Thesis Reference

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Reference Thesis Analysis of large biological data: metabolic network modularization and prediction of N-terminal acetylation CHARPILLOZ, Christophe Abstract During last decades, biotechnology advances allowed to gather a huge amount of biological data. This data ranges from genome composition to the chemical interactions occurring in the cell. Such huge amount of information requires the application of complex algorithms to reveal how they are organized in order to understand the underlying biology. The metabolism forms a class of very complex data and the graphs that represent it are composed of thousands of nodes and edges. In this thesis we propose an approach to modularize such networks to reveal their internal organization. We have analyzed red blood cells' networks corresponding to pathological states and the obtained in-silico results were corroborated by known in-vitro analysis. In the second part of the thesis we describe a learning method that analyzes thousands of sequences from the UniProt database to predict the N-alpha-terminal acetylation. This is done by automatically discovering discriminant motifs that are combined in a binary decision tree manner. Prediction performances on N-alpha-terminal acetylation are higher than the other published classifiers. Reference CHARPILLOZ, Christophe. Analysis of large biological data: metabolic network modularization and prediction of N-terminal acetylation. Thèse de doctorat : Univ. Genève, 2015, no. Sc. 4883 URN : urn:nbn:ch:unige-860463 DOI : 10.13097/archive-ouverte/unige:86046 Available at: http://archive-ouverte.unige.ch/unige:86046 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Département d’informatique Professeur Bastien Chopard Analysis of Large Biological Data: Metabolic Network Modularization and Prediction of N-Terminal Acetylation THÈSE présentée à la Faculté des sciences de l’Université de Genève pour obtenir le grade de Docteur ès sciences, mention sciences informatiques par Christophe CHARPILLOZ de Bévilard (BE) Thèse No 4883 GENÈVE Atelier de reproduction Uni-Mail 2015 REMERCIEMENTS Je souhaite commencer par remercier mon directeur de thèse, Bastien Chopard, pour m’avoir offert l’opportunité d’accomplir un doctorat au sein du laboratoire de calcul scientifique et parallèle (Scientific and Parallel Com- puting Group, SPC). Sa curiosité et son intérêt dans le domaine des sciences computationnelles m’ont permis d’explorer librement et rigoureusement le domaine de l’analyse du métabolisme in silico. Ses encouragements et son appui m’ont aidé à terminer ce travail dans les meilleures conditions possibles. Je remercie aussi chaleureusement Jean-Luc Falcone pour son en- cadrement ainsi que pour toute l’aide qu’il m’a apportée. Ses conseils, allant de la biologie à la rédaction scientifique, m’ont permis de mener à bien ce travail. J’exprime également toute ma gratitude envers les membres du jury. À Anne-Lise Veuthey pour son expertise en protéomique, ses suggestions et ses remarques sur mon travail. À Alexandre Masselot pour avoir aussi accepté de mettre ses compétences de (bio)informaticien à disposition pour évaluer la qualité de mon travail. Je remercie Alexandros Kalousis pour avoir partagé ses compétences dans le domaine de l’apprentissage automatique (machine learning) et de l’explo- ration de données (data mining). Son assistance et ses enseignements dans ces domaines ont été d’un grand secours. Je suis aussi reconnaissant envers Felix Kwok, Martin Jakob Gander et Pierre-Alain Cherix. En effet, grâce à leur savoir-faire mathématique et à leur gentillesse, une section complète de ce manuscrit a pu être réalisée. Ce travail n’aurait pas été possible sans le soutien de nombreuses per- sonnes, en commencant par ceux avec qui j’ai passé la quasi totalité de mes années au SPC. Merci à Orestis Pileas Malaspinas dont le soutien scientifique et amical ainsi que l’expérience dans l’encadrement de travaux académiques m’ont été d’une très grande aide. Un grand merci aussi à mon collègue et ami Daniel Walter Lagrava Sandoval dont la compagnie a été très apréciée et a contribué à rendre mon parcours académique stimulant et amusant. Je remercie également Xavier Meyer dont les échanges m’ont permis d’aborder mon travail avec plus de calme et de sérénité. Je n’oublie évidemment pas mes collègues du SPC et membres du dépar- tement des sciences informatiques avec qui j’ai partagé de nombreux bons moments et qui ont aussi supporté mes sauts d’humeurs. Merci à Alexandre, Andrea, Aziza, Gregor, Jonas, Kae, Mohamed, Pablo, Pierre, Reto et Yann. Certains d’entre eux sont devenus des amis avec qui j’espère garder le contact bien au-delà de ce travail de doctorat. Merci aussi à toutes les personnes qui n’ont pas été mentionnées avec qui j’ai interagi pendant toutes ces années. Finalement, une immense reconnaissance à ma mère et à mon père qui m’ont encouragé et soutenu de manière constante et indefectible du début à la