The Role of TTP Phosphorylation in the Regulation of Inflammatory Cytokine Production by MK2/3

Total Page:16

File Type:pdf, Size:1020Kb

The Role of TTP Phosphorylation in the Regulation of Inflammatory Cytokine Production by MK2/3 The Role of TTP Phosphorylation in the Regulation of Inflammatory Cytokine Production by MK2/3 This information is current as Natalia Ronkina, Nelli Shushakova, Christopher Tiedje, of September 28, 2021. Tatiana Yakovleva, Maxim A. X. Tollenaere, Aaron Scott, Tanveer Singh Batth, Jesper Velgaard Olsen, Alexandra Helmke, Simon Holst Bekker-Jensen, Andrew R. Clark, Alexey Kotlyarov and Matthias Gaestel J Immunol published online 16 September 2019 Downloaded from http://www.jimmunol.org/content/early/2019/09/13/jimmun ol.1801221 Supplementary http://www.jimmunol.org/content/suppl/2019/09/13/jimmunol.180122 http://www.jimmunol.org/ Material 1.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published September 16, 2019, doi:10.4049/jimmunol.1801221 The Journal of Immunology The Role of TTP Phosphorylation in the Regulation of Inflammatory Cytokine Production by MK2/3 Natalia Ronkina,*,1 Nelli Shushakova,†,‡,1 Christopher Tiedje,x Tatiana Yakovleva,* Maxim A. X. Tollenaere,x,2 Aaron Scott,{ Tanveer Singh Batth,‖ Jesper Velgaard Olsen,‖ Alexandra Helmke,† Simon Holst Bekker-Jensen,‖ Andrew R. Clark,{ Alexey Kotlyarov,* and Matthias Gaestel* Tristetraprolin (TTP) is an RNA-binding protein and an essential factor of posttranscriptional repression of cytokine biosynthesis in macrophages. Its activity is temporally inhibited by LPS-induced p38MAPK/MAPKAPK2/3–mediated phosphorylation, leading to a rapid increase in cytokine expression. We compared TTP expression and cytokine production in mouse bone marrow–derived macrophages of different genotypes: wild type, MAPKAP kinase 2 (MK2) deletion (MK2 knockout [KO]), MK2/3 double deletion Downloaded from (MK2/3 double KO [DKO]), TTP-S52A-S178A (TTPaa) knock-in, as well as combined MK2 KO/TTPaa and MK2/3 DKO/TTPaa. The comparisons reveal that MK2/3 are the only LPS-induced kinases for S52 and S178 of TTP and the role of MK2 and MK3 in the regulation of TNF biosynthesis is not restricted to phosphorylation of TTP at S52/S178 but includes independent processes, which could involve other TTP phosphorylations (such as S316) or other substrates of MK2/3 or p38MAPK. Furthermore, we found differences in the dependence of various cytokines on the cooperation between MK2/3 deletion and TTP mutation ex vivo. In the cecal ligation and puncture model of systemic inflammation, a dramatic decrease of cytokine production in MK2/3 DKO, TTPaa, http://www.jimmunol.org/ and DKO/TTPaa mice compared with wild-type animals is observed, thus confirming the role of the MK2/3/TTP signaling axis in cytokine production also in vivo. These findings improve our understanding of this signaling axis and could be of future relevance in the treatment of inflammation. The Journal of Immunology, 2019, 203: 000–000. any cytokine mRNAs display adenylate-uridinylate–rich Under steady-state conditions, TTP is ubiquitously expressed at a elements (AREs) in their 39 untranslated region, which basal level. Inflammatory stimuli like LPS and various cytokines M allows specific binding of regulatory proteins and a mediate transcriptional and posttranscriptional induction of TTP resulting posttranscriptional regulation of cytokine biosynthesis expression in hematopoietic cell lineages (2, 3). Rapid upregula- at the level of mRNA stability and translation (1). Tristetraprolin tion of TTP expression in the early inflammatory response is by guest on September 28, 2021 (TTP) is one of such ARE-binding proteins, which destabilizes accompanied by its transient phosphorylation at multiple