The Human Homologue of the RNA Polymerase II-Associated Factor 1 (Hpaf1), Localized on the 19Q13 Amplicon, Is Associated with Tumorigenesis

Total Page:16

File Type:pdf, Size:1020Kb

The Human Homologue of the RNA Polymerase II-Associated Factor 1 (Hpaf1), Localized on the 19Q13 Amplicon, Is Associated with Tumorigenesis Oncogene (2006) 25, 3247–3257 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc ORIGINAL ARTICLE The human homologue of the RNA polymerase II-associated factor 1 (hPaf1), localized on the 19q13 amplicon, is associated with tumorigenesis N Moniaux1,4, C Nemos1,4, BM Schmied2, SC Chauhan1, S Deb1, K Morikane2, A Choudhury1, M VanLith2, M Sutherlin2, JM Sikela3, MA Hollingsworth1,2 and SK Batra1,2 1Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; 2Eppley Institute, University of Nebraska Medical Center, Omaha, NE, USA and 3Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO, USA The 19q13 amplicon in pancreatic cancer cells contains a somes, chromosomal translocations, and gene amplifi- novel pancreatic differentiation 2 (PD2) gene (accession cations, induce a transformed phenotype leading to number AJ401156), which was identified by differential cancer. These genetic alterations constitute key events screening analysis. PD2 is the human homologue of the contributing to tumor progression and metastasis. They RNA polymerase II-associated factor 1 (hPaf1). In yeast, are often stabilized when they confer a growth or Paf1 is part of the transcription machinery, acting as a survivaladvantage to the cells(Lengauer et al., 1998). docking protein in between the complexes Rad6-Bre1, Gene amplification (HSR, homogeneously staining COMPASS-Dot1p, and the phosphorylated carboxyl region and DM, double minute) is one of the most terminal domain of the RNA polymerase II. As such, important mechanisms leading to the alteration of gene Paf1 is directly involved in transcription elongation via expression in solid tumors. The best example studied is histone H2B ubiquitination and histone H3 methylation. the amplification of HER2 on the chromosomal locus The PD2 sequence is highly conserved from Drosophila to 17q12 in primary breast cancer. HER2 is named for humans with up to 98% identity between rodent and human epidermalgrowth factor receptor-2 and belongs human, suggesting the functional importance of PD2/ to the epidermalgrowth factor receptor (EGFR) family hPaf1 to maintain cellular homeostasis. PD2 is a modular of receptor tyrosine kinases (RTKs). In total, 25–30% of protein composed of RNA recognition motif, DEAD- women with breast cancer demonstrate amplification boxes, an aspartic/serine (DS)-domain, a regulator of the and overexpression of the HER2 gene (Slamon et al., chromosome condensation domain and myc-type helix– 1987). Amplification/overexpression of HER2 induces loop–helix domains. Our results further showed that PD2 the phosphorylation of p27Kip (inhibitor of the cdk2) on is a nuclear 80 kDa protein, which interacts with RNA threonine 157 by AKT and its retention in the cytoplasm polymerase II. In addition, we have demonstrated that the (Blain and Massague, 2002; Shin et al., 2002), leading overexpression of PD2 in the NIH 3T3 cells result in enhanced the cells to enter the cell cycle and proliferate. growth rates in vitro and tumor formation in vivo.Altogether, Amplicons often contain several syntenic genes, such this paper presents strong evidence that the overexpression of as an amplification of the 11q13 locus that encompasses PD2/hPaf1 is involved in cancer development. FGF3, FGF4, and CYCD1 (Gaudray et al., 1992) or the Oncogene (2006) 25, 3247–3257. doi:10.1038/sj.onc.1209353; amplification of the locus 12q13 that encompasses published online 20 February 2006 MDM2, CDK4, and GLI (Khatib et al., 1993). We now recognize that amplicons are stabilized in the Keywords: hPaf1; hPAF1 complex; amplicon; pancrea- human genome when they encompass severalgenes that tic cancer provide a selective growth advantage to the cell. In some cases, the stabilization of an amplicon is driven by amplification of nonsyntenic regions such as the co- amplification of the loci 12q13 and 2p24 that encom- passes MYCN (Khatib et al., 1993). Introduction Although DNA amplification is found in a wide range of tumor types, recurrent amplification of a particular The accumulation of genetic alterations in somatic cells, locus seems limited to specific tumors, such as glioma, such as mutations, changes in the number of chromo- breast and ovarian cancers. In an effort to identify differentially expressed genes that may play important Correspondence: Dr SK Batra, Department of Biochemistry and roles in pancreatic tumor growth and progression, Molecular Biology, University