Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an Mrna Decay− Independent Manner

Total Page:16

File Type:pdf, Size:1020Kb

Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an Mrna Decay− Independent Manner Published OnlineFirst July 16, 2015; DOI: 10.1158/0008-5472.CAN-15-0205 Cancer Microenvironment and Immunology Research Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay–Independent Manner Franz Kratochvill1,2, Nina Gratz1, Joseph E. Qualls1,2, Lee-Ann Van De Velde1,2, Hongbo Chi2, Pavel Kovarik3, and Peter J. Murray1,2 Abstract Tristetraprolin (TTP) is an inducible zinc finger AU-rich (TAM). However, TTP's effects on AU-rich mRNA stability RNA-binding protein essential for enforcing degradation of were negligible and limited by constitutive p38a MAPK activ- mRNAs encoding inflammatory chemokines and cytokines. ity, which was the main driver of proinflammatory cytokine Most studies on TTP center on the connection between mRNA production in TAMs at the posttranscriptional level. Instead, half-life and inflammatory output, because loss of TTP ampli- elimination of TTP caused excessive protein production of fies inflammation by increasing the stability of AU-rich inflammatory mediators, suggesting TTP-dependent transla- mRNAs. Here, we focused on how TTP controls cytokine and tional suppression of AU-rich mRNAs. Manipulation of the chemokine production in the nonresolving inflammation of p38a–TTP axis in macrophages has significant effects on the cancer using tissue-specific approaches. In contrast with mod- growth of tumors and therefore represents a means to mani- el in vitro macrophage systems, we found constitutive TTP pulate inflammation in the tumor microenvironment. Cancer expression in late-stage tumor-associated macrophages Res; 75(15); 1–11. Ó2015 AACR. Introduction TLR signaling phosphorylates TTP thereby blocking its function and sustaining TNF output (9, 10). In the resolution phase, DUSP Nonresolving inflammation (NRI) underpins most chronic dis- proteins dephosphorylate p38a, which leads to dephosphoryla- eases, including obesity, autoinflammatory diseases, atherosclero- tion of TTP and a rise in TTP activity to eliminate TNF mRNA. IL10, sis, chronic responses to implanted medical devices, chronic or stimulated by TLR signaling to act in an autocrine way, further latent infections, and cancer (1). NRI is caused by aberrant enhances removal of the TNF mRNA because it drives TTP and responses to a persisting entity. The persistence of malignant cells DUSP1 expression in a STAT3-dependent way (7, 11, 12). in cancer, for example, drives the production of hematopoietic cells To begin to understand the signaling pathways involved in from the bone marrow to seed a growing tumor (2). Therefore, a regulating chronic inflammation in tumor-associated macro- challenge of biology and medicine is to understand the cellular and phages (TAM), we used transplantable tumor models with pre- molecular pathways underpinning NRI and how to mitigate their dictable temporal inflammatory responses that can be tracked by effects in chronic diseases. flow cytometry and that are amenable to the use of genetics to In resolving inflammation triggered by TLR signaling, the TNF probe signaling pathways and how they become dysregulated. We mRNA is rapidly produced from poised Pol II at the Tnf promoter focused on how TTP regulates cytokine and chemokine produc- (3–5). TNF protein is made and secreted, followed by a down- tion because inflammatory cytokines are the key drivers of chronic regulation phase where the tristetraprolin (TTP) zinc finger pro- inflammation such as cancer. A key tactic was using a conditional tein, also induced in the early phase of TLR signaling, plays a knockout