya Sree *, V Abhishek , Sidhartha S , L Srikanth , M Ramakrishna , V Lakshmi1 1Dept. of Prosthodontics, Crown And Bridge, Sree Sai Dental College, Srikakulam, Andhra Pradesh, India ARTICLEINFO ABSTRACT Article history: Cloude Levi Strauss and Winfred Phillips said that, “You have to be able to fabricate things, you have to Received 11-01-2021 be able to analyze things, and you have to be able to handle things smaller than ever imagined in ways not Accepted 22-02-2021 done before”. Science is presently undergoing a great evolution, taking humanity to a new era: The era of Available online 26-02-2021 nanotechnology. Nanotechnology is the field of science and technology pertaining to the creation and use of materials or devices at nanometer scale. Nanoscale is small in size, but its potential is vast. The growing interest in the future of dental application of nanotechnology leads to emergence of “Nanodentistry” which Keywords: involves the maintenance of oral health by the use of nanomaterials, biotechnology and dental nanorobotics. Nanomaterials Nanotechnologies are increasingly used for surface modifications of dental implants. This paper is an Nanotechnology attempt to give an overview about the nanomaterials and nanotechnology and its applications in the field of Prosthodontics Prosthodontics. © This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Metal and Semiconductor Nanoparticle Self-Assembly
    Metal and Semiconductor Nanoparticle Self-Assembly by G. Daniel Lilly A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical Engineering) in The University of Michigan 2009 Doctoral Committee: Professor Nicholas A. Kotov, Chair Professor Sharon C. Glotzer Professor Xiaoqing Pan Assistant Professor Suljo Linic © G. Daniel Lilly 2009 To my wife, Michelle M. Lilly, Ph.D. To my mother and father, Nancy N. and G. Bud Lilly ii ACKNOWLEDGEMENTS I would like to thank my loving and lovely wife Michelle for her support through the process of obtaining my Ph.D. If not for her support and advice I most likely would not have finished this process. I value her as a friend and partner and am forever appreciative of her actions. I would also like to thank my parents for laying the groundwork in my life to accomplish this. They taught me the value of hard work and persistence when reaching toward your goals, and without these lessons I most likely would not have even gone to graduate school, much less finished. I am appreciative for all the help and support my fellow lab members have given me over the last five years. Former lab members Jaebeom Lee, Zhiyong Tang, Paul Podsiadlo, Bongsup Ship, Jungwoo Lee and Kevin Critchley helped teach me new lab techniques, NP synthesis and conjugation techniques, and numerous analysis procedures, and allowed me a venue to discuss my hypotheses concerning these approaches. Current lab members Meghan Cuddihy, Edward Jan, Peter Ho, Ashish Agarwal, Christine Andres, Jian Zhu, Huanan Zhang, Elizabeth Stewart, Yichun Wang, Inigo Alvarez, Shimei Xu, and Anna Fernandez aided with various collaborations, techniques, procedures, and experiences for which I am grateful.
    [Show full text]
  • Directed Self-Assembly of Block Copolymers for the Fabrication of Nanomechanical Structures
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Directed self-assembly of block copolymers for the fabrication of nanomechanical structures Christian Pinto Gómez Dissertation for the degree of Doctor in Electronic and Telecommunication Engineering Advisor: Marta Fernández Regúlez Academic tutor: Joan Bausells Roigé Department of Electronic Engineering Universitat Autònoma de Barcelona 2021 This is to certify that this thesis has been written by Christian Pinto Gómez and is submitted to obtain the degree of Doctor of Philosophy in Electronic and Telecommunication Engineering under guidance and supervision of Dr. Marta Fernández Regúlez (IMB-CNM, CSIC). Advisor: Marta Fernández Regúlez Christian Pinto Gómez Academic tutor: Joan Bausells Roigé i ii Abstract The main goal of this dissertation, entitled “Directed self-assembly of block copolymers for the fabrication of nanomechanical structures”, is to demonstrate the possibility of fabricating nanomechanical functional structures by employing the directed self- assembly (DSA) of block copolymers (BCPs) as a nanopatterning tool. DSA is a bottom-up nanolithography technique based on the ability of BCPs to segregate into domains at the micro/nanoscale, and it has attracted high interest due to its inherent simplicity, high throughput, low cost and potential for sub-10 nm resolution.