fin de ce travail. Sans eux, ce travail ne serait certainement jamais abouti. iii ABSTRACT Biotechnology allowed to gather a huge amount of biological data. Those data range from the nucleotides that compose the genome to the chemical interactions occurring between molecules in the cell. Some of these data can be interpreted by expert but some others need the application of complex al- gorithms in order to extract knowledge. The development of such algorithms is now a major research field in computational biology (or bioinformatics). In this work we develop such approach to analyze two types of biological data: the stoichiometric models and proteins sequences to discover how these data are structured or organized in order to understand the underlying biology in silico. Chapter 1 and 2 are introduction to the basic concepts needed to un- derstand this manuscript. In the first chapter basic molecular biology is introduced. This allow the reader to have an intuition of what are the objects represented by the data extracted from the biological databases. In the sec- ond chapter the models used to mathematically represent the metabolism or metabolic network are described. Namely the stoichiometric matrices and the graphs. In the chapter 3 the problem of extreme pathways computation is tackled. An algorithm based on network reduction and hierarchical computing of the extreme pathways is described in details. To implement our algorithm the concept of meta-reaction is introduced. A meta-reaction is a grouping of chemical reactions’ subset connected by their substrates or products in the network. A meta-reaction summarizes the subset, or subsystem, only by its inputs and outputs. Thus ignoring the intermediate metabolites and allows the reduction in size of the network. The meta-reactions are built with respect to the stoichiometry of the encapsulated subsystems. Also experiments that allows to assess the efficiency of the reduction and hierarchical computation are described in this chapter. The latter ends by the description of a new approach allowing the detection of intractable systems by considering the reduced network with the meta-reactions Chapter 4 contains a description of a metric based on the extreme pathways to measure the similarity between chemical reactions in a metabolic network. This metric allow the usage of clustering algorithms to detect functional modules in the network. As the definition of the proposed metric needs the complete enumeration of the extreme pathways, an approximation of the metric is proposed. Then to assess the quality of the detected modules, we applied the approach to the human erythrocyte metabolism. Also a quantitative experiment that detect pair of co-expressed genes has been done. This allows producing a score for our modules and thus comparing our metric with other approaches. As we also propose a supervised learning method to predict the initiator methionine cleavage and Na-terminal acetylation. Thus the Chapter 5 is a reminder on supervised learning. It contains also a review of the already existing approach to detect the Na-terminal acetylation. Then the Chapter 6 provides the description of criteria allowing to fetch the proteomic datasets. Those datasets are the one used as learning and test datasets for our model. Our model is described and evaluated in Chapter 7 and 8. The model is based on combination of discriminant motifs in a binary decision tree v abstract manner. A discriminant motif allows to select a protein according the level of detection of the motif in the protein’s primary structure. We called our model motifs-tree. Such a tree recursively split a proteins’ set into two subsets: one undergoing a given post-translational modification, the other does not. To select the motifs that compose the decision tree’s nodes an evolutionary algorithm was used to explore the space of all variable size motifs. Then our model is compared to the state of the art. Our automatically built model provides score on par with the experts’ state of the art. Moreover it has been able to detect subtle features to correctly identify acetylated sequences which have not been detected by experts (e.g. the proteins acetylated by NatB and NatC). The model was also used to explain the initiator methionine cleavage and Na-terminal acetylation in H. sapiens. This was successfully done for the Na-terminal acetylation but with less success in the case of Na-terminal acetylation. Indeed for the latter the wide range of acetylated proteins makes the model difficult to analyze. Chapter 9 is the final chapter and contains a general conclusion about this work and briefly assess the problem of validation of bioinformatics approaches. We also bring out the growing role of computer science in biology. vi RÉSUMÉ La biotechnologie a permis de récolter de larges quantités de données biologiques, allant des séquences de nucléotides qui composent le génome jusqu’aux intéractions chimiques des molécules nécessaires à la vie cellulaire.