allele of Zfp36 (encoding TTP) to avoid complications decisive role in eliminating TNF mRNA (6). In model, in vitro À À of systemic inflammation present in conventional Zfp36 / mice systems such as BMDMs the TNF–TTP pathway is controlled by early in development (13–15). Our results show that TTP main- two key factors, p38a MAPK and IL10 (7–9). p38a activated by tains macrophages on a "knife-edge" between counterregulation of inflammation and death. Our results also suggest TTP primarily 1Department of Infectious Diseases, St. Jude Children's Research Hospi- regulates steps beyond mRNA stability such as mRNA translation tal, Memphis, Tennessee. 2Department of Immunology, St. Jude Chil- in macrophages associated with cancer inflammation. dren's Research Hospital, Memphis, Tennessee. 3Max F. Perutz Labora- tories, Center for Molecular Biology,University of Vienna,Vienna, Austria. Materials and Methods Note: Supplementary data for this article are available at Cancer Research Mice Online (http://cancerres.aacrjournals.org/). C57BL/6, Tie2-Cre (B6.Cg-Tg(Tek-cre)1Ywa/J), and LysM-Cre Current address for J.E. Qualls: Cincinnati Children's Hospital Medical Center, (Lyz2tm1(cre)Ifo/J) mice were obtained from The Jackson Laboratory. Cincinnati, OH. À À TTPKO (Zfp36 / ) mice were a gift of P. Blackshear (National Corresponding Author: Peter J. Murray, Infectious Diseases, MS320, Room E8078, Institute of Environmental Health Sciences, Research Triangle Park, fl fl St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105- NC). The TTPDM and Mapk14 ox/ ox mice have been described 3678. Phone: 901-595-3219; Fax: 901-595-3099. E-mail: [email protected] fl fl elsewhere (15, 16). Th-MYCN transgenic (tg; ref. 17) and Rb ox/ ox; fl fl þ doi: 10.1158/0008-5472.CAN-15-0205 p53 ox/ ox;Osx-Cre (mixed background) mice (18) were Ó2015 American Association for Cancer Research. obtained from M. Dyer, St. Jude Children's Research Hospital, www.aacrjournals.org OF1 Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 2015 American Association for Cancer Research. Published OnlineFirst July 16, 2015; DOI: 10.1158/0008-5472.CAN-15-0205 Kratochvill et al. A 7 Days 12 Days 17 Days C TAM-A A B Ly6C 80 TAM-C 60% TAMs 70 60 51% D C − 50 36% Ly6G + MHCII 40 B 4 Days 7 Days 12 Days 30 A CD11b % of Ly6C B 20 PAMs 10 8% 4% 5% 0 D C 7 Days 12 Days 17 Days MHCII D TNF TNF 50 800 A A B C 40 B 600 C 30 400 20 MFI − 200 % Positive cells 10 TNF TNF + 0 0 A B C TNF− TNF+ TNF IL1α IL1α 50 200 A A B C 40 B % of max. 150 C 30 100 20 MFI − 50 IL1α % Positive cells 10 IL1α+ 0 0 + A B C IL1α − IL1α IL1α Figure 1. NRI-associated macrophages share a common mode of development and express proinflammatory cytokines. A and B, flow-cytometry plots of CD11bþLy6GÀ myeloid cells isolated from EG7 thymomas (A) or zymosan induced peritonitis (B) at different time points as indicated. Plots are representative for at least two experiments. Gates A to D indicate TAM or peritonitis-associated macrophage (PAM) populations used for sorting experiments or to measure cytokine production by intracellular flow cytometry. C, quantitative analysis of EG7 TAM populations A and C (gated as in A) over time. Values are from one of two independent experiments (n 4); error bars, SEM. D, quantitative analysis of cytokine production by flow cytometry of EG7 TAM populations A to C gated as shown in A. Values from individual mice are either depicted as the percentage of positive cells (left) or median fluorescence intensity (MFI, middle) of þ þ À À TNF or IL1a-positive (TNF and IL1a ) compared with negative (TNF and IL1a ) macrophages within population A to C. Example plots are shown (right) indicating the gating strategy for cells considered positive and negative. Unstained