Targeting RIP Kinases in Chronic Inflammatory Disease

Total Page:16

File Type:pdf, Size:1020Kb

Targeting RIP Kinases in Chronic Inflammatory Disease biomolecules Review Targeting RIP Kinases in Chronic Inflammatory Disease Mary Speir 1,2, Tirta M. Djajawi 1,2 , Stephanie A. Conos 1,2, Hazel Tye 1 and Kate E. Lawlor 1,2,* 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; [email protected] (M.S.); [email protected] (T.M.D.); [email protected] (S.A.C.); [email protected] (H.T.) 2 Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia * Correspondence: [email protected]; Tel.: +61-85722700 Abstract: Chronic inflammatory disorders are characterised by aberrant and exaggerated inflam- matory immune cell responses. Modes of extrinsic cell death, apoptosis and necroptosis, have now been shown to be potent drivers of deleterious inflammation, and mutations in core repressors of these pathways underlie many autoinflammatory disorders. The receptor-interacting protein (RIP) kinases, RIPK1 and RIPK3, are integral players in extrinsic cell death signalling by regulating the production of pro-inflammatory cytokines, such as tumour necrosis factor (TNF), and coordinating the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, which underpin patholog- ical inflammation in numerous chronic inflammatory disorders. In this review, we firstly give an overview of the inflammatory cell death pathways regulated by RIPK1 and RIPK3. We then discuss how dysregulated signalling along these pathways can contribute to chronic inflammatory disorders of the joints, skin, and gastrointestinal tract, and discuss the emerging evidence for targeting these RIP kinases in the clinic. Keywords: apoptosis; necroptosis; RIP kinases; chronic inflammatory disease; tumour necrosis factor; Citation: Speir, M.; Djajawi, T.M.; interleukin-1 Conos, S.A.; Tye, H.; Lawlor, K.E. Targeting RIP Kinases in Chronic Inflammatory Disease. Biomolecules 2021, 11, 646. https://doi.org/ 1. Introduction 10.3390/biom11050646 Common chronic inflammatory and autoinflammatory diseases are caused by immune Academic Editor: Vladimir dysregulation, the aetiology of which involves a complex interplay between genetic and N. Uversky environmental factors that is incompletely understood [1]. Unmistakably, however, the underlying cause of distinct tissue pathologies is a failure to resolve inflammation arising Received: 9 April 2021 from the excessive production of inflammatory cytokines and chemokines, as well as Accepted: 22 April 2021 danger-associated molecular patterns (DAMPs) that are released from dying cells. Tumour Published: 28 April 2021 necrosis factor (TNF) is the archetypal death ligand and a pivotal pathogenic cytokine in many common inflammatory diseases. Accordingly, a number of TNF antagonists, as Publisher’s Note: MDPI stays neutral well as other anti-inflammatory biological agents that dampen its activity, have met with with regard to jurisdictional claims in considerable success in the clinic. Yet, many patients still fail to respond, or else develop published maps and institutional affil- severe adverse reactions to these therapies, highlighting the need for a both a greater iations. understanding of TNF signalling on a cell-by-cell level and also the need for alternative strategies to target TNF signalling pathways in disease. Over the last decade, the serine-threonine receptor-interacting protein (RIP) kinases -1 and -3 have emerged as key regulators of innate immunity via their integral roles in Copyright: © 2021 by the authors. cell death signalling during cellular stress and following exposure to inflammatory and Licensee