of Nebraska Medical Center, 985870 our laboratory pointed out the existence of a double Nebraska MedicalCenter, Omaha, NE 68198-5870, USA. minute amplification corresponding to the chromosomal E-mail: [email protected] 4These authors contributed equally to this work. locus 19q13 (Batra et al., 1991a, b). This genomic Received 25 August 2005; revised 8 November 2005; accepted 10 amplification is now recognized as an underlying cause November 2005; published online 20 February 2006 of many low-frequency genetic events (being amplified Human RNA polymerase II-associated factor 1 N Moniaux et al 3248 in 10–20% of the cases) in pancreatic adenocarcinoma total poly(A+) (Griffin et al., 1994; Ruggeri et al., 1998; Altomare et al., RNA RNA 2003). The 19q13 locus is also amplified in several other cancers such as follicular lymphoma (Werner et al., 1997), Mantle cell lymphoma (Werner et al., 1997), Burkitt’s lymphoma, small-cell lung cancer (Ried et al., CD11/HPAFPanc1 CD11/HPAFPanc1 1994; Petersen et al., 1997), non-small-cell lung cancer (Petersen et al., 1997; Bjorkqvist et al., 1998), breast 2.4 kb carcinoma (Kallioniemi et al., 1994), and uterine cervix cancer (Heselmeyer et al., 1997). Two amplified genes have been characterized at the PD2 19q13 locus, including the ribosomal protein, rpS16, and AKT2 (Batra et al., 1991b; Cheng et al., 1996). AKT2 1.4 kb belongs to a family of three members, AKT1, 2, and 3, which share a strong homology with the PKC and PKA families (Bauer and Baier, 2002). Activation of AKT2 promotes a variety of biological activities involved in tumorigenesis, such as cell survival and cell-cycle progression. In addition, AKT2 overexpression is β-actin reported to be associated with an increase in the aggressiveness of pancreatic cancer cells (Cheng et al., Figure 1 Northern blot analysis of PD2 cDNA with RNA from 1996). For these reasons, AKT2 is considered as the poorly and well-differentiated pancreatic cancer cell lines. Total main target gene associated with the 19q13 amplifi- RNA and purified poly(A) RNA were fractionated by electro- cation. phoresis on 1.2% agarose gelcontaining 0.66 M formaldehyde and transferred onto nitrocellulose via capillary blotting. Lanes 1 and 2 We hypothesized that the stabilization of the 19q13 contained totalRNA from CD11/HPAF and Panc1, respectively. amplicon, detected in 10–20% of the pancreatic Lanes 3 and 4 contained poly(A þ ) RNA from CD11/HPAF and adenocarcinomas, required the presence of another gene Panc1, respectively. The membrane was hybridized with 106 cpm/ favoring tumor development and progression and acting mlof a-32P-labeled PD2/Paf1 cDNA probe. After phospho-imager scanning, the membrane was stripped with 0.1%SDS/0.1 Â SSC synergistically with AKT2. In the present paper, we and re-hybridized with 106 cpm/mlof a-32P-dCTP labeled b-actin describe the identification and characterization of such a probe. novelgene, pancreatic differentiation factor 2 ( PD2). We show that the PD2 gene product is the human homologue of the RNA polymerase II-associated factor 1 (hPaf1), a key component of a multifunctional The chromosomal localization of the PD2 gene was transcriptional complex that is involved in the regula- determined by screening both the CEPH megabase-insert tion of gene transcription. The domain-structure of PD2 YAC DNA and the Coriell human X rodent somatic cell is conserved in evolution from yeast to human with up hybrid DNA pools. PD2 was mapped to the short arm to 98% identity between rodent and human. We of chromosome 19 between the q13–qter regions. The demonstrate clearly that PD2/hPaf1 possesses trans- NCBI (NationalCenter of BiotechnologyInformation) forming activity both in vitro and in vivo. human genome resources database was used to resolve its precise location. The PD2 gene was located on chromosome 19 in the q13.2 (loc126275) region, oriented from centromere to telomere, between the Results IgG binding protein gene (FcGBP) and the zinc-finger protein 36 gene (ZFP36). Interestingly, both PD2 and Identification of the human homologue of yeast Paf1 AKT2 presented the same chromosomal localization, as part of the 19q13 amplicon 19q13.2 (Figure 2). Since AKT2 is known to be present To identify markers of differentiation for pancreatic in an amplicon, we hypothesized that PD2 might be cancer, single-stranded cDNA probes synthesized from carried on the same chromosomalamplification. South- both poorly and well-differentiated tumor cells, Panc1 ern blot analysis was performed on Panc1 and CD11/ and CD11/HPAF, respectively, were used to screen a HPAF cells (Figure 3), and revealed that Panc1 cells lgt11 phage cDNA library of Panc1 cells (Batra et al., contained a 30-fold gene amplification of