control, gray. Data are mean Æ SEM of two independent experiments (n 2). Memphis, TN. For experiments, sex-matched mice were grouped were purified by Miltenyi magnetic beads according to the man- and used between 6 and 10 weeks. All mice were on a C57BL/6 ufacturer's protocol. background unless indicated otherwise. Mice were used within the Animal Resource Center according to protocols approved by the TAM collection from solid tumors Institutional Animal Care and Use Committee of St. Jude Chil- Solid tumors were minced and digested with 5 mL of fresh dren's Research Hospital. Tumor Digestion Media as described in the Supplementary Mate- rials and Methods. The suspension was then passed through a Zymosan A induced peritonitis 70-mm strainer and cells were overlaid on a 35%/60% percoll Chronic peritonitis was induced by i.p. injection of 10 mg/ gradient. After centrifugation cells were collected from the 35%/ þ mouse of zymosan A (Sigma) as described (19) and CD11b cells 60% interphase and TAMs were isolated by CD11b purification OF2 Cancer Res; 75(15) August 1, 2015 Cancer Research Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 2015 American Association for Cancer Research. Published OnlineFirst July 16, 2015; DOI: 10.1158/0008-5472.CAN-15-0205 TTP Limits Inflammation in Tumor Macrophages A B C TTP TTP 2 *** *** 3 *** 2 1h LPS BMDM N-TAM O-TAM T-TAM 1 BMDM mRNA TTP mRNA 1 GRB2 0 0 ACDB ns 3 h 1 h 6 h ON T-TAM N-TAM O-TAM D ARE-BPs Rank Within top % 10,000 Zfp36 165 0.37 N-TAM Zfp36L1 383 0.85 8,000 T-TAM G-TAM Zfp36L2 587 1.30 6,000 Hnrnpd 1,108 2.46 4,000 Elavl1 2,657 5.90 Elavl2 9,494 21.08 Signal intensity 2,000 Elavl4 11,975 26.59 0 Tia1 2,804 6.23 TTP Tia1 Khsrp 7,411 16.45 Khsrp Elavl2 Elavl4 Elavl1 Hnrnpd Zfp36L1 Zfp36L2 Figure 2. TTP is highly expressed in selected TAM populations. A, immunoblot analysis of TTP expression in neuroblastoma (N), osteosarcoma (O), and EG7 thymoma (T) TAMs compared with 1 hour LPS-stimulated BMDMs. Blot was reprobed with anti-GRB2 to test for equal loading and represents one of three experiments.B, TTPqRT-PCR of EG7 TAMs sorted for the indicated populations as in Fig.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Westminsterresearch ZFP36 Proteins and Mrna Targets in B Cell
    WestminsterResearch http://www.westminster.ac.uk/westminsterresearch ZFP36 proteins and mRNA targets in B cell malignancies Alcaraz, A. This is an electronic version of a PhD thesis awarded by the University of Westminster. © Miss Amor Alcaraz, 2015. The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners. Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/). In case of abuse or copyright appearing without permission e-mail [email protected] ZFP36 proteins and mRNA targets in B cell malignancies Maria del Amor Alcaraz-Serrano A Thesis submitted in partial fulfilment of the requirements of the University of Westminster for the degree of Doctor of Philosophy September 2015 Abstract The ZFP36 proteins are a family of post-transcriptional regulator proteins that bind to adenine uridine rich elements (AREs) in 3’ untranslated (3’UTR) regions of mRNAs. The members of the human family, ZFP36L1, ZFP36L2 and ZFP36 are able to degrade mRNAs of important cell regulators that include cytokines, cell signalling proteins and transcriptional factors. This project investigated two proposed targets for the protein family that have important roles in B cell biology, BCL2 and CD38 mRNAs. BCL2 is an anti-apoptotic protein with key roles in cell survival and carcinogenesis; CD38 is a membrane protein differentially expressed in B cells and with a prognostic value in B chronic lymphocytic leukaemia (B-CLL), patients positive for CD38 are considered to have a poor prognosis.