sites. mRNAs, inhibits their translation, and thereby suppresses cytokine At least two phosphorylation sites of TTP, S52 and S178, were production. Its constitutive deletion in mice leads to increased shown to be phosphorylated directly by the p38MAPK-activated basal levels of cytokines, such as TNF, and symptoms of cachexia (2). kinases MK2 and MK3 (3, 4). Inactivation of p38MAPK/MK2/3 signaling by p38 or MK2/3 inhibitors or by MK2/3 deletion in mice resulted in a dramatic decrease of TTP-targeted inflammatory *Institute of Cell Biochemistry, Center of Biochemistry, Hannover Medical School, D-30625 Hannover, Germany; †Division of Nephrology and Hypertension, Hannover cytokines and TTP expression, indicating a transient inhibitory Medical School, D-30625 Hannover, Germany; ‡Phenos GmbH, D-30625 Hannover, role of p38/MK2/3 signaling on TTP’s suppressive activity (4–6). Germany; xCenter for Healthy Aging, Department of Cellular and Molecular { Loss of the inhibitory effect of MK2/3-mediated phosphorylation Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark; Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University on TTP activity was also observed in knock-in mice, in which the ‖ of Birmingham, B15 2TT Birmingham, United Kingdom; and Proteomics Program, TTP gene was altered to code for a nonphosphorylatable mutant, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark TTP-S52A-S178A (TTPaa) (2). Similar to MK2/3-deficient (MK2/3 aa/aa 1 double knockout [DKO]) mice, the TTP knock-in mice (TTPaa N.R. and N.S. contributed equally to this work as first authors. mice) demonstrate significant reduction of TTP-targeted inflamma- 2Current address: LEO Pharma A/S, Ballerup, Denmark. tory cytokines and TTP expression, reflecting the inability of TTPaa ORCIDs: 0000-0003-3772-4136 (N.S.); 0000-0002-3013-6967 (C.T.); 0000-0002-2653- 0777 (M.A.X.T.); 0000-0001-9325-5026 (A.S.); 0000-0003-4996-8322 (A.R.C.); 0000- to be inactivated by p38 MAPK/MK2/3 signaling. These observa- 0002-4944-4652 (M.G.). tions indicate that transient phosphorylation of TTP inhibits its Received for publication September 10, 2018. Accepted for publication August 20, suppressive function and enables its target cytokines to be 2019. expressed and elucidate the inflammatory response before TTP Address correspondence and reprint requests to Prof. Matthias Gaestel, Institute of Cell dephosphorylation reactivates its suppressive function, leading Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, to decreased cytokine production resolving inflammation. This Germany. E-mail address: [email protected] is also in agreement with the finding that phospho-TTP can be The online version of this article contains supplemental material. replaced by the mRNA-stabilizing factor HuR at the AREs (3). Abbreviations used in this article: ARE, AU-rich element; BMDM, bone marrow– derived macrophage; CLP, cecal ligation and puncture; DKO, double knockout; Interestingly, TTPaa protein is induced to lower levels than KO, knockout; PL, peritoneal lavage; PMN, polymorphonuclear neutrophil; SILAC, wild-type (WT) TTP in LPS-stimulated bone marrow–derived stable isotope labeling by amino acids in cell culture; TTP, tristetraprolin; TTPaa, macrophages (BMDMs) (2). This can be explained by two distinct TTP-S52A-S178A; WT, wild-type. phenomena. First, an ARE in TTP’s own mRNA allows negative Copyright Ó 2019 by The American Association of Immunologists, Inc. 0022-1767/19/$37.50 feedback control of TTP expression (4). Constitutively active TTPaa www.jimmunol.org/cgi/doi/10.4049/jimmunol.1801221 2 TTP PHOSPHORYLATION IN THE REGULATION OF CYTOKINES BY MK2/3 2 13 15 13 15 is therefore able to suppress its own expression more effectively H4 (medium), or L-arginine C6- N4 and L-lysine C6- N2 (heavy; by this feedback mechanism, leading to lower TTPaa levels than Cambridge Isotope Laboratories). To induce TTP expression, cells were m WT TTP (2). Second, the phosphorylation of TTP at serines 52 induced with 1 g/ml doxycycline overnight and pretreated with the MK2 inhibitor PF3644022 (catalog no. PZ0188, 10 mM; Sigma-Aldrich) for and 178 not only impairs the mRNA-destabilizing activity of TTP, 60 min before stimulation with anisomycin (1 mg/ml; Sigma-Aldrich) for it also protects TTP against proteasome-dependent degradation. 