MDPI, Basel, Switzerland. infectious stimuli [2–4]. RIPK1 has a critical scaffolding role in tumour necrosis factor This article is an open access article receptor-1 (TNFR1) and Toll-like receptor 3/4 (TLR3/4) pro-inflammatory signalling [5–7], distributed under the terms and as well as a kinase-dependent role in both apoptotic and necroptotic cell death [8]. The conditions of the Creative Commons carboxy-terminal death domain (DD) of RIPK1 can facilitate its interaction with other DD- Attribution (CC BY) license (https:// containing proteins to promote formation of death receptor signalling complexes [9–11], creativecommons.org/licenses/by/ while its RIP homotypic interaction motif (RHIM) domain (also shared with RIPK3) enables 4.0/). Biomolecules 2021, 11, 646. https://doi.org/10.3390/biom11050646 https://www.mdpi.com/journal/biomolecules Biomolecules 2021, 11, 646x FOR PEER REVIEW 2 2of of 23 22 RIPK1/3RIPK1/3 interactions interactions with with other other cell cell death death and/or and/or immune immune a adaptorsdaptors [12], [12], e.g. e.g.,, TIR TIR domain domain-- containingcontaining adaptor adaptor-inducing-inducing IFN-IFN-β (TRIF) [5,13] [5,13] and the the dsDNA dsDNA receptor receptor Z Z-DNA-DNA binding proteinprotein-1-1 (ZBP1; also known as DAI) [[14]14].. TNFTNF ligation ligation of of TNFR1 TNFR1 typically typically recruits recruits RIPK1 RIPK1 into into a membrane a membrane bound bound receptor receptor sig- nallingsignalling complex, complex, referred referred to as to complex as complex I, that I, that activates activates NF NF--B-κmediatedB-mediated transcription transcription of proof pro-survival-survival genes genes (Figure (Figure 1). Along1). Along with withRIPK1, RIPK1, TNFR1 TNFR1-associated-associated death domain death domain protein (TRADD)protein (TRADD) is recruited is recruited to TNFR1 to TNFR1via their via common their common DD [15,16]. DD [The15,16 adaptor]. The adaptor TNFR-associ- TNFR- atedassociated factor factor2 (TRAF2) 2 (TRAF2) subsequently subsequently binds binds to TRADD to TRADD and andrecruits recruits the thecellular cellular inhibitor inhibitor of apoptosisof apoptosis proteins proteins (cIAP) (cIAP)-1-1 and and cIAP2 cIAP2 [17,18]. [17,18]. The The E3 E3 ubiquitin ubiquitin ligase ligase activity ofof cIAP1/2cIAP1/2 attachesattaches K63 K63-- and K11 K11-linked-linked polyubiquitin chains to RIPK1, allowing for the recruitment ooff the linear ubiquitinubiquitinchain chain assembly assembly complex complex (LUBAC), (LUBAC), which which is ais heterotrimeric a heterotrimeric complex com- plexmade made up of up haeme-oxidized of haeme-oxidized IRP2 ubiquitinIRP2 ubiquitin ligase 1ligase (HOIL-1), 1 (HOIL HOIL-1-interacting-1), HOIL-1-interacting protein protein(HOIP), (HOIP), and SHANK-associated and SHANK-associated RH domain-interacting RH domain-interacting protein protein (SHARPIN). (SHARPIN). Subsequent Sub- sequentM1-linked M1- ubiquitylationlinked ubiquitylation of complex of complex I components I components by LUBAC by LUBAC stabilises stabilises the the complex com- plexand promotesand promotes the TAK1-the TAK1 and- IKK-dependentand IKK-dependent activation activation of canonical of canonical NF- κNFB transcrip--B tran- scriptiontion [19– 21[19].