    [Show full text]
  • A Post-Transcriptional Mechanism Pacing Expression of Neural Genes with Precursor Cell Differentiation Status
    ARTICLE Received 24 Sep 2014 | Accepted 21 May 2015 | Published 6 Jul 2015 DOI: 10.1038/ncomms8576 OPEN A post-transcriptional mechanism pacing expression of neural genes with precursor cell differentiation status Weijun Dai1, Wencheng Li2, Mainul Hoque2, Zhuyun Li1, Bin Tian2 & Eugene V. Makeyev1,3 Nervous system (NS) development relies on coherent upregulation of extensive sets of genes in a precise spatiotemporal manner. How such transcriptome-wide effects are orchestrated at the molecular level remains an open question. Here we show that 30-untranslated regions (30 UTRs) of multiple neural transcripts contain AU-rich cis-elements (AREs) recognized by tristetraprolin (TTP/Zfp36), an RNA-binding protein previously implicated in regulation of mRNA stability. We further demonstrate that the efficiency of ARE-dependent mRNA degradation declines in the neural lineage because of a decrease in the TTP protein expression mediated by the NS-enriched microRNA miR-9. Importantly, TTP downregulation in this context is essential for proper neuronal differentiation. On the other hand, inactivation of TTP in non-neuronal cells leads to dramatic upregulation of multiple NS-specific genes. We conclude that the newly identified miR-9/TTP circuitry limits unscheduled accumulation of neuronal mRNAs in non-neuronal cells and ensures coordinated upregulation of these transcripts in neurons. 1 School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore. 2 Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA. 3 MRC Centre for Developmental Neurobiology, King’s College London, London SE1 1UL, UK. Correspondence and requests for materials should be addressed to E.V.M.
    [Show full text]
  • Micrornas in Prion Diseases—From Molecular Mechanisms to Insights in Translational Medicine
    cells Review MicroRNAs in Prion Diseases—From Molecular Mechanisms to Insights in Translational Medicine Danyel Fernandes Contiliani 1,2, Yasmin de Araújo Ribeiro 1,2, Vitor Nolasco de Moraes 1,2 and Tiago Campos Pereira 1,2,* 1 Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; [email protected] (D.F.C.); [email protected] (Y.d.A.R.); [email protected] (V.N.d.M.) 2 Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil * Correspondence: [email protected]; Tel.: +55-16-3315-3818 Abstract: MicroRNAs (miRNAs) are small non-coding RNA molecules able to post-transcriptionally regulate gene expression via base-pairing with partially complementary sequences of target tran- scripts. Prion diseases comprise a singular group of neurodegenerative conditions caused by endoge- nous, misfolded pathogenic (prion) proteins, associated with molecular aggregates. In humans, classical prion diseases include Creutzfeldt–Jakob disease, fatal familial insomnia, Gerstmann– Sträussler–Scheinker syndrome, and kuru. The aim of this review is to present the connections between miRNAs and prions, exploring how the interaction of both molecular actors may help understand the susceptibility, onset, progression, and pathological findings typical of such disorders, as well as the interface with some prion-like disorders, such as Alzheimer’s. Additionally, due to the inter-regulation of prions and miRNAs in health and disease, potential biomarkers for non-invasive miRNA-based diagnostics, as well as possible miRNA-based therapies to restore the levels of dereg- Citation: Contiliani, D.F.; Ribeiro, Y.d.A.; de Moraes, V.N.; Pereira, T.C.
    [Show full text]
  • Involvement of XZFP36L1, an RNA-Binding Protein, in Xenopus Neural Development
    Zoological Research 33 (E5−6): E82−E88 doi: 10.3724/SP.J.1141.2012.E05-06E82 Involvement of XZFP36L1, an RNA-binding protein, in Xenopus neural development Yingjie XIA1, 2,#, Shuhua ZHAO3,#, Bingyu MAO1,* 1. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China 3. Yunnan Key Laboratory of Fertility Regulation and Minority Eugenics, Yunnan Population and Family Planning Research Institute, Kunming 650021, China Abstract: Xenopus ZFP36L1 (zinc finger protein 36, C3H type-like 1) belongs to the ZFP36 family of RNA-binding proteins, which contains two characteristic tandem CCCH-type zinc-finger domains. The ZFP36 proteins can bind AU-rich elements in 3' untranslated regions of target mRNAs and promote their turnover. However, the expression and role of ZFP36 genes during neural development in Xenopus embryos remains largely unknown. The present study showed that Xenopus ZFP36L1 was expressed at the dorsal part of the forebrain, forebrain-midbrain boundary, and midbrain-hindbrain boundary from late neurula stages to tadpole stages of embryonic development. Overexpression of XZFP36L1 in Xenopus embryos inhibited neural induction and differentiation, leading to severe neural tube defects. The function of XZP36L1 requires both its zinc finger and C terminal domains, which also affect its subcellular localization. These results suggest that XZFP36L1 is likely involved in neural development in Xenopus and might play an important role in post-transcriptional regulation. Keywords: ZFP36L1; RNA-binding protein; Neural development; Xenopus; Post-transcriptional regulation mRNA stability is an important mechanism for gene and zebrafish ZFCTH1) contains four ZF domains expression regulation, which is critical for embryogenesis instead of two.