60 min. GFP immunoprecipitations were carried out using a magnetic Hence, the nonphosphorylatable mutant TTPaa is both highly active GFP-Trap binding resin (Chromotek). Beads were eluted in 23 Laemmli and highly unstable (2, 5, 6). buffer, and the resulting supernatants were mixed and loaded onto a 4–12% NuPAGE Bis-Tris Gel (Novex; Thermo Fisher Scientific). Further processing Analyses of TTP phosphorylation revealed many in vitro phos- of samples and mass spectrometry was performed as described before (21). phorylation sites for various protein kinases (7) and several sites phosphorylated in transfected cells (2, 8, 9). However, the above- Cecal ligation and puncture–induced sepsis model described signaling pathway targets only two sites of the MK2/3- Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) substrate TTP downstream of the p38MAPK/MK2/3 axis. So far, it under light isoflurane anesthesia in 10- to 12-wk-old mice. A 1-cm ventral is not clear whether other substrates of MK2/3 or downstream to midline abdominal incision was made. The cecum was then exposed, ligated the p38MAPK/MK2/3 axis [such as small Hsps (10), RTN4/NOGO-B with 4-0 silk sutures just distal to the ileocecal valve (comprising 70% of the cecum and sparing the cecal vessels) to avoid intestinal obstruction, and (11), SRF (12), RIPK1 (13–15), or UBE2J1 (16)] contributes to punctured through with a 24-gauge needle.
Recommended publications
  • Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an Mrna Decay− Independent Manner
    Published OnlineFirst July 16, 2015; DOI: 10.1158/0008-5472.CAN-15-0205 Cancer Microenvironment and Immunology Research Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay–Independent Manner Franz Kratochvill1,2, Nina Gratz1, Joseph E. Qualls1,2, Lee-Ann Van De Velde1,2, Hongbo Chi2, Pavel Kovarik3, and Peter J. Murray1,2 Abstract Tristetraprolin (TTP) is an inducible zinc finger AU-rich (TAM). However, TTP's effects on AU-rich mRNA stability RNA-binding protein essential for enforcing degradation of were negligible and limited by constitutive p38a MAPK activ- mRNAs encoding inflammatory chemokines and cytokines. ity, which was the main driver of proinflammatory cytokine Most studies on TTP center on the connection between mRNA production in TAMs at the posttranscriptional level. Instead, half-life and inflammatory output, because loss of TTP ampli- elimination of TTP caused excessive protein production of fies inflammation by increasing the stability of AU-rich inflammatory mediators, suggesting TTP-dependent transla- mRNAs. Here, we focused on how TTP controls cytokine and tional suppression of AU-rich mRNAs. Manipulation of the chemokine production in the nonresolving inflammation of p38a–TTP axis in macrophages has significant effects on the cancer using tissue-specific approaches. In contrast with mod- growth of tumors and therefore represents a means to mani- el in vitro macrophage systems, we found constitutive TTP pulate inflammation in the tumor microenvironment. Cancer expression in late-stage tumor-associated macrophages Res; 75(15); 1–11. Ó2015 AACR. Introduction TLR signaling phosphorylates TTP thereby blocking its function and sustaining TNF output (9, 10).