–21]. Post-translational Post-translational modification modification of of RIPK1 RIPK1 within within complex complex I, I, as as well well asas the selectselectiveive cleavage cleavage of of RIPK1 RIPK1 and and RIPK3 RIPK3 (and (and cylindromatosis cylindromatosis [CYLD]) [CYLD]) by by caspase caspase-8,-8, main- main- taintain TNF TNF-mediated-mediated pro pro-survival-survival signalling signalling and and block the transition to pro-apoptoticpro-apoptotic cell deathdeath complex complex II [22 [22––29]29].. This This critical critical pro pro-survival-survival scaffolding scaffolding role for RIPK1 is evide evidencednced byby the fact that RIPK1 RIPK1-deficient-deficient mice die shortly after birth due to systemic multi-organmulti-organ inflammationinflammation mediated mediated by unrestrained apoptosis and necroptosis [[3030–3636].]. Figure 1. Regulation of RIPK1 RIPK1-- and RIPK3 RIPK3-mediated-mediated cell death and inflammation. inflammation. TNF TNF ligation ligation of of its its receptor, receptor, TNFR1, typically induces complex 1 formation, where TNFR1 associates with RIPK1 and TRADD. TRADD subsequently interacts typically induces complex 1 formation, where TNFR1 associates with RIPK1 and TRADD. TRADD subsequently interacts with TRAF2 to facilitate cIAP1 and LUBAC recruitment to the complex. The cIAPs and LUBAC ubiquitylate RIPK1 to with TRAF2 to facilitate cIAP1 and LUBAC recruitment to the complex. The cIAPs and LUBAC ubiquitylate RIPK1 to facilitate a signalling cascade that induces pro-survival and pro-inflammatory gene expression. If either RIPK1 phosphor- ylationfacilitate or a ubiquitylation signalling cascade are impaired, that induces FADD pro-survival-RIPK1(RIPK3) and pro-inflammatory-caspase-8 associate gene to expression.form the pro If- eitherapoptotic RIPK1 complex phosphory- II (or thelation ripoptos or ubiquitylationome). If caspase are impaired,-8 activity FADD-RIPK1(RIPK3)-caspase-8 is compromised, a further complex, associate termed to form the thenecrosome, pro-apoptotic forms complex in a RIPK1 II (or- and the RIPK3ripoptosome). kinase-dependent If caspase-8 manner. activity Within is compromised, this complex, a further RIPK3 complex,-mediated termed phosphorylation the necrosome, and forms activation in a RIPK1- of MLKL and induces RIPK3 necroptosis, a lytic inflammatory form of cell death. Of note, TLR4 ligation can also induce similar inflammatory (e.g., Biomolecules 2021, 11, 646 3 of 22 kinase-dependent manner. Within this complex, RIPK3-mediated phosphorylation and activation of MLKL induces necroptosis, a lytic inflammatory form of cell death. Of note, TLR4 ligation can also induce similar inflammatory
Recommended publications
  • Human RIPK1 Deficiency Causes Combined Immunodeficiency and Inflammatory Bowel Diseases
    Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases Yue Lia,1, Marita Führerb,1, Ehsan Bahramia,1, Piotr Sochac, Maja Klaudel-Dreszlerc, Amira Bouzidia, Yanshan Liua, Anna S. Lehlea, Thomas Magga, Sebastian Hollizecka, Meino Rohlfsa, Raffaele Concaa, Michael Fieldd, Neil Warnere,f, Slae Mordechaig, Eyal Shteyerh, Dan Turnerh,i, Rachida Boukarij, Reda Belbouabj, Christoph Walzk, Moritz M. Gaidtl,m, Veit Hornungl,m, Bernd Baumannn, Ulrich Pannickeb, Eman Al Idrissio, Hamza Ali Alghamdio, Fernando E. Sepulvedap,q, Marine Gilp,q, Geneviève de Saint Basilep,q,r, Manfred Hönigs, Sibylle Koletzkoa,i, Aleixo M. Muisee,f,i,t,u, Scott B. Snapperd,i,v,w, Klaus Schwarzb,x,2, Christoph Kleina,i,2, and Daniel Kotlarza,i,2,3 aDr. von Hauner Children’s Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337 Munich, Germany; bThe Institute for Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; cDepartment of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, 04730 Warsaw, Poland; dDivision of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA 02115; eSickKids Inflammatory Bowel Disease Center, Research Institute, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; fCell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; gPediatric Gastroenterology, Hadassah University Hospital, Jerusalem 91120, Israel; hThe Juliet Keidan