PD2 as 1991a, b). In total, 17 clones were isolated, subcloned compared to CD11/HPAF. The ubiquitous expression into the pBluescript vector, and sequenced. Among the of PD2/hPaf1 in human, as revealed by blast scan using clones isolated, three were previously reported as the partialPD2 cDNA sequence, and presence of DNA- human ribosomalprotein S16 (Batra et al., 1991b), the and RNA-binding domains within its sequence, led us to human ribosomalprotein rpL17 (Batra et al., 1991a), hypothesize that PD2 might act in concert with AKT2 and AKT2 (Cheng et al., 1996). Another clone from this for the stabilization of the 19q13 amplification. screening, called PD2, showed an overexpression of To validate this hypothesis, we decided to extend and approximately 30-fold in Panc1 as compared to CD11/ fully characterize the PD2 partial sequence.
Recommended publications
  • Applicability of Multidimensional Fractionation to Affinity Purification Mass Spectrometry Samples and Protein Phosphatase 4 Substrate Identification
    Applicability of Multidimensional Fractionation to Affinity Purification Mass Spectrometry Samples and Protein Phosphatase 4 Substrate Identification by Wade Hampton Dunham A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Molecular Genetics University of Toronto © Copyright by Wade Dunham 2012 ii Applicability of Multidimensional Fractionation to Affinity Purification Mass Spectrometry Samples and Protein Phosphatase 4 Substrate Identification Wade Dunham Master of Science Department of Molecular Genetics University of Toronto 2012 Abstract Affinity-purification coupled to mass spectrometry (AP-MS) is gaining widespread use for the identification of protein-protein interactions. It is unclear however, whether typical AP sample complexity is limiting for the identification of all protein components using standard one-dimensional LC-MS/MS. Multidimensional sample separation is a useful for reducing sample complexity prior to MS analysis, and increases peptide and protein coverage of complex samples, yet the applicability of this approach to AP-MS samples remains unknown. Here I present work to show that multidimensional separation of AP-MS samples is not a cost-effective method for identifying increased peptide or protein coverage in these sample types. As such this approach was not adapted for the identification of putative Phosphoprotein Phosphatase 4 (PP4c) substrates. Instead, affinity purification coupled to one- dimensional LC-MS/MS was used to identify putative PP4c substrates, and semi- quantitative methods applied to identify possible PP4c targeted phosphosites in PP2A subfamily phosphatase inhibited (okadaic acid treated) cells. iii Acknowledgments I would like to acknowledge and thank everyone in the Gingras lab, in particular my supervisor Anne-Claude, for allowing me to take on complex projects and to be an integral part in the pursuit of high impact publications.
    [Show full text]
  • Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an Mrna Decay− Independent Manner
    Published OnlineFirst July 16, 2015; DOI: 10.1158/0008-5472.CAN-15-0205 Cancer Microenvironment and Immunology Research Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay–Independent Manner Franz Kratochvill1,2, Nina Gratz1, Joseph E. Qualls1,2, Lee-Ann Van De Velde1,2, Hongbo Chi2, Pavel Kovarik3, and Peter J. Murray1,2 Abstract Tristetraprolin (TTP) is an inducible zinc finger AU-rich (TAM). However, TTP's effects on AU-rich mRNA stability RNA-binding protein essential for enforcing degradation of were negligible and limited by constitutive p38a MAPK activ- mRNAs encoding inflammatory chemokines and cytokines. ity, which was the main driver of proinflammatory cytokine Most studies on TTP center on the connection between mRNA production in TAMs at the posttranscriptional level. Instead, half-life and inflammatory output, because loss of TTP ampli- elimination of TTP caused excessive protein production of fies inflammation by increasing the stability of AU-rich inflammatory mediators, suggesting TTP-dependent transla- mRNAs. Here, we focused on how TTP controls cytokine and tional suppression of AU-rich mRNAs. Manipulation of the chemokine production in the nonresolving inflammation of p38a–TTP axis in macrophages has significant effects on the cancer using tissue-specific approaches. In contrast with mod- growth of tumors and therefore represents a means to mani- el in vitro macrophage systems, we found constitutive TTP pulate inflammation in the tumor microenvironment. Cancer expression in late-stage tumor-associated macrophages Res; 75(15); 1–11. Ó2015 AACR. Introduction TLR signaling phosphorylates TTP thereby blocking its function and sustaining TNF output (9, 10).