    [Show full text]
  • Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer
    Epigenetic mechanisms are involved in the oncogenic properties of ZNF518B in colorectal cancer Francisco Gimeno-Valiente, Ángela L. Riffo-Campos, Luis Torres, Noelia Tarazona, Valentina Gambardella, Andrés Cervantes, Gerardo López-Rodas, Luis Franco and Josefa Castillo SUPPLEMENTARY METHODS 1. Selection of genomic sequences for ChIP analysis To select the sequences for ChIP analysis in the five putative target genes, namely, PADI3, ZDHHC2, RGS4, EFNA5 and KAT2B, the genomic region corresponding to the gene was downloaded from Ensembl. Then, zoom was applied to see in detail the promoter, enhancers and regulatory sequences. The details for HCT116 cells were then recovered and the target sequences for factor binding examined. Obviously, there are not data for ZNF518B, but special attention was paid to the target sequences of other zinc-finger containing factors. Finally, the regions that may putatively bind ZNF518B were selected and primers defining amplicons spanning such sequences were searched out. Supplementary Figure S3 gives the location of the amplicons used in each gene. 2. Obtaining the raw data and generating the BAM files for in silico analysis of the effects of EHMT2 and EZH2 silencing The data of siEZH2 (SRR6384524), siG9a (SRR6384526) and siNon-target (SRR6384521) in HCT116 cell line, were downloaded from SRA (Bioproject PRJNA422822, https://www.ncbi. nlm.nih.gov/bioproject/), using SRA-tolkit (https://ncbi.github.io/sra-tools/). All data correspond to RNAseq single end. doBasics = TRUE doAll = FALSE $ fastq-dump -I --split-files SRR6384524 Data quality was checked using the software fastqc (https://www.bioinformatics.babraham. ac.uk /projects/fastqc/). The first low quality removing nucleotides were removed using FASTX- Toolkit (http://hannonlab.cshl.edu/fastxtoolkit/).
    [Show full text]
  • The Tristetraprolin Family of RNA-Binding Proteins in Cancer: Progress and Future Prospects
    cancers Review The Tristetraprolin Family of RNA-Binding Proteins in Cancer: Progress and Future Prospects Yogesh Saini, Jian Chen and Sonika Patial * Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; [email protected] (Y.S.); [email protected] (J.C.) * Correspondence: [email protected]; Tel.: +1-225-578-9884; Fax: +1-225-578-9895 Received: 19 May 2020; Accepted: 9 June 2020; Published: 11 June 2020 Abstract: Post-transcriptional regulation of gene expression plays a key role in cellular proliferation, differentiation, migration, and apoptosis. Increasing evidence suggests dysregulated post-transcriptional gene expression as an important mechanism in the pathogenesis of cancer. The tristetraprolin family of RNA-binding proteins (RBPs), which include Zinc Finger Protein 36 (ZFP36; commonly referred to as tristetraprolin (TTP)), Zinc Finger Protein 36 like 1 (ZFP36L1), and Zinc Finger Protein 36 like 2 (ZFP36L2), play key roles in the post-transcriptional regulation of gene expression. Mechanistically, these proteins function by binding to the AU-rich elements within the 30-untranslated regions of their target mRNAs and, in turn, increasing mRNA turnover. The TTP family RBPs are emerging as key regulators of multiple biological processes relevant to cancer and are aberrantly expressed in numerous human cancers. The TTP family RBPs have tumor-suppressive properties and are also associated with cancer prognosis, metastasis, and resistance to chemotherapy. Herein, we summarize the various hallmark molecular traits of cancers that are reported to be regulated by the TTP family RBPs. We emphasize the role of the TTP family RBPs in the regulation of trait-associated mRNA targets in relevant cancer types/cell lines.