    [Show full text]
  • Fabienne Le Cann
    ANNÉE 2017 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Bretagne Loire En Cotutelle Internationale avec l’Université de Gand, Belgique pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Biologie Ecole doctorale Vie Agro Santé présentée par Fabienne Le Cann Préparée à l’unité de recherche UMR Inserm U1085 IRSET Institut de Recherche en Santé Environnement et Travail UFR Sciences de la Vie et de l’Environnement Thèse soutenue à Rennes Caractérisation de le 2 juin 2017 nouveaux inhibiteurs devant le jury composé de : Mojgan DJAVAHERI-MERGNY de la kinase RIPK1 et CR INSERM, Université de Bordeaux / rapporteur Alicia TORRIGLIA de la nécroptose DR INSERM, Université de Paris Descartes, UPMC / rapporteur Sandy ADJEMIAN-CATANI Junior Scientist, Université de Gand / rapporteur Sandrine RUCHAUD CR CNRS, Sorbonne Universités, UPMC Paris VI / examinateur Tom VANDEN BERGHE Senior Scientist, Université de Gand / examinateur Georges BAFFET DR INSERM, Université de Rennes 1 / examinateur, Président de jury Peter VANDENABEELE Pr, Dr, Université de Gand / co-directeur de thèse Marie-Thérèse DIMANCHE-BOITREL DR INSERM, Université de Rennes 1 / co-directrice de thèse ANNÉE 2017 Fabienne Le Cann Thesis submitted in partial fulfillment of the requirements for the degree of DOCTOR IN BIOLOGY from Rennes 1 University & DOCTOR OF SCIENCES: Biochemistry and Biotechnology from Ghent University Academic year 2016-2017 Rennes 1 University – Faculty of Sciences in Health and Environment under seal of University Bretagne Loire Ghent University
    [Show full text]
  • Human Receptor-Interacting Serine/Threonine-Protein Kinase 2 (RIPK2) a Target Enabling Package (TEP)
    Human Receptor-Interacting Serine/Threonine-Protein Kinase 2 (RIPK2) A Target Enabling Package (TEP) Gene ID / UniProt ID / EC 8767 / O43353 / - Target Nominator SGC Internal Nomination SGC Authors Peter Canning, Daniel M. Pinkas, Joshua C. Bufton, Sarah Picaud, Jennifer A. Ward, Catherine Rogers, Benedict-Tilman Berger, Stefan Knapp, Susanne Muller-Knapp, Paul E. Brennan, Kilian V. M. Huber, Panagis Filippakopoulos, Alex N. Bullock Collaborating Authors Matous Hrdinka1, Qui Ruan2, Chalada Suebsuwong3, Lisa Schlicher1, Bing Dai2, Jenny L. Maki2, Soumya S. Ray4, Danish Saleh5, Sameer Nikhar6, Tobias Schwerd7, Holm H.Uhlig7, Gregory D. Cuny6, Alexei Degterev2, Mads Gyrd-Hansen1 Target PI Alex N. Bullock (SGC Oxford) Therapeutic Area(s) Inflammatory diseases Disease Relevance Mutations in the NOD2-RIPK2 pathway identify RIPK2 a potential therapeutic target in auto-immune and inflammatory conditions such as Crohn’s disease, Blau syndrome, early-onset osteoarthritis and multiple sclerosis. Date Approved by TEP Evaluation 13th June 2018 Group Document version Version 3 Document version date October 2020 Citation Peter Canning, Daniel M. Pinkas, Joshua C. Bufton, Sarah Picaud, Jennifer A. Ward, Catherine Rogers, … Alex N. Bullock. (2018). Human Receptor- Interacting Serine/Threonine-Protein Kinase 2 (RIPK2); A Target Enabling Package. Zenodo. http://doi.org/10.5281/zenodo.1344501 Affiliations 1. Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford 2. Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine 3. Department of Chemistry, Science and Research Building 2, University of Houston 4. Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital and Harvard Medical School 5. Medical Scientist Training Program and Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine 6.