    [Show full text]
  • Antisense RNA Polymerase II Divergent Transcripts Are P-Tefb Dependent and Substrates for the RNA Exosome
    Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome Ryan A. Flynna,1,2, Albert E. Almadaa,b,1, Jesse R. Zamudioa, and Phillip A. Sharpa,b,3 aDavid H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139; and bDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Contributed by Phillip A. Sharp, May 12, 2011 (sent for review March 3, 2011) Divergent transcription occurs at the majority of RNA polymerase II PII carboxyl-terminal domain (CTD) at serine 2, DSIF, and (RNAPII) promoters in mouse embryonic stem cells (mESCs), and NELF results in the dissociation of NELF from the elongation this activity correlates with CpG islands. Here we report the char- complex and continuation of transcription (13). More recently acterization of upstream antisense transcription in regions encod- it was recognized, in mESCs, that c-Myc stimulates transcription ing transcription start site associated RNAs (TSSa-RNAs) at four at over a third of all cellular promoters by recruitment of P-TEFb divergent CpG island promoters: Isg20l1, Tcea1, Txn1, and Sf3b1. (12). Intriguingly in these same cells, NELF and DSIF have bi- We find that upstream antisense RNAs (uaRNAs) have distinct modal binding profiles at divergent TSSs. This suggests divergent capped 5′ termini and heterogeneous nonpolyadenylated 3′ ends. RNAPII complexes might be poised for signals controlling elon- uaRNAs are short-lived with average half-lives of 18 minutes and gation and opens up the possibility that in the antisense direction are present at 1–4 copies per cell, approximately one RNA per DNA P-TEF-b recruitment may be regulating release for productive template.
    [Show full text]
  • Gprc5b Modulates Inflammatory Response in Glomerular Diseases
    BASIC RESEARCH www.jasn.org GPRC5b Modulates Inflammatory Response in Glomerular Diseases via NF-kB Pathway Sonia Zambrano,1 Katja Möller-Hackbarth,1 Xidan Li,1 Patricia Q. Rodriguez,1 Emmanuelle Charrin,1 Angelina Schwarz,1 Jenny Nyström,2 Annika Östman Wernerson,3 Mark Lal,4 and Jaakko Patrakka1 1Karolinska Insitutet/AstraZeneca Integrated Cardio Metabolic Center, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; 2Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; 3Division of Renal Medicine, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; and 4Division of Bioscience, Department of Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines Biotech Unit, AstraZeneca, Gothenburg, Sweden ABSTRACT Background Inflammatory processes play an important role in the pathogenesis of glomerulopathies. Finding novel ways to suppress glomerular inflammation may offer a new way to stop disease progression. However, the molecular mechanisms that initiate and drive inflammation in the glomerulus are still poorly understood. Methods We performed large-scale gene expression profiling of glomerulus-associated G protein– coupled receptors (GPCRs) to identify new potential therapeutic targets for glomerulopathies. The expression of Gprc5b in disease was analyzed using quantitative PCR and immunofluorescence, and by analyzing published microarray data sets. In vivo studies were carried out in a podocyte-specificGprc5b knockout mouse line. Mechanistic studies were performed in cultured human podocytes. Results We identified an orphan GPCR, Gprc5b, as a novel gene highly enriched in podocytes that was significantly upregulated in common human glomerulopathies, including diabetic nephropathy, IgA ne- phropathy, and lupus nephritis. Similar upregulation of Gprc5b was detected in LPS-induced nephropathy in mice.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Genome-Wide Sirna Screen for Mediators of NF-Κb Activation
    Genome-wide siRNA screen for mediators SEE COMMENTARY of NF-κB activation Benjamin E. Gewurza, Fadi Towficb,c,1, Jessica C. Marb,d,1, Nicholas P. Shinnersa,1, Kaoru Takasakia, Bo Zhaoa, Ellen D. Cahir-McFarlanda, John Quackenbushe, Ramnik J. Xavierb,c, and Elliott Kieffa,2 aDepartment of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; bCenter for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; cProgram in Medical and Population Genetics, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142; dDepartment of Biostatistics, Harvard School of Public Health, Boston, MA 02115; and eDepartment of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115 Contributed by Elliott Kieff, December 16, 2011 (sent for review October 2, 2011) Although