    [Show full text]
  • The Kinesin Spindle Protein Inhibitor Filanesib Enhances the Activity of Pomalidomide and Dexamethasone in Multiple Myeloma
    Plasma Cell Disorders SUPPLEMENTARY APPENDIX The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma Susana Hernández-García, 1 Laura San-Segundo, 1 Lorena González-Méndez, 1 Luis A. Corchete, 1 Irena Misiewicz- Krzeminska, 1,2 Montserrat Martín-Sánchez, 1 Ana-Alicia López-Iglesias, 1 Esperanza Macarena Algarín, 1 Pedro Mogollón, 1 Andrea Díaz-Tejedor, 1 Teresa Paíno, 1 Brian Tunquist, 3 María-Victoria Mateos, 1 Norma C Gutiérrez, 1 Elena Díaz- Rodriguez, 1 Mercedes Garayoa 1* and Enrique M Ocio 1* 1Centro Investigación del Cáncer-IBMCC (CSIC-USAL) and Hospital Universitario-IBSAL, Salamanca, Spain; 2National Medicines Insti - tute, Warsaw, Poland and 3Array BioPharma, Boulder, Colorado, USA *MG and EMO contributed equally to this work ©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2017.168666 Received: March 13, 2017. Accepted: August 29, 2017. Pre-published: August 31, 2017. Correspondence: [email protected] MATERIAL AND METHODS Reagents and drugs. Filanesib (F) was provided by Array BioPharma Inc. (Boulder, CO, USA). Thalidomide (T), lenalidomide (L) and pomalidomide (P) were purchased from Selleckchem (Houston, TX, USA), dexamethasone (D) from Sigma-Aldrich (St Louis, MO, USA) and bortezomib from LC Laboratories (Woburn, MA, USA). Generic chemicals were acquired from Sigma Chemical Co., Roche Biochemicals (Mannheim, Germany), Merck & Co., Inc. (Darmstadt, Germany). MM cell lines, patient samples and cultures. Origin, authentication and in vitro growth conditions of human MM cell lines have already been characterized (17, 18). The study of drug activity in the presence of IL-6, IGF-1 or in co-culture with primary bone marrow mesenchymal stromal cells (BMSCs) or the human mesenchymal stromal cell line (hMSC–TERT) was performed as described previously (19, 20).
    [Show full text]
  • The Role of TTP Phosphorylation in the Regulation of Inflammatory Cytokine Production by MK2/3
    The Role of TTP Phosphorylation in the Regulation of Inflammatory Cytokine Production by MK2/3 This information is current as Natalia Ronkina, Nelli Shushakova, Christopher Tiedje, of September 28, 2021. Tatiana Yakovleva, Maxim A. X. Tollenaere, Aaron Scott, Tanveer Singh Batth, Jesper Velgaard Olsen, Alexandra Helmke, Simon Holst Bekker-Jensen, Andrew R. Clark, Alexey Kotlyarov and Matthias Gaestel J Immunol published online 16 September 2019 Downloaded from http://www.jimmunol.org/content/early/2019/09/13/jimmun ol.1801221 Supplementary http://www.jimmunol.org/content/suppl/2019/09/13/jimmunol.180122 http://www.jimmunol.org/ Material 1.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published September 16, 2019, doi:10.4049/jimmunol.1801221 The Journal of Immunology The Role of TTP Phosphorylation in the Regulation of Inflammatory Cytokine Production by MK2/3 Natalia Ronkina,*,1 Nelli Shushakova,†,‡,1 Christopher Tiedje,x Tatiana Yakovleva,* Maxim A.