    [Show full text]
  • Evaluating Necroptosis Competency in Malignant Melanoma
    Evaluating necroptosis competency in malignant melanoma Von der Fakultät 4: Energie-, Verfahrens- und Biotechnik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) Genehmigte Abhandlung Vorgelegt von Biswajit Podder, M.Sc. aus Narsingdi, Bangladesh Hauptberichter: Prof. Dr. Markus Morrison Mitberichter: Prof. Dr. Jochen Utikal, Universität Heidelberg Prüfungsvorsitzender: Prof. Dr. Roland Kontermann Tag der mündlichen Prüfung: 18.06.2020 Institut für Zellbiologie und Immunologie der Universität Stuttgart Stuttgart, 2020 I II Declarations according to § 2 of the doctoral degree regulations: Eidesstattliche Erklärung Hiermit versichere ich, dass ich diese Arbeit selbst verfasst und dabei keine anderen als die angegeben Quellen und Hilfsmittel verwendet habe. Declaration of Authorship I hereby certify that this Dissertation is entirely my own work, apart from where otherwise indicated. Passages and ideas from other sources have been clearly indicated. Biswajit Podder Stuttgart, 10th of July 2020 III IV This thesis is dedicated to three million freedom fighters who sacrifice their lives for my beloved country Bangladesh “There will be obstacles. There will be doubters. There will be mistakes. But with hard work, there are no limits.” —Michael Phelps I VI Research outputs Journal Article: Podder B., Guttà C., Rožanc J., Gerlach E., Feoktistova M., Panayotova-Dimitrova D, Alexopoulos LG., Leverkus M., Rehm M., TAK1 suppresses RIPK1-dependent cell death and is associated With disease progression in melanoma Cell death and differentiation; 12 February 2019.1 doi: 0.1038/s41418-019-0315-8 Rožanc J., Sakellaropoulos T., Antoranz A., Guttà C., Podder B., Vetma V., Rufo N., Agostinis P., Pliaka V., Sauter T., Kulms D., Rehm M., Alexopoulos LG., Phosphoprotein patterns predict trametinib responsiveness and optimal trametinib sensitisation strategies in melanoma.
    [Show full text]
  • Systems Consequences of Amplicon Formation in Human Breast Cancer
    Downloaded from genome.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Research Systems consequences of amplicon formation in human breast cancer Koichiro Inaki,1,2,9 Francesca Menghi,1,2,9 Xing Yi Woo,1,9 Joel P. Wagner,1,2,3 4,5 1 2 Pierre-Etienne Jacques, Yi Fang Lee, Phung Trang Shreckengast, Wendy WeiJia Soon,1 Ankit Malhotra,2 Audrey S.M. Teo,1 Axel M. Hillmer,1 Alexis Jiaying Khng,1 Xiaoan Ruan,6 Swee Hoe Ong,4 Denis Bertrand,4 Niranjan Nagarajan,4 R. Krishna Murthy Karuturi,4,7 Alfredo Hidalgo Miranda,8 andEdisonT.Liu1,2,7 1Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Genome, Singapore 138672, Singapore; 2The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06030, USA; 3Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; 4Computational and Systems Biology, Genome Institute of Singapore, Genome, Singapore 138672, Singapore; 5Universite de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada; 6Genome Technology and Biology, Genome Institute of Singapore, Genome, Singapore 138672, Singapore; 7The Jackson Laboratory, Bar Harbor, Maine 04609, USA; 8National Institute of Genomic Medicine, Periferico Sur 4124, Mexico City 01900, Mexico Chromosomal structural variations play an important role in determining the transcriptional landscape of human breast cancers. To assess the nature of these structural variations, we analyzed eight breast tumor samples with a focus on regions of gene amplification using mate-pair sequencing of long-insert genomic DNA with matched transcriptome profiling. We found that tandem duplications appear to be early events in tumor evolution, especially in the genesis of amplicons.