    [Show full text]
  • The Nanobank Database Is Available at for Free Use for Research Purposes
    Forthcoming: Annals of Economics and Statistics (Annales d’Economie et Statistique), Issue 115/116, in press 2014 NBER WORKING PAPER SERIES COMMUNITYWIDE DATABASE DESIGNS FOR TRACKING INNOVATION IMPACT: COMETS, STARS AND NANOBANK Lynne G. Zucker Michael R. Darby Jason Fong Working Paper No. 17404 http://www.nber.org/papers/w17404 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 September 2011 Revised March 2014 The construction of Nanobank was supported under major grants from the National Science Foundation (SES- 0304727 and SES-0531146) and the University of California’s Industry-University Cooperative Research Program (PP9902, P00-04, P01-02, and P03-01). Additional support was received from the California NanoSystems Institute, Sun Microsystems, Inc., UCLA’s International Institute, and from the UCLA Anderson School’s Center for International Business Education and Research (CIBER) and the Harold Price Center for Entrepreneurial Studies. The COMETS database (also known as the Science and Technology Agents of Revolution or STARS database) is being constructed for public research use under major grants from the Ewing Marion Kauffman Foundation (2008- 0028 and 2008-0031) and the Science of Science and Innovation Policy (SciSIP) Program at the National Science Foundation (grants SES-0830983 and SES-1158907) with support from other agencies. Our colleague Jonathan Furner of the UCLA Department of Information Studies played a leading role in developing the methodology for selecting records for Nanobank. We are indebted to our scientific and policy advisors Roy Doumani, James R. Heath, Evelyn Hu, Carlo Montemagno, Roger Noll, and Fraser Stoddart, and to our research team, especially Amarita Natt, Hsing-Hau Chen, Robert Liu, Hongyan Ma, Emre Uyar, and Stephanie Hwang Der.
    [Show full text]
  • A Great Innovation in Scientific Research and Technology-A Review
    Open Access Austin Journal of Nanomedicine & Nanotechnology Review Article Nanotechnology; A Great Innovation in Scientific Research and Technology-A Review Fazal-ur-Rehman M*, Iqra Qayyum and Rabia Rehman Abstract Department of Chemistry, University of Education, Nanotechnology has brought numerous scientific development in the area Pakistan of research and expertise. Nanoparticle is a core particle which performs as *Corresponding authors: M Fazal-ur-Rehman, a whole unit in terms of transport and property. Nano size particles are quite Department of Chemistry, University of Education, unique in nature because nano size increase surface to volume ratio and also its Lahore-Vehari Campus-VEHARI-61100, Punjab, Pakistan physical, chemical and biological properties are different from bulk material. So the main aim to study its minute size is to trigger chemical activity with distinct Received: February 05, 2019; Accepted: March 12, crystallography that increases the surface area. Nanotechnology represents 2019; Published: March 19, 2019 the design, production and application of materials at atomic, molecular and macromolecular scales, in order to produce new nano-sized materials. The synthesis of Nanoparticles mainly done by several different chemical, physical and biological methods. Each method has its own significance and Nanoparticles synthesized by a specific method are utilized in a specific field. On characterization, it is concluded that Nanoparticles are the best advanced materials to apply in almost every field of research and technology for routine life applications. Nanoparticles are applied now a day in medical fields for diagnosis of diseases, and their cure. These are applied in electronic industries to make nano-chips and microchips. Along with, there are used in health and dispensary, power industry and environment safety, farming, armed forces and other productions.