canonical NFκB is frequently critical for cell proliferation, (RIPK1). TRADD engages TNFR-associated factor 2 (TRAF2), survival, or differentiation, NFκB hyperactivation can cause malig- which recruits the ubiquitin (Ub) E2 ligase UBC5 and the E3 nant, inflammatory, or autoimmune disorders. Despite intensive ligases cIAP1 and cIAP2. CIAP1/2 polyubiquitinate RIPK1 and study, mammalian NFκB pathway loss-of-function RNAi analyses TRAF2, which recruit and activate the K63-Ub binding proteins have been limited to specific protein classes. We therefore under- TAB1, TAB2, and TAB3, as well as their associated kinase took a human genome-wide siRNA screen for novel NFκB activa- MAP3K7 (TAK1). TAK1 in turn phosphorylates IKKβ activa- tion pathway components. Using an Epstein Barr virus latent tion loop serines to promote IKK activity (4).
    [Show full text]
  • Mouse Cdk9 Antibody (C-Term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap16162b
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 Mouse Cdk9 Antibody (C-term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP16162b Specification Mouse Cdk9 Antibody (C-term) - Product Information Application WB,E Primary Accession Q99J95 Other Accession Q641Z4, P50750, Q5EAB2, NP_570930.1 Reactivity Human, Mouse Predicted Bovine, Rat Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Calculated MW 42762 Antigen Region 251-278 Mouse Cdk9 Antibody (C-term) - Additional Information Western blot analysis of lysates from 293, Gene ID 107951 mouse NIH/3T3, rat C6 cell line and mouse kidney tissue lysate(from left to right), using Other Names Mouse Cdk9 Antibody (C-term)(Cat. Cyclin-dependent kinase 9, Cell division #AP16162b). AP16162b was diluted at protein kinase 9, Cdk9 1:1000 at each lane. A goat anti-rabbit IgG H&L(HRP) at 1:5000 dilution was used as the Target/Specificity secondary antibody. Lysates at 35ug per This Mouse Cdk9 antibody is generated lane. from rabbits immunized with a KLH conjugated synthetic peptide between 251-278 amino acids from the C-terminal Mouse Cdk9 Antibody (C-term) - region of mouse Cdk9. Background Dilution Member of the cyclin-dependent kinase pair WB~~1:1000 (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), Format which facilitates the transition from abortive to Purified polyclonal antibody supplied in PBS production elongation by phosphorylating the with 0.09% (W/V) sodium azide. This CTD (C-terminal domain) of the large subunit antibody is purified through a protein A of RNA polymerase II (RNAP II), SUPT5H and column, followed by peptide affinity RDBP.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • The Role of Protein Clearance Mechanisms in Organismal Ageing and Age-Related Diseases
    REVIEW Received 18 Mar 2014 | Accepted 24 Oct 2014 | Published 8 Dec 2014 DOI: 10.1038/ncomms6659 The role of protein clearance mechanisms in organismal ageing and age-related diseases David Vilchez1, Isabel Saez1 & Andrew Dillin2,3 The ability to maintain a functional proteome, or proteostasis, declines during the ageing process. Damaged and misfolded proteins accumulate with age, impairing cell function and tissue homeostasis. The accumulation of damaged proteins contributes to multiple age- related diseases such as Alzheimer’s, Parkinson’s or Huntington’s disease. Damaged proteins are degraded by the ubiquitin–proteasome system or through autophagy-lysosome, key components of the proteostasis network. Modulation of either proteasome activity or autophagic-lysosomal potential extends lifespan and protects organisms from symptoms associated with proteostasis disorders, suggesting that protein clearance mechanisms are directly linked to ageing and age-associated diseases. he integrity of the proteome, or proteostasis, is challenged during the ageing process. Damaged proteins accumulate as a consequence of ageing and may ensue from the Taccumulation of reactive oxygen species and a progressive decline in the ability to maintain a functional proteome1. This demise in proteostasis is considered one of the hallmarks of ageing1 and contributes to multiple age-related diseases such as Alzheimer’s (AD)2, Parkinson’s (PD)3 or Huntington’s disease (HD)4. Proteostasis is maintained by a network of cellular mechanisms that monitors folding, concentration, cellular localization and interactions of proteins from their synthesis through their degradation5. Chaperones assure the proper folding of proteins throughout their life cycle and under stress conditions but their activity declines with age (reviewed in refs 6–10).