    [Show full text]
  • Macrophage Activation JUNB Is a Key Transcriptional Modulator Of
    JUNB Is a Key Transcriptional Modulator of Macrophage Activation Mary F. Fontana, Alyssa Baccarella, Nidhi Pancholi, Miles A. Pufall, De'Broski R. Herbert and Charles C. Kim This information is current as of October 2, 2021. J Immunol 2015; 194:177-186; Prepublished online 3 December 2014; doi: 10.4049/jimmunol.1401595 http://www.jimmunol.org/content/194/1/177 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2014/12/03/jimmunol.140159 Material 5.DCSupplemental References This article cites 40 articles, 7 of which you can access for free at: http://www.jimmunol.org/content/194/1/177.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology JUNB Is a Key Transcriptional Modulator of Macrophage Activation Mary F. Fontana,* Alyssa Baccarella,* Nidhi Pancholi,* Miles A.
    [Show full text]
  • The Combination of TPL2 Knockdown and Tnfα Causes Synthetic Lethality Via Caspase-8 Activation in Human Carcinoma Cell Lines
    The combination of TPL2 knockdown and TNFα causes synthetic lethality via caspase-8 activation in human carcinoma cell lines Oksana B. Serebrennikovaa, Maria D. Paraskevopouloua, Elia Aguado-Frailea,1, Vasiliki Tarasliaa, Wenying Rena,2, Geeta Thapaa, Jatin Ropera,3, Keyong Dua,2, Carlo M. Croceb,c,4, and Philip N. Tsichlisa,b,c,4 aMolecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111; bDepartment of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210; and cThe Ohio State University Comprehensive Cancer Center, Columbus, OH 43210 Contributed by Carlo M. Croce, May 21, 2019 (sent for review January 29, 2019; reviewed by Emad S. Alnemri and Wafik El-Deiry) Most normal and tumor cells are protected from tumor necrosis subset of tumor cells and we delineate the relevant TPL2-regulated factor α (TNFα)-induced apoptosis. Here, we identify the MAP3 pathway(s). kinase tumor progression locus-2 (TPL2) as a player contributing TPL2 is an oncoprotein that is activated by provirus insertion to the protection of a subset of tumor cell lines. The combination in Moloney murine leukemia virus-induced rodent lymphomas of TPL2 knockdown and TNFα gives rise to a synthetic lethality and mammary tumor virus-induced mammary adenocarcinomas phenotype via receptor-interacting serine/threonine-protein ki- (13, 14). Expression of constitutively active TPL2 from a thymus- nase 1 (RIPK1)-dependent and -independent mechanisms. Whereas targeted transgene confirmed its oncogenic potential (15). Sub- wild-type TPL2 rescues
    [Show full text]
  • RIPK1, Active Recombinant Mouse Protein Expressed in Sf9 Cells
    Catalog # Aliquot Size R07M-11G -05 5 µg R07M-11G -10 10 µg RIPK1, Active Recombinant mouse protein expressed in Sf9 cells Catalog # R07M-11G Lot # V2253-5 Product Description Specific Activity Recombinant mouse RIPK1 (1-327) was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. 20,000 The RIPK1 gene accession number is NM_009068. 15,000 Gene Aliases 10,000 D330015H01Rik; Rinp; RIP; Rip1 Activity (cpm) 5,000 0 Formulation 0 120 240 360 480 Recombinant protein stored in 50mM Tris-HCl, pH 7.5, Protein (ng) 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM The specific activity of RIPK1 was determined to be 2.6 nmol DTT, 0.1mM PMSF, 25% glycerol. /min/mg as per activity assay protocol. Storage and Stability Purity Store product at –70oC. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple The purity of RIPK1 was determined freeze/thaw cycles. to be >70% by densitometry, approx. MW 62 kDa. Scientific Background RIPK1 or Receptor Interacting Protein Kinase 1 is a serine/threonine kinase that was originally identified as interacting with the cytoplasmic domain of FAS. RIPK1 has been deemed as an important element in the signal transduction machinery that mediates programmed cell death. RIPK1 has been shown to interact with TRADD, TRAF1, TRAF2 and TRAF3 and TRADD can act as an RIPK1, Active adaptor protein to recruit RIPK1 to the TNFR1 complex in a Recombinant mouse protein expressed in Sf9 cells TNF-dependent process (1).