Recommended publications
  • Cancer Immunology of Cutaneous Melanoma: a Systems Biology Approach
    Cancer Immunology of Cutaneous Melanoma: A Systems Biology Approach Mindy Stephania De Los Ángeles Muñoz Miranda Doctoral Thesis presented to Bioinformatics Graduate Program at Institute of Mathematics and Statistics of University of São Paulo to obtain Doctor of Science degree Concentration Area: Bioinformatics Supervisor: Prof. Dr. Helder Takashi Imoto Nakaya During the project development the author received funding from CAPES São Paulo, September 2020 Mindy Stephania De Los Ángeles Muñoz Miranda Imunologia do Câncer de Melanoma Cutâneo: Uma abordagem de Biologia de Sistemas VERSÃO CORRIGIDA Esta versão de tese contém as correções e alterações sugeridas pela Comissão Julgadora durante a defesa da versão original do trabalho, realizada em 28/09/2020. Uma cópia da versão original está disponível no Instituto de Matemática e Estatística da Universidade de São Paulo. This thesis version contains the corrections and changes suggested by the Committee during the defense of the original version of the work presented on 09/28/2020. A copy of the original version is available at Institute of Mathematics and Statistics at the University of São Paulo. Comissão Julgadora: • Prof. Dr. Helder Takashi Imoto Nakaya (Orientador, Não Votante) - FCF-USP • Prof. Dr. André Fujita - IME-USP • Profa. Dra. Patricia Abrão Possik - INCA-Externo • Profa. Dra. Ana Carolina Tahira - I.Butantan-Externo i FICHA CATALOGRÁFICA Muñoz Miranda, Mindy StephaniaFicha de Catalográfica los Ángeles M967 Cancer immunology of cutaneous melanoma: a systems biology approach = Imuno- logia do câncer de melanoma cutâneo: uma abordagem de biologia de sistemas / Mindy Stephania de los Ángeles Muñoz Miranda, [orientador] Helder Takashi Imoto Nakaya. São Paulo : 2020. 58 p.
    [Show full text]
  • Bio::Graphics HOWTO Lincoln Stein Cold Spring Harbor Laboratory1 [email protected]
    Bio::Graphics HOWTO Lincoln Stein Cold Spring Harbor Laboratory1 [email protected] This HOWTO describes how to render sequence data graphically in a horizontal map. It applies to a variety of situations ranging from rendering the feature table of a GenBank entry, to graphing the positions and scores of a BLAST search, to rendering a clone map. It describes the programmatic interface to the Bio::Graphics module, and discusses how to create dynamic web pages using Bio::DB::GFF and the gbrowse package. Table of Contents Introduction ...........................................................................................................................3 Preliminaries..........................................................................................................................3 Getting Started ......................................................................................................................3 Adding a Scale to the Image ...............................................................................................5 Improving the Image............................................................................................................7 Parsing Real BLAST Output...............................................................................................8 Rendering Features from a GenBank or EMBL File ....................................................12 A Better Version of the Feature Renderer ......................................................................14 Summary...............................................................................................................................18
    [Show full text]
  • UCLA UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Bipartite Network Community Detection: Development and Survey of Algorithmic and Stochastic Block Model Based Methods Permalink https://escholarship.org/uc/item/0tr9j01r Author Sun, Yidan Publication Date 2021 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Bipartite Network Community Detection: Development and Survey of Algorithmic and Stochastic Block Model Based Methods A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Statistics by Yidan Sun 2021 © Copyright by Yidan Sun 2021 ABSTRACT OF THE DISSERTATION Bipartite Network Community Detection: Development and Survey of Algorithmic and Stochastic Block Model Based Methods by Yidan Sun Doctor of Philosophy in Statistics University of California, Los Angeles, 2021 Professor Jingyi Li, Chair In a bipartite network, nodes are divided into two types, and edges are only allowed to connect nodes of different types. Bipartite network clustering problems aim to identify node groups with more edges between themselves and fewer edges to the rest of the network. The approaches for community detection in the bipartite network can roughly be classified into algorithmic and model-based methods. The algorithmic methods solve the problem either by greedy searches in a heuristic way or optimizing based on some criteria over all possible partitions. The model-based methods fit a generative model to the observed data and study the model in a statistically principled way. In this dissertation, we mainly focus on bipartite clustering under two scenarios: incorporation of node covariates and detection of mixed membership communities.