    [Show full text]
  • Monday Morning, October 15, 2007 Plasma Science and Technology C, O, F, and H Systems
    Monday Morning, October 15, 2007 Plasma Science and Technology C, O, F, and H systems. The model potential functions were developed from data obtained from the density functional calculations based on Gaussian03 (B3LYP), a first-principle simulation code. We are also in the process of Room: 606 - Session PS1-MoM evaluating sputtering yields of SiOCH by energetic injections of + fluorocarbon radical ions, i.e., CFx . Details of such reactions will be also Plasma Modeling discussed. Moderator: C.C. Hsu, University of California at Los 8:40am PS1-MoM3 Vertically Integrated Computer Aided Design for Devices Process, T. Makabe*, Keio University, Japan INVITED Angeles We had our opportunity to propose a relaxation continuum (RCT) model for a low temperature radio-frequency plasma in 1988 in GEC.1 In 2000 we 8:00am PS1-MoM1 Mechanisms of Surface Roughness Formation and presented a vertically integrated computer aided design for device processes Evolution during Plasma Etching, G. Kokkoris, V. Constantoudis, G. (VicAddress) in RGD.2 With the aid of VicAddress described by a hybrid Boulousis, P. Angelikopoulos, E. Gogolides, NSCR Demokritos, Greece model consisting of the RCT model and particle model, a series of modeling The control and understanding of roughness formation during plasma has been carried out for the prediction and the design for a space- and time- etching is of primary importance in micro- and nano-fabrication technology. resolved plasma structure, sheath dynamics of reactive species, a feature In one hand, the roughness of the surfaces of fabricated features may profile evolution, and the damage to a lower level device element during 3 degrade electrical, optical or other device performance.
    [Show full text]
  • Plant-Mediated Synthesis of Silver Nanoparticles
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Chung et al. Nanoscale Research Letters (2016) 11:40 DOI 10.1186/s11671-016-1257-4 NANOREVIEW Open Access Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications Ill-Min Chung1†, Inmyoung Park2†, Kim Seung-Hyun1, Muthu Thiruvengadam1 and Govindasamy Rajakumar1* Abstract Interest in “green nanotechnology” in nanoparticle biosynthesis is growing among researchers. Nanotechnologies, due to their physicochemical and biological properties, have applications in diverse fields, including drug delivery, sensors, optoelectronics, and magnetic devices. This review focuses on the green synthesis of silver nanoparticles (AgNPs) using plant sources. Green synthesis of nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. The sizes of AgNPs are in the range of 1 to 100 nm. Characterization of synthesized nanoparticles is accomplished through UV spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. AgNPs have great potential to act as antimicrobial agents. The green synthesis of AgNPs can be efficiently applied for future engineering and medical concerns. Different types of cancers can be treated and/or controlled by phytonanotechnology. The present review provides a comprehensive survey of plant-mediated
    [Show full text]
  • Springer.Com
    ABCD springer.com Springer NEWS MARCH 2007 springer.com/booksellers Contents I Author Index . I Title Index . VI Orderform . 89 Biomedicine . 8 Business/ Economics . 71 Chemistry . 35 Computer Science . 20 Education . 78 Engineering . 37 Environmental Sciences . 65 General Science . .77 Geosciences/Geography . 63 Law . 76 Life Sciences . 68 Management . 75 Mathematics . 14 Medicine . 1 Philosophy . 86 Physics/Astronomy . 53 Psychology . 13 Social Sciences . 84 Statistics . 19 Icons Recommended Online version Book CD-ROM Set stock title available with DVD We recommend stocking Textbook Book DVD multiple copies with CD-ROM of this title II Author Index Springer News 3/2007 springer.com/booksellers A 54 Bibette et al., Emulsion Science. 2nd ed. 79 De Bock et al., The Illusion of Linearity 78 Billett (Eds), Work, Subjectivity and Learning (Math. Educat. Libr. 98) 20 Abramowicz (Eds), Technologies for Business (Technical, Vocational Educ. 6) 15 De Risi, The Analysis Situs Information Systems 21 Bin (Eds), Hardware and Software, (SNHS 33) 35 Advances in Polymer Science 207 Verifi cation and Testing 19 Dedecker et al., Weak Dependence: 8 Aggarwal (Eds), The Molecular Targets and (LNCS 4383) With Examples and Applications Therapeutic Uses of Curcumin in Health and 35 Boeyens (Eds), Models, Mysteries, and Magic (LN Statist.190) Disease of Molecules 24 Delfs/Knebl, Introduction to Cryptography (Advs. Exp. Med. & Bio. 595) 1 Bolander-Gouaille/Bottiglieri, Homocysteine (Security/Cryptogr.) 2nd ed. 20 Akiyama (Eds), Discrete Geometry, 37 Bonivento (Eds),
    [Show full text]