    [Show full text]
  • Caspase-8, Receptor-Interacting Protein Kinase 1 (RIPK1), and RIPK3 Regulate Retinoic Acid-Induced Cell Differentiation and Necroptosis
    Cell Death & Differentiation (2020) 27:1539–1553 https://doi.org/10.1038/s41418-019-0434-2 ARTICLE Caspase-8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3 regulate retinoic acid-induced cell differentiation and necroptosis 1,2 1,3 4 3 1,2,4 Masataka Someda ● Shunsuke Kuroki ● Hitoshi Miyachi ● Makoto Tachibana ● Shin Yonehara Received: 1 July 2019 / Revised: 4 October 2019 / Accepted: 4 October 2019 / Published online: 28 October 2019 © The Author(s) 2019. This article is published with open access Abstract Among caspase family members, Caspase-8 is unique, with associated critical activities to induce and suppress death receptor-mediated apoptosis and necroptosis, respectively. Caspase-8 inhibits necroptosis by suppressing the function of receptor-interacting protein kinase 1 (RIPK1 or RIP1) and RIPK3 to activate mixed lineage kinase domain-like (MLKL). Disruption of Caspase-8 expression causes embryonic lethality in mice, which is rescued by depletion of either Ripk3 or Mlkl, indicating that the embryonic lethality is caused by activation of necroptosis. Here, we show that knockdown of Caspase-8 expression in embryoid bodies derived from ES cells markedly enhances retinoic acid (RA)-induced cell differentiation and necroptosis, both of which are dependent on Ripk1 and Ripk3; however, the enhancement of RA-induced 1234567890();,: 1234567890();,: cell differentiation is independent of Mlkl and necrosome formation. RA treatment obviously enhanced the expression of RA-specific target genes having the retinoic acid response element (RARE) in their promoter regions to induce cell differentiation, and induced marked expression of RIPK1, RIPK3, and MLKL to stimulate necroptosis. Caspase-8 knockdown induced RIPK1 and RIPK3 to translocate into the nucleus and to form a complex with RA receptor (RAR), and RAR interacting with RIPK1 and RIPK3 showed much stronger binding activity to RARE than RAR without RIPK1 or RIPK3.
    [Show full text]
  • The Molecular Links Between Cell Death and Inflammasome
    cells Review The Molecular Links between Cell Death and Inflammasome Kwang-Ho Lee 1,2 and Tae-Bong Kang 1,2,* 1 Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea 2 Research Institute of Inflammatory Diseases, Konkuk University, Chungju 27478, Korea * Correspondence: [email protected]; Tel.: +82-43-840-3904; Fax: +82-43-852-3616 Received: 30 July 2019; Accepted: 9 September 2019; Published: 10 September 2019 Abstract: Programmed cell death pathways and inflammasome activation pathways can be genetically and functionally separated. Inflammasomes are specialized protein complexes that process pro-inflammatory cytokines, interleukin-1β (IL-1β), and IL-18 to bioactive forms for protection from a wide range of pathogens, as well as environmental and host-derived danger molecules. Programmed cell death has been extensively studied, and its role in the development, homeostasis, and control of infection and danger is widely appreciated. Apoptosis and the recently recognized necroptosis are the best-characterized forms of programmed death, and the interplay between them through death receptor signaling is also being studied. Moreover, growing evidence suggests that many of the signaling molecules known to regulate programmed cell death can also modulate inflammasome activation in a cell-intrinsic manner. Therefore, in this review, we will discuss the current knowledge concerning the role of the signaling molecules originally associated with programmed cell death in the activation of inflammasome and IL-1β processing. Keywords: inflammasome; apoptosis; necroptosis; programmed cell death; Caspase-8; RIPK1/3; MLKL; PGAM5; DRP1 1. Introduction Homeostasis is a principle property of living organisms and it is maintained at the systemic, tissue, and cellular levels through the homeostatic control system.