    [Show full text]
  • Interplay of RNA-Binding Proteins and Micrornas in Neurodegenerative Diseases
    International Journal of Molecular Sciences Review Interplay of RNA-Binding Proteins and microRNAs in Neurodegenerative Diseases Chisato Kinoshita 1,* , Noriko Kubota 1,2 and Koji Aoyama 1,* 1 Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan; [email protected] 2 Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan * Correspondence: [email protected] (C.K.); [email protected] (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.) Abstract: The number of patients with neurodegenerative diseases (NDs) is increasing, along with the growing number of older adults. This escalation threatens to create a medical and social crisis. NDs include a large spectrum of heterogeneous and multifactorial pathologies, such as amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and multiple system atrophy, and the formation of inclusion bodies resulting from protein misfolding and aggregation is a hallmark of these disorders. The proteinaceous components of the pathological inclusions include several RNA-binding proteins (RBPs), which play important roles in splicing, stability, transcription and translation. In addition, RBPs were shown to play a critical role in regulating miRNA biogenesis and metabolism. The dysfunction of both RBPs and miRNAs is Citation: Kinoshita, C.; Kubota, N.; often observed in several NDs. Thus, the data about the interplay among RBPs and miRNAs and Aoyama, K. Interplay of RNA-Binding Proteins and their cooperation in brain functions would be important to know for better understanding NDs and microRNAs in Neurodegenerative the development of effective therapeutics.
    [Show full text]
  • Micro RNA-Based Regulation of Genomics and Transcriptomics of Inflammatory Cytokines in COVID-19
    medRxiv preprint doi: https://doi.org/10.1101/2021.06.08.21258565; this version posted June 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Micro RNA-based regulation of genomics and transcriptomics of inflammatory cytokines in COVID-19 Manoj Khokhar1, Sojit Tomo1, Purvi Purohit*1 Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India *Corresponding author and address Dr Purvi Purohit Additional Professor Department of Biochemistry All India Institute of Medical Sciences, Basni Industrial Area, Phase-2 Jodhpur-342005, India. Tel: 09928388223 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2021.06.08.21258565; this version posted June 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Abstract: Background: Coronavirus disease 2019 is characterized by the elevation of a wide spectrum of inflammatory mediators, which are associated with poor disease outcomes. We aimed at an in-silico analysis of regulatory microRNA and their transcription factors (TF) for these inflammatory genes that may help to devise potential therapeutic strategies in the future.
    [Show full text]
  • The Human Homologue of the RNA Polymerase II-Associated Factor 1 (Hpaf1), Localized on the 19Q13 Amplicon, Is Associated with Tumorigenesis
    Oncogene (2006) 25, 3247–3257 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc ORIGINAL ARTICLE The human homologue of the RNA polymerase II-associated factor 1 (hPaf1), localized on the 19q13 amplicon, is associated with tumorigenesis N Moniaux1,4, C Nemos1,4, BM Schmied2, SC Chauhan1, S Deb1, K Morikane2, A Choudhury1, M VanLith2, M Sutherlin2, JM Sikela3, MA Hollingsworth1,2 and SK Batra1,2 1Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; 2Eppley Institute, University of Nebraska Medical Center, Omaha, NE, USA and 3Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO, USA The 19q13 amplicon in pancreatic cancer cells contains a somes, chromosomal translocations, and gene amplifi- novel pancreatic differentiation 2 (PD2) gene (accession cations, induce a transformed phenotype leading to number AJ401156), which was identified by differential cancer. These genetic alterations constitute key events screening analysis. PD2 is the human homologue of the contributing to tumor progression and metastasis. They RNA polymerase II-associated factor 1 (hPaf1). In yeast, are often stabilized when they confer a growth or Paf1 is part of the transcription machinery, acting as a survivaladvantage to the cells(Lengauer et al., 1998). docking protein in between the complexes Rad6-Bre1, Gene amplification (HSR, homogeneously staining COMPASS-Dot1p, and the phosphorylated carboxyl region and DM, double minute) is one of the most terminal domain of the RNA polymerase II. As such, important mechanisms leading to the alteration of gene Paf1 is directly involved in transcription elongation via expression in solid tumors.
    [Show full text]