ENSEMBL SPECIAL Downloaded from Genome.Cshlp.Org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RDA COVID-19 Recommendations and Guidelines on Data Sharing
RDA COVID-19 Recommendations and Guidelines on Data Sharing DOI: 10.15497/RDA00052 Authors: RDA COVID-19 Working Group Published: 30th June 2020 Abstract: This is the final version of the Recommendations and Guidelines from the RDA COVID19 Working Group, and has been endorsed through the official RDA process. Keywords: RDA; Recommendations; COVID-19. Language: English License: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication RDA webpage: https://www.rd-alliance.org/group/rda-covid19-rda-covid19-omics-rda-covid19- epidemiology-rda-covid19-clinical-rda-covid19-1 Related resources: - RDA COVID-19 Guidelines and Recommendations – preliminary version, https://doi.org/10.15497/RDA00046 - Data Sharing in Epidemiology, https://doi.org/10.15497/RDA00049 - RDA COVID-19 Zotero Library, https://doi.org/10.15497/RDA00051 Citation and Download: RDA COVID-19 Working Group. Recommendations and Guidelines on data sharing. Research Data Alliance. 2020. DOI: https://doi.org/10.15497/RDA00052 RDA COVID-19 Recommendations and Guidelines on Data Sharing RDA Recommendation (FINAL Release) Produced by: RDA COVID-19 Working Group, 2020 Document Metadata Identifier DOI: https://doi.org/10.15497/rda00052 Citation To cite this document please use: RDA COVID-19 Working Group. Recommendations and Guidelines on data sharing. Research Data Alliance. 2020. DOI: https://doi.org/10.15497/rda00052 Title RDA COVID-19; Recommendations and Guidelines on Data Sharing, Final release 30 June 2020 Description This is the final version of the Recommendations and Guidelines -
Applied Category Theory for Genomics – an Initiative
Applied Category Theory for Genomics { An Initiative Yanying Wu1,2 1Centre for Neural Circuits and Behaviour, University of Oxford, UK 2Department of Physiology, Anatomy and Genetics, University of Oxford, UK 06 Sept, 2020 Abstract The ultimate secret of all lives on earth is hidden in their genomes { a totality of DNA sequences. We currently know the whole genome sequence of many organisms, while our understanding of the genome architecture on a systematic level remains rudimentary. Applied category theory opens a promising way to integrate the humongous amount of heterogeneous informations in genomics, to advance our knowledge regarding genome organization, and to provide us with a deep and holistic view of our own genomes. In this work we explain why applied category theory carries such a hope, and we move on to show how it could actually do so, albeit in baby steps. The manuscript intends to be readable to both mathematicians and biologists, therefore no prior knowledge is required from either side. arXiv:2009.02822v1 [q-bio.GN] 6 Sep 2020 1 Introduction DNA, the genetic material of all living beings on this planet, holds the secret of life. The complete set of DNA sequences in an organism constitutes its genome { the blueprint and instruction manual of that organism, be it a human or fly [1]. Therefore, genomics, which studies the contents and meaning of genomes, has been standing in the central stage of scientific research since its birth. The twentieth century witnessed three milestones of genomics research [1]. It began with the discovery of Mendel's laws of inheritance [2], sparked a climax in the middle with the reveal of DNA double helix structure [3], and ended with the accomplishment of a first draft of complete human genome sequences [4]. -
A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells
A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells Bradley E. Bernstein,1,2,3,* Tarjei S. Mikkelsen,3,4 Xiaohui Xie,3 Michael Kamal,3 Dana J. Huebert,1 James Cuff,3 Ben Fry,3 Alex Meissner,5 Marius Wernig,5 Kathrin Plath,5 Rudolf Jaenisch,5 Alexandre Wagschal,6 Robert Feil,6 Stuart L. Schreiber,3,7 and Eric S. Lander3,5 1 Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA 2 Department of Pathology, Harvard Medical School, Boston, MA 02115, USA 3 Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA 4 Division of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA 5 Whitehead Institute for Biomedical Research, MIT, Cambridge, MA 02139, USA 6 Institute of Molecular Genetics, CNRS UMR-5535 and University of Montpellier-II, Montpellier, France 7 Howard Hughes Medical Institute at the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA *Contact: [email