    [Show full text]
  • Targeting RIPK1 for the Treatment of Human Diseases INAUGURAL ARTICLE
    Targeting RIPK1 for the treatment of human diseases INAUGURAL ARTICLE Alexei Degtereva,1, Dimitry Ofengeimb,1, and Junying Yuanc,2 aDepartment of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02445; bRare and Neurologic Disease Research Therapeutic Area, Sanofi US, Framingham, MA 01701; and cDepartment of Cell Biology, Harvard Medical School, Boston, MA 02115 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2017. Edited by Don W. Cleveland, University of California, San Diego, La Jolla, CA, and approved April 8, 2019 (received for review January 21, 2019) RIPK1 kinase has emerged as a promising therapeutic target for carrying different RIPK1 kinase dead knock-in mutations, including the treatment of a wide range of human neurodegenerative, D138N, K45A, K584R, and ΔG26F27,aswellasRIPK3orMLKL autoimmune, and inflammatory diseases. This was supported by knockout mutations, show no abnormality in development or in the extensive studies which demonstrated that RIPK1 is a key mediator adult animals (6–10). Thus, necroptosis might be predominantly of apoptotic and necrotic cell death as well as inflammatory path- activated under pathological conditions, which makes inhibiting ways. Furthermore, human genetic evidence has linked the dysre- this pathway an attractive option for the treatment of chronic gulation of RIPK1 to the pathogenesis of ALS as well as other human diseases. inflammatory and neurodegenerative diseases. Importantly, unique Necroptosis was first defined by a series of small-molecule allosteric small-molecule inhibitors of RIPK1 that offer high selectivity inhibitors (necrostatins), including Nec-1/Nec-1s, Nec-3, Nec-4, have been developed.
    [Show full text]
  • Integrative Analysis of Transcriptomic Data for Identification of T-Cell
    www.nature.com/scientificreports OPEN Integrative analysis of transcriptomic data for identifcation of T‑cell activation‑related mRNA signatures indicative of preterm birth Jae Young Yoo1,5, Do Young Hyeon2,5, Yourae Shin2,5, Soo Min Kim1, Young‑Ah You1,3, Daye Kim4, Daehee Hwang2* & Young Ju Kim1,3* Preterm birth (PTB), defned as birth at less than 37 weeks of gestation, is a major determinant of neonatal mortality and morbidity. Early diagnosis of PTB risk followed by protective interventions are essential to reduce adverse neonatal outcomes. However, due to the redundant nature of the clinical conditions with other diseases, PTB‑associated clinical parameters are poor predictors of PTB. To identify molecular signatures predictive of PTB with high accuracy, we performed mRNA sequencing analysis of PTB patients and full‑term birth (FTB) controls in Korean population and identifed diferentially expressed genes (DEGs) as well as cellular pathways represented by the DEGs between PTB and FTB. By integrating the gene expression profles of diferent ethnic groups from previous studies, we identifed the core T‑cell activation pathway associated with PTB, which was shared among all previous datasets, and selected three representative DEGs (CYLD, TFRC, and RIPK2) from the core pathway as mRNA signatures predictive of PTB. We confrmed the dysregulation of the candidate predictors and the core T‑cell activation pathway in an independent cohort. Our results suggest that CYLD, TFRC, and RIPK2 are potentially reliable predictors for PTB. Preterm birth (PTB) is the birth of a baby at less than 37 weeks of gestation, as opposed to the usual about 40 weeks, called full term birth (FTB)1.
    [Show full text]