    [Show full text]
  • Produktinformation
    Produktinformation Diagnostik & molekulare Diagnostik Laborgeräte & Service Zellkultur & Verbrauchsmaterial Forschungsprodukte & Biochemikalien Weitere Information auf den folgenden Seiten! See the following pages for more information! Lieferung & Zahlungsart Lieferung: frei Haus Bestellung auf Rechnung SZABO-SCANDIC Lieferung: € 10,- HandelsgmbH & Co KG Erstbestellung Vorauskassa Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 Zuschläge F. +43(0)1 489 3961-7 [email protected] • Mindermengenzuschlag www.szabo-scandic.com • Trockeneiszuschlag • Gefahrgutzuschlag linkedin.com/company/szaboscandic • Expressversand facebook.com/szaboscandic PSMD10 Antibody, Biotin conjugated Product Code CSB-PA018899LD01HU Abbreviation 26S proteasome non-ATPase regulatory subunit 10 Storage Upon receipt, store at -20°C or -80°C. Avoid repeated freeze. Uniprot No. O75832 Immunogen Recombinant Human 26S proteasome non-ATPase regulatory subunit 10 protein (1-226AA) Raised In Rabbit Species Reactivity Human Tested Applications ELISA Relevance Acts as a chaperone during the assembly of the 26S proteasome, specifically of the PA700/19S regulatory complex (RC). In the initial step of the base subcomplex assembly is part of an intermediate PSMD10:PSMC4:PSMC5:PAAF1 module which probably assembles with a PSMD5:PSMC2:PSMC1:PSMD2 module. Independently of the proteasome, regulates EGF-induced AKT activation through inhibition of the RHOA/ROCK/PTEN pahway, leading to prolonged AKT activation. Plays an important role in RAS-induced tumorigenesis. Acts as an proto-oncoprotein by being involved in negative regulation of tumor suppressors RB1 and p53/TP53. Overexpression is leading to phosphorylation of RB1 and proteasomal degradation of RB1. Regulates CDK4-mediated phosphorylation of RB1 by competing with CDKN2A for binding with CDK4. Facilitates binding of MDM2 to p53/TP53 and the mono- and polyubiquitination of p53/TP53 by MDM2 suggesting a function in targeting the TP53:MDM2 complex to the 26S proteasome.
    [Show full text]
  • Westminsterresearch ZFP36 Proteins and Mrna Targets in B Cell
    WestminsterResearch http://www.westminster.ac.uk/westminsterresearch ZFP36 proteins and mRNA targets in B cell malignancies Alcaraz, A. This is an electronic version of a PhD thesis awarded by the University of Westminster. © Miss Amor Alcaraz, 2015. The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners. Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/). In case of abuse or copyright appearing without permission e-mail [email protected] ZFP36 proteins and mRNA targets in B cell malignancies Maria del Amor Alcaraz-Serrano A Thesis submitted in partial fulfilment of the requirements of the University of Westminster for the degree of Doctor of Philosophy September 2015 Abstract The ZFP36 proteins are a family of post-transcriptional regulator proteins that bind to adenine uridine rich elements (AREs) in 3’ untranslated (3’UTR) regions of mRNAs. The members of the human family, ZFP36L1, ZFP36L2 and ZFP36 are able to degrade mRNAs of important cell regulators that include cytokines, cell signalling proteins and transcriptional factors. This project investigated two proposed targets for the protein family that have important roles in B cell biology, BCL2 and CD38 mRNAs. BCL2 is an anti-apoptotic protein with key roles in cell survival and carcinogenesis; CD38 is a membrane protein differentially expressed in B cells and with a prognostic value in B chronic lymphocytic leukaemia (B-CLL), patients positive for CD38 are considered to have a poor prognosis.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]