protected] DOI 10.1016/j.cell.2006.02.041 SUMMARY which in turn modulate chromatin structure (Jenuwein and Allis, 2001; Margueron et al., 2005). The core histones The most highly conserved noncoding ele- H2A, H2B, H3, and H4 are subject to dozens of different ments (HCNEs) in mammalian genomes cluster modifications, including acetylation, methylation, and within regions enriched for genes encoding de- phosphorylation. Histone H3 lysine 4 (Lys4) and lysine velopmentally important transcription factors 27 (Lys27) methylation are of particular interest as these (TFs). This suggests that HCNE-rich regions modifications are catalyzed, respectively, by trithorax- may contain key regulatory controls involved and Polycomb-group proteins, which mediate mitotic in- heritance of lineage-specific gene expression programs in development. -
Distinctive Regulatory Architectures of Germline-Active and Somatic Genes in C
Downloaded from genome.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press Research Distinctive regulatory architectures of germline-active and somatic genes in C. elegans Jacques Serizay, Yan Dong, Jürgen Jänes, Michael Chesney, Chiara Cerrato, and Julie Ahringer The Gurdon Institute and Department of Genetics, University of Cambridge, CB2 1QN Cambridge, United Kingdom RNA profiling has provided increasingly detailed knowledge of gene expression patterns, yet the different regulatory ar- chitectures that drive them are not well understood. To address this, we profiled and compared transcriptional and regu- latory element activities across five tissues of Caenorhabditis elegans, covering ∼90% of cells. We find that the majority of promoters and enhancers have tissue-specific accessibility, and we discover regulatory grammars associated with ubiquitous, germline, and somatic tissue–specific gene expression patterns. In addition, we find that germline-active and soma-specific promoters have distinct features. Germline-active promoters have well-positioned +1 and −1 nucleosomes associated with a periodic 10-bp WW signal (W = A/T). Somatic tissue–specific promoters lack positioned nucleosomes and this signal, have wide nucleosome-depleted regions, and are more enriched for core promoter elements, which largely differ between tissues. We observe the 10-bp periodic WW signal at ubiquitous promoters in other animals, suggesting it is an ancient conserved signal. Our results show fundamental differences in regulatory architectures of germline and somatic tissue–specific genes, uncover regulatory rules for generating diverse gene expression patterns, and provide a tissue-specific resource for future studies. [Supplemental material is available for this article.] Cell type–specific transcription regulation underlies production tissues are achieved and whether expression is governed by dis- of the myriad of different cells generated during development. -
Personal and Population Genomics of Human Regulatory Variation
Downloaded from genome.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Research Personal and population genomics of human regulatory variation Benjamin Vernot, Andrew B. Stergachis, Matthew T. Maurano, Jeff Vierstra, Shane Neph, Robert E. Thurman, John A. Stamatoyannopoulos,1 and Joshua M. Akey1 Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA The characteristics and evolutionary forces acting on regulatory variation in humans remains elusive because of the difficulty in defining functionally important noncoding DNA. Here, we combine genome-scale maps of regulatory DNA marked by DNase I hypersensitive sites (DHSs) from 138 cell and tissue types with whole-genome sequences of 53 geo- graphically diverse individuals in order to better delimit the patterns of regulatory variation in humans. We estimate that individuals likely harbor many more functionally important variants in regulatory DNA compared with protein-coding regions, although they are likely to have, on average, smaller effect sizes. Moreover, we demonstrate that there is sig- nificant heterogeneity in the level of functional constraint in regulatory DNA among different cell types. We also find marked variability in functional constraint among transcription factor motifs in regulatory DNA, with sequence motifs for major developmental regulators, such as HOX proteins, exhibiting levels of constraint comparable to protein-coding regions. Finally, we perform a genome-wide scan of recent positive selection and identify hundreds of novel substrates of adaptive regulatory evolution that are enriched for biologically interesting pathways such as melanogenesis and adipo- cytokine signaling. These data and results provide new insights into patterns of regulatory variation in individuals and populations and demonstrate that a large proportion of functionally important variation lies beyond the exome. -
Genomic Approaches for Understanding the Genetics of Complex Disease
Downloaded from genome.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Perspective Genomic approaches for understanding the genetics of complex disease William L. Lowe Jr.1 and Timothy E. Reddy2,3 1Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA; 2Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, North Carolina 27708, USA; 3Center for Genomic and Computational Biology, Duke University Medical School, Durham, North Carolina 27708, USA There are thousands of known associations between genetic variants and complex human phenotypes, and the rate of novel discoveries is rapidly increasing. Translating those associations into knowledge of disease mechanisms remains a fundamental challenge because the associated variants are overwhelmingly in noncoding regions of the genome where we have few guiding principles to predict their function. Intersecting the compendium of identified genetic associations with maps of regulatory activity across the human genome has revealed that phenotype-associated variants are highly enriched in candidate regula- tory elements. Allele-specific analyses of gene regulation can further prioritize variants that likely have a functional effect on disease mechanisms; and emerging high-throughput assays to quantify the activity of candidate regulatory elements are a promising next step in that direction. Together, these technologies have created the ability to systematically and empirically test hypotheses about the function of noncoding variants and haplotypes at the scale needed for comprehensive and system- atic follow-up of genetic association studies. Major coordinated efforts to quantify regulatory mechanisms across genetically diverse populations in increasingly realistic cell models would be highly beneficial to realize that potential. -
Multi-Class Protein Classification Using Adaptive Codes
Journal of Machine Learning Research 8 (2007) 1557-1581 Submitted 8/06; Revised 4/07; Published 7/07 Multi-class Protein Classification Using Adaptive Codes Iain Melvin∗ [email protected] NEC Laboratories of America Princeton, NJ 08540, USA Eugene Ie∗ [email protected] Department of Computer Science and Engineering University of California San Diego, CA 92093-0404, USA Jason Weston [email protected] NEC Laboratories of America Princeton, NJ 08540, USA William Stafford Noble [email protected] Department of Genome Sciences Department of Computer Science and Engineering University of Washington Seattle, WA 98195, USA Christina Leslie [email protected] Center for Computational Learning Systems Columbia University New York, NY 10115, USA Editor: Nello Cristianini Abstract Predicting a protein’s structural class from its amino acid sequence is a fundamental problem in computational biology. Recent machine learning work in this domain has focused on develop- ing new input space representations for protein sequences, that is, string kernels, some of which give state-of-the-art performance for the binary prediction task of discriminating between one class and all the others. However, the underlying protein classification problem is in fact a huge multi- class problem, with over 1000 protein folds and even more structural subcategories organized into a hierarchy. To handle this challenging many-class problem while taking advantage of progress on the binary problem, we introduce an adaptive code approach in the output space of one-vs- the-rest prediction scores. Specifically, we use a ranking perceptron algorithm to learn a weight- ing of binary classifiers that improves multi-class prediction with respect to a fixed set of out- put codes. -
Establishing Incentives and Changing Cultures to Support Data Access
EXPERT ADVISORY GROUP ON DATA ACCESS ESTABLISHING INCENTIVES AND CHANGING CULTURES TO SUPPORT DATA ACCESS May 2014 ACKNOWLEDGEMENT This is a report of the Expert Advisory Group on Data Access (EAGDA). EAGDA was established by the MRC, ESRC, Cancer Research UK and the Wellcome Trust in 2012 to provide strategic advice on emerging scientific, ethical and legal issues in relation to data access for