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Human RIPK1 Deficiency Causes Combined Immunodeficiency and Inflammatory Bowel Diseases
    Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases Yue Lia,1, Marita Führerb,1, Ehsan Bahramia,1, Piotr Sochac, Maja Klaudel-Dreszlerc, Amira Bouzidia, Yanshan Liua, Anna S. Lehlea, Thomas Magga, Sebastian Hollizecka, Meino Rohlfsa, Raffaele Concaa, Michael Fieldd, Neil Warnere,f, Slae Mordechaig, Eyal Shteyerh, Dan Turnerh,i, Rachida Boukarij, Reda Belbouabj, Christoph Walzk, Moritz M. Gaidtl,m, Veit Hornungl,m, Bernd Baumannn, Ulrich Pannickeb, Eman Al Idrissio, Hamza Ali Alghamdio, Fernando E. Sepulvedap,q, Marine Gilp,q, Geneviève de Saint Basilep,q,r, Manfred Hönigs, Sibylle Koletzkoa,i, Aleixo M. Muisee,f,i,t,u, Scott B. Snapperd,i,v,w, Klaus Schwarzb,x,2, Christoph Kleina,i,2, and Daniel Kotlarza,i,2,3 aDr. von Hauner Children’s Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337 Munich, Germany; bThe Institute for Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; cDepartment of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, 04730 Warsaw, Poland; dDivision of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA 02115; eSickKids Inflammatory Bowel Disease Center, Research Institute, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; fCell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; gPediatric Gastroenterology, Hadassah University Hospital, Jerusalem 91120, Israel; hThe Juliet Keidan
    [Show full text]
  • Westminsterresearch ZFP36 Proteins and Mrna Targets in B Cell
    WestminsterResearch http://www.westminster.ac.uk/westminsterresearch ZFP36 proteins and mRNA targets in B cell malignancies Alcaraz, A. This is an electronic version of a PhD thesis awarded by the University of Westminster. © Miss Amor Alcaraz, 2015. The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners. Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/). In case of abuse or copyright appearing without permission e-mail [email protected] ZFP36 proteins and mRNA targets in B cell malignancies Maria del Amor Alcaraz-Serrano A Thesis submitted in partial fulfilment of the requirements of the University of Westminster for the degree of Doctor of Philosophy September 2015 Abstract The ZFP36 proteins are a family of post-transcriptional regulator proteins that bind to adenine uridine rich elements (AREs) in 3’ untranslated (3’UTR) regions of mRNAs. The members of the human family, ZFP36L1, ZFP36L2 and ZFP36 are able to degrade mRNAs of important cell regulators that include cytokines, cell signalling proteins and transcriptional factors. This project investigated two proposed targets for the protein family that have important roles in B cell biology, BCL2 and CD38 mRNAs. BCL2 is an anti-apoptotic protein with key roles in cell survival and carcinogenesis; CD38 is a membrane protein differentially expressed in B cells and with a prognostic value in B chronic lymphocytic leukaemia (B-CLL), patients positive for CD38 are considered to have a poor prognosis.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Table S2.Up Or Down Regulated Genes in Tcof1 Knockdown Neuroblastoma N1E-115 Cells Involved in Differentbiological Process Anal
    Table S2.Up or down regulated genes in Tcof1 knockdown neuroblastoma N1E-115 cells involved in differentbiological process analysed by DAVID database Pop Pop Fold Term PValue Genes Bonferroni Benjamini FDR Hits Total Enrichment GO:0044257~cellular protein catabolic 2.77E-10 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 537 13588 1.944851 8.64E-07 8.64E-07 5.02E-07 process ISG15, ATG7, PSENEN, LOC100046898, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4, ASB8, DCUN1D1, PSMA6, SIAH1A, TRIM32, RNF138, GM12396, RNF20, USP17L5, FBXO11, RAD23B, NEDD8, UBE2V2, RFFL, CDC GO:0051603~proteolysis involved in 4.52E-10 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 534 13588 1.93519 1.41E-06 7.04E-07 8.18E-07 cellular protein catabolic process ISG15, ATG7, PSENEN, LOC100046898, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4, ASB8, DCUN1D1, PSMA6, SIAH1A, TRIM32, RNF138, GM12396, RNF20, USP17L5, FBXO11, RAD23B, NEDD8, UBE2V2, RFFL, CDC GO:0044265~cellular macromolecule 6.09E-10 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 609 13588 1.859332 1.90E-06 6.32E-07 1.10E-06 catabolic process ISG15, RBM8A, ATG7, LOC100046898, PSENEN, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4, ASB8, DCUN1D1, PSMA6, SIAH1A, TRIM32, RNF138, GM12396, RNF20, XRN2, USP17L5, FBXO11, RAD23B, UBE2V2, NED GO:0030163~protein catabolic process 1.81E-09 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 556 13588 1.87839 5.64E-06 1.41E-06 3.27E-06 ISG15, ATG7, PSENEN, LOC100046898, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4,
    [Show full text]
  • Targeting RIP Kinases in Chronic Inflammatory Disease
    biomolecules Review Targeting RIP Kinases in Chronic Inflammatory Disease Mary Speir 1,2, Tirta M. Djajawi 1,2 , Stephanie A. Conos 1,2, Hazel Tye 1 and Kate E. Lawlor 1,2,* 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; [email protected] (M.S.); [email protected] (T.M.D.); [email protected] (S.A.C.); [email protected] (H.T.) 2 Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia * Correspondence: [email protected]; Tel.: +61-85722700 Abstract: Chronic inflammatory disorders are characterised by aberrant and exaggerated inflam- matory immune cell responses. Modes of extrinsic cell death, apoptosis and necroptosis, have now been shown to be potent drivers of deleterious inflammation, and mutations in core repressors of these pathways underlie many autoinflammatory disorders. The receptor-interacting protein (RIP) kinases, RIPK1 and RIPK3, are integral players in extrinsic cell death signalling by regulating the production of pro-inflammatory cytokines, such as tumour necrosis factor (TNF), and coordinating the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, which underpin patholog- ical inflammation in numerous chronic inflammatory disorders. In this review, we firstly give an overview of the inflammatory cell death pathways regulated by RIPK1 and RIPK3. We then discuss how dysregulated signalling along these pathways can contribute to chronic inflammatory disorders of the joints, skin, and gastrointestinal tract, and discuss the emerging evidence for targeting these RIP kinases in the clinic. Keywords: apoptosis; necroptosis; RIP kinases; chronic inflammatory disease; tumour necrosis factor; Citation: Speir, M.; Djajawi, T.M.; interleukin-1 Conos, S.A.; Tye, H.; Lawlor, K.E.