    [Show full text]
  • Stein Gives Bioinformatics Ten Years to Live
    O'Reilly Network: Stein Gives Bioinformatics Ten Years to Live http://www.oreillynet.com/lpt/a/3205 Published on O'Reilly Network (http://www.oreillynet.com/) http://www.oreillynet.com/pub/a/network/biocon2003/stein.html See this if you're having trouble printing code examples Stein Gives Bioinformatics Ten Years to Live by Daniel H. Steinberg 02/05/2003 Lincoln Stein's keynote at the O'Reilly Bioinformatics Technology Conference was provocatively titled "Bioinformatics: Gone in 2012." Despite the title, Stein is optimistic about the future for people doing bioinformatics. But he explained that "the field of bioinformatics will be gone by 2012. The field will be doing the same thing but it won't be considered a field." His address looked at what bioinformatics is and what its future is likely to be in the context of other scientific disciplines. He also looked at career prospects for people doing bioinformatics and provided advice for those looking to enter the field. What Is Bioinformatics: Take One Stein, of the Cold Spring Harbor Laboratory, began his keynote by examining what is meant by bioinformatics. In the past such a talk would begin with a definition displayed from an authoritative dictionary. The modern approach is to appeal to an FAQ from an authoritative web site. Take a look at the FAQ at bioinformatics.org and you'll find several definitions. Stein summarized Fedj Tekaia of the Institut Pasteur--that bioinformatics is DNA and protein analysis. Stein also summarized Richard Durbin of the Sanger Institute--that bioinformatics is managing data sets. Stein's first pass at a definition of bioinformatics is that it is "Biologists using computers or the other way around." He followed by observing that whatever it is, it's growing.
    [Show full text]
  • Computational Modeling to Design and Analyze Synthetic Metabolic Circuits
    Computational modeling S467 to design and SACL 9 analyze : 201 synthetic NNT metabolic circuits Thèse de doctorat de l'Université Paris-Saclay préparée à l’Université Paris -Sud École doctorale n°577 Structure et Dynamique des Systèmes Vivants (SDSV) Spécialité de doctorat: Sciences de la Vie et de la Santé Thèse présentée et soutenue à Jouy-en-Josas, le 28/11/19, par Mathilde Koch Composition du Jury : Joerg Stelling Professeur, ETH Zurich (Department of Biosystems Science and Engineering) Président et Rapporteur Daniel Kahn Directeur de Recherche, INRA (UAR 1203, Département Mathématiques et Informatique Appliquées) Rapporteur Gregory Batt Directeur de Recherche, INRIA Examinateur Olivier Sperandio Directeur de Recherche, Institut Pasteur Examinateur Wolfram Liebermeister Chargé de Recherche, INRA (UR1404, MaIAGE, Université Paris-Saclay, Jouy-en-Josas) Examinateur Jean-Loup Faulon Directeur de Recherche, INRA (UMR 1319, Micalis, AgroParisTech, Université Paris-Saclay) Directeur de thèse Abstract The aims of this thesis are two-fold, and centered on synthetic metabolic cir- cuits, which perform sensing and computation using enzymes. The first part consisted in developing reinforcement and active learning tools to improve the design of metabolic circuits and optimize biosensing and bioproduction. In order to do this, a novel algorithm (RetroPath3.0) based on similarity- guided Monte Carlo Tree Search to improve the exploration of the search space is presented. This algorithm, combined with data-derived reaction rules and varying levels of enzyme promiscuity, allows to focus exploration toward the most promising compounds and pathways for bio-retrosynthesis. As retrosynthesis-based pathways can be implemented in whole cell or cell- free systems, an active learning method to efficiently explore the combinato- rial space of components for rational buffer optimization was also developed, to design the best buffer maximizing cell-free productivity.
    [Show full text]
  • An Introduction to Perl for Bioinformatics
    An Introduction to Perl for bioinformatics C. Tranchant-Dubreuil, F. Sabot UMR DIADE, IRD June 2015 1 / 98 Sommaire 1 Introduction Objectives What is programming ? What is perl ? Why used Perl ? Perl in bioinformatics Running a perl script 2 Perl in detail 2 / 98 • To empower you with the basic knowledge required to quickly and effectively create simple scripts to process biological data • Write your own programs once time, use many times Objectives • To demonstrate how Perl can be used in bioinformatics 3 / 98 • Write your own programs once time, use many times Objectives • To demonstrate how Perl can be used in bioinformatics • To empower you with the basic knowledge required to quickly and effectively create simple scripts to process biological data 3 / 98 Objectives • To demonstrate how Perl can be used in bioinformatics • To empower you with the basic knowledge required to quickly and effectively create simple scripts to process biological data • Write your own programs once time, use many times 3 / 98 • Programming languages : bridges between human languages (A-Z) and machine languages (0&1) • Compilers convert programming languages to machine languages What is programming • Programs : a set of instructions telling computer what to do 4 / 98 • Compilers convert programming languages to machine languages What is programming • Programs : a set of instructions telling computer what to do • Programming languages : bridges between human languages (A-Z) and machine languages (0&1) 4 / 98 What is programming • Programs : a set of instructions
    [Show full text]
  • The Bioperl Toolkit: Perl Modules for the Life Sciences
    Resource The Bioperl Toolkit: Perl Modules for the Life Sciences Jason E. Stajich,1,18,19 David Block,2,18 Kris Boulez,3 Steven E. Brenner,4 Stephen A. Chervitz,# Chris Dagdigian,% Georg Fuellen,( James G.R. Gilbert,8 Ian Korf,9 Hilmar Lapp,10 Heikki Lehva1slaiho,11 Chad Matsalla,12 Chris J. Mungall,13 Brian I. Osborne,14 Matthew R. Pocock,8 Peter Schattner,15 Martin Senger,11 Lincoln D. Stein,16 Elia Stupka,17 Mark D. Wilkinson,2 and Ewan Birney11 1University Program in Genetics, Duke University, Durham, North Carolina 27710, USA; 2National Research Council of Canada, Plant Biotechnology Institute, Saskatoon, SK S7N &'( Canada; )AlgoNomics, # 9052 Gent, Belgium; +Department of Plant and Molecular Biology, University of California, Berkeley, California 94720, USA; *Affymetrix, Inc., Emeryville, California 94608, USA; 1Open Bioinformatics Foundation, Somerville, Massachusetts 02144, USA; 7Integrated Functional Genomics, IZKF, University Hospital Muenster, 48149 Muenster, Germany; 2The Welcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK; (Department of Computer Science, Washington University, St. Louis, Missouri 63130, USA; 10Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, USA; 11European Bioinformatics Institute, Welcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD UK; 12Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon SK, S7N 0X2 Canada; 13Berkeley Drosophila Genome Project, University of California, Berkeley, California 94720,
    [Show full text]
  • Identification of Functional Elements and Regulatory Circuits By
    RESEARCH ARTICLES 78. Funding for this work came from the NHGRI of the Biology and Genetics. Raw microarray data are available fellow curator P. Davis for reviewing and hand-checking NIH as part of the modENCODE project, NIH (grant from the Gene Expression Omnibus archive, and raw the list of pseudogenes. R01GM088565), Muscular Dystrophy Association, and the sequencing data are available from the SRA archive Supporting Online Material Pew Charitable Trusts (J.K.K.); the Helmholtz-Alliance on (accessions are in table S18). We appreciate help from www.sciencemag.org/cgi/content/science.1196914/DC1 Systems Biology (Max Delbrück Centrum Systems S. Anthony, K. Bell, C. Davis, C. Dieterich, Y. Field, Materials and Methods Biology Network) (S.D.M.); the Wellcome Trust (J.A.); A.S.Hammonds,J.Jo,N.Kaplan,A.Manrai,B.Mathey-Prevot, Figs. S1 to S50 the William H. Gates III Endowed Chair of Biomedical R. McWhirter, S. Mohr, S. Von Stetina, J. Watson, Tables S1 to S18 Sciences (R.H.W.); and the A. L. Williams Professorship K. Watkins, C. Xue, and Y. Zhang, and B. Carpenter. We References (M.B.G.). M. Snyder has an advisory role with DNANexus, thank C. Jan and D. Bartel for sharing data on poly(A) a DNA sequence storage and analysis company. Transfer sites before publication, WormBase curator G. Williams 24 August 2010; accepted 18 November 2010 of GFP-tagged fosmids requires a Materials Transfer for assistance in quality checking and preparing the Published online 22 December 2010; Agreement with the Max Planck Institute of Molecular Cell transcriptomics data sets for publication, as well as his 10.1126/science.1196914 biology.
    [Show full text]
  • Bioclipse: an Open Source Workbench for Chemo- and Bioinformatics
    ! "#$"%& ! %'($%$##)$'"**$# + , ++ -$.%*.# ! " # $%%&'!(') * + * *,+ + ,+-.+ / 0 +- 1 2+3-%%&- -4 * 1 */ +5*1 -6 - '''-)! - -41#&$78&'8))8$9!!8)- #/+ ++ + + :+ +* 8 * -1 * /+ / * + * * + + +; /+ -.++ * * * + + +/+ + + < +* * + - 1 + + = ++ + + / = += * :+ + * - 4 ++4 + * + */ * / + +* /++ *1 -.+/ = 8 / = + +* * + +8/++ /+ * + /++ + + *- >+ +=* *+ ** *1 + / = -.+ * * */ * * /+ + * + - . + *+ + * /+ / = 4 /+ +?,, -.+ + / + /++ * 8 - . <+* *+ + * + * * /+ * + + / + + -6 * * + @16> * * +/+ += *1 + - + / + * * + / + <* +-A+ + 2+ + * ** +* - * * + * + * + :8/ ! !" #$%&! !'()$&*+ ! B31 2+%%& 411#'9)'89'& 41#&$78&'8))8$9!!8) ( ((( 8'%&!%)+ (CC -=-C D E ( ((( 8'%&!%) List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Spjuth, O., Helmus, T., Willighagen, E.L., Kuhn, S., Eklund, M., Wagener J., Murray-Rust, P., Steinbeck, C., and Wikberg, J.E.S. Bioclipse: An open source workbench for chemo- and bioinformatics. BMC Bioinformatics 2007, 8:59. II Wagener, J., Spjuth, O., Willighagen, E.L., and Wikberg J.E.S. XMPP for cloud computing in bioinformatics supporting discovery and
    [Show full text]
  • Genome Informatics
    Joint Cold Spring Harbor Laboratory/Wellcome Trust Conference GENOME INFORMATICS September 15–September 19, 2010 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cold Spring Harbor Laboratory Institutional Repository Joint Cold Spring Harbor Laboratory/Wellcome Trust Conference GENOME INFORMATICS September 15–September 19, 2010 Arranged by Inanc Birol, BC Cancer Agency, Canada Michele Clamp, BioTeam, Inc. James Kent, University of California, Santa Cruz, USA SCHEDULE AT A GLANCE Wednesday 15th September 2010 17.00-17.30 Registration – finger buffet dinner served from 17.30-19.30 19.30-20:50 Session 1: Epigenomics and Gene Regulation 20.50-21.10 Break 21.10-22.30 Session 1, continued Thursday 16th September 2010 07.30-09.00 Breakfast 09.00-10.20 Session 2: Population and Statistical Genomics 10.20-10:40 Morning Coffee 10:40-12:00 Session 2, continued 12.00-14.00 Lunch 14.00-15.20 Session 3: Environmental and Medical Genomics 15.20-15.40 Break 15.40-17.00 Session 3, continued 17.00-19.00 Poster Session I and Drinks Reception 19.00-21.00 Dinner Friday 17th September 2010 07.30-09.00 Breakfast 09.00-10.20 Session 4: Databases, Data Mining, Visualization and Curation 10.20-10.40 Morning Coffee 10.40-12.00 Session 4, continued 12.00-14.00 Lunch 14.00-16.00 Free afternoon 16.00-17.00 Keynote Speaker: Alex Bateman 17.00-19.00 Poster Session II and Drinks Reception 19.00-21.00 Dinner Saturday 18th September 2010 07.30-09.00 Breakfast 09.00-10.20 Session 5: Sequencing Pipelines and Assembly 10.20-10.40
    [Show full text]
  • Unlocking the Secrets of the Genome
    Washington University in St. Louis Washington University Open Scholarship Biology Faculty Publications & Presentations Biology 6-2009 Unlocking the secrets of the genome Susan Celniker Laura Dillon Mark Gerstein Kristin Gunsalus Steven Henikoff See next page for additional authors Follow this and additional works at: https://openscholarship.wustl.edu/bio_facpubs Part of the Biology Commons Recommended Citation Celniker, Susan; Dillon, Laura; Gerstein, Mark; Gunsalus, Kristin; Henikoff, Steven; Karpen, Gary; Kellis, Manolis; Lai, Eric; Lieb, Jason; MacAlpine, David; Micklem, Gos; Piano, Fabio; Snyder, Michael; Stein, Lincoln; White, Kevin; Waterston, Robert; and Elgin, Sarah C.R., "Unlocking the secrets of the genome" (2009). Biology Faculty Publications & Presentations. 239. https://openscholarship.wustl.edu/bio_facpubs/239 This Article is brought to you for free and open access by the Biology at Washington University Open Scholarship. It has been accepted for inclusion in Biology Faculty Publications & Presentations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. Authors Susan Celniker, Laura Dillon, Mark Gerstein, Kristin Gunsalus, Steven Henikoff, Gary Karpen, Manolis Kellis, Eric Lai, Jason Lieb, David MacAlpine, Gos Micklem, Fabio Piano, Michael Snyder, Lincoln Stein, Kevin White, Robert Waterston, and Sarah C.R. Elgin This article is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/bio_facpubs/ 239 NIH Public Access Author Manuscript Nature. Author manuscript; available in PMC 2010 March 22. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Nature. 2009 June 18; 459(7249): 927±930. doi:10.1038/459927a. Unlocking the secrets of the genome Susan E.
    [Show full text]
  • The Pan-NLR'ome of Arabidopsis Thaliana
    The pan-NLR’ome of Arabidopsis thaliana Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Anna-Lena Van de Weyer aus Bad Kissingen Tübingen 2019 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 25.03.2019 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Detlef Weigel 2. Berichterstatter: Prof. Dr. Thorsten Nürnberger Acknowledgements I would like to thank my thesis advisors Prof. Detlef Weigel and Prof. Thorsten Nürnberger for not only their continuous support during my PhD studies but also for their critical questions and helpful ideas that shaped and developed my project. Fur- thermore, I would like to thank Dr. Felicity Jones for being part of my Thesis Advisory Committee, for fruitful discussions and for her elaborate questions. I would like to express my sincere gratitude to Dr. Felix Bemm, who worked closely with me during the last years, who continuously challenged and promoted me and with- out whom I would not be where and who I am now. In the mindmap for my acknowl- edgement I wrote down ’Felix: thanks for everything’. That says it all. Further thanks goes to my collaborators Dr. Freddy Monteiro and Dr. Oliver Furzer for their essential contributions to experiments and analyses during all stages of my PhD. Their sheer endless knowledge of NLR biology amplified my curiosity and enthusiasm to learn. Freddy deserves a special thank you for his awesome collaborative spirit and for answering all my NLR related newbie questions.
    [Show full text]