    [Show full text]
  • Supplementary Table 8. Cpcp PPI Network Details for Significantly Changed Proteins, As Identified in 3.2, Underlying Each of the Five Functional Domains
    Supplementary Table 8. cPCP PPI network details for significantly changed proteins, as identified in 3.2, underlying each of the five functional domains. The network nodes represent each significant protein, followed by the list of interactors. Note that identifiers were converted to gene names to facilitate PPI database queries. Functional Domain Node Interactors Development and Park7 Rack1 differentiation Kcnma1 Atp6v1a Ywhae Ywhaz Pgls Hsd3b7 Development and Prdx6 Ncoa3 differentiation Pla2g4a Sufu Ncf2 Gstp1 Grin2b Ywhae Pgls Hsd3b7 Development and Atp1a2 Kcnma1 differentiation Vamp2 Development and Cntn1 Prnp differentiation Ywhaz Clstn1 Dlg4 App Ywhae Ywhab Development and Rac1 Pak1 differentiation Cdc42 Rhoa Dlg4 Ctnnb1 Mapk9 Mapk8 Pik3cb Sod1 Rrad Epb41l2 Nono Ltbp1 Evi5 Rbm39 Aplp2 Smurf2 Grin1 Grin2b Xiap Chn2 Cav1 Cybb Pgls Ywhae Development and Hbb-b1 Atp5b differentiation Hba Kcnma1 Got1 Aldoa Ywhaz Pgls Hsd3b4 Hsd3b7 Ywhae Development and Myh6 Mybpc3 differentiation Prkce Ywhae Development and Amph Capn2 differentiation Ap2a2 Dnm1 Dnm3 Dnm2 Atp6v1a Ywhab Development and Dnm3 Bin1 differentiation Amph Pacsin1 Grb2 Ywhae Bsn Development and Eef2 Ywhaz differentiation Rpgrip1l Atp6v1a Nphp1 Iqcb1 Ezh2 Ywhae Ywhab Pgls Hsd3b7 Hsd3b4 Development and Gnai1 Dlg4 differentiation Development and Gnao1 Dlg4 differentiation Vamp2 App Ywhae Ywhab Development and Psmd3 Rpgrip1l differentiation Psmd4 Hmga2 Development and Thy1 Syp differentiation Atp6v1a App Ywhae Ywhaz Ywhab Hsd3b7 Hsd3b4 Development and Tubb2a Ywhaz differentiation Nphp4
    [Show full text]
  • The Combination of TPL2 Knockdown and Tnfα Causes Synthetic Lethality Via Caspase-8 Activation in Human Carcinoma Cell Lines
    The combination of TPL2 knockdown and TNFα causes synthetic lethality via caspase-8 activation in human carcinoma cell lines Oksana B. Serebrennikovaa, Maria D. Paraskevopouloua, Elia Aguado-Frailea,1, Vasiliki Tarasliaa, Wenying Rena,2, Geeta Thapaa, Jatin Ropera,3, Keyong Dua,2, Carlo M. Croceb,c,4, and Philip N. Tsichlisa,b,c,4 aMolecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111; bDepartment of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210; and cThe Ohio State University Comprehensive Cancer Center, Columbus, OH 43210 Contributed by Carlo M. Croce, May 21, 2019 (sent for review January 29, 2019; reviewed by Emad S. Alnemri and Wafik El-Deiry) Most normal and tumor cells are protected from tumor necrosis subset of tumor cells and we delineate the relevant TPL2-regulated factor α (TNFα)-induced apoptosis. Here, we identify the MAP3 pathway(s). kinase tumor progression locus-2 (TPL2) as a player contributing TPL2 is an oncoprotein that is activated by provirus insertion to the protection of a subset of tumor cell lines. The combination in Moloney murine leukemia virus-induced rodent lymphomas of TPL2 knockdown and TNFα gives rise to a synthetic lethality and mammary tumor virus-induced mammary adenocarcinomas phenotype via receptor-interacting serine/threonine-protein ki- (13, 14). Expression of constitutively active TPL2 from a thymus- nase 1 (RIPK1)-dependent and -independent mechanisms. Whereas targeted transgene confirmed its oncogenic potential (15). Sub- wild-type TPL2 rescues
    [Show full text]
  • A Post-Transcriptional Mechanism Pacing Expression of Neural Genes with Precursor Cell Differentiation Status
    ARTICLE Received 24 Sep 2014 | Accepted 21 May 2015 | Published 6 Jul 2015 DOI: 10.1038/ncomms8576 OPEN A post-transcriptional mechanism pacing expression of neural genes with precursor cell differentiation status Weijun Dai1, Wencheng Li2, Mainul Hoque2, Zhuyun Li1, Bin Tian2 & Eugene V. Makeyev1,3 Nervous system (NS) development relies on coherent upregulation of extensive sets of genes in a precise spatiotemporal manner. How such transcriptome-wide effects are orchestrated at the molecular level remains an open question. Here we show that 30-untranslated regions (30 UTRs) of multiple neural transcripts contain AU-rich cis-elements (AREs) recognized by tristetraprolin (TTP/Zfp36), an RNA-binding protein previously implicated in regulation of mRNA stability. We further demonstrate that the efficiency of ARE-dependent mRNA degradation declines in the neural lineage because of a decrease in the TTP protein expression mediated by the NS-enriched microRNA miR-9. Importantly, TTP downregulation in this context is essential for proper neuronal differentiation. On the other hand, inactivation of TTP in non-neuronal cells leads to dramatic upregulation of multiple NS-specific genes. We conclude that the newly identified miR-9/TTP circuitry limits unscheduled accumulation of neuronal mRNAs in non-neuronal cells and ensures coordinated upregulation of these transcripts in neurons. 1 School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore. 2 Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA. 3 MRC Centre for Developmental Neurobiology, King’s College London, London SE1 1UL, UK. Correspondence and requests for materials should be addressed to E.V.M.
    [Show full text]
  • RIPK1, Active Recombinant Mouse Protein Expressed in Sf9 Cells
    Catalog # Aliquot Size R07M-11G -05 5 µg R07M-11G -10 10 µg RIPK1, Active Recombinant mouse protein expressed in Sf9 cells Catalog # R07M-11G Lot # V2253-5 Product Description Specific Activity Recombinant mouse RIPK1 (1-327) was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. 20,000 The RIPK1 gene accession number is NM_009068. 15,000 Gene Aliases 10,000 D330015H01Rik; Rinp; RIP; Rip1 Activity (cpm) 5,000 0 Formulation 0 120 240 360 480 Recombinant protein stored in 50mM Tris-HCl, pH 7.5, Protein (ng) 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM The specific activity of RIPK1 was determined to be 2.6 nmol DTT, 0.1mM PMSF, 25% glycerol. /min/mg as per activity assay protocol. Storage and Stability Purity Store product at –70oC. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple The purity of RIPK1 was determined freeze/thaw cycles. to be >70% by densitometry, approx. MW 62 kDa. Scientific Background RIPK1 or Receptor Interacting Protein Kinase 1 is a serine/threonine kinase that was originally identified as interacting with the cytoplasmic domain of FAS. RIPK1 has been deemed as an important element in the signal transduction machinery that mediates programmed cell death. RIPK1 has been shown to interact with TRADD, TRAF1, TRAF2 and TRAF3 and TRADD can act as an RIPK1, Active adaptor protein to recruit RIPK1 to the TNFR1 complex in a Recombinant mouse protein expressed in Sf9 cells TNF-dependent process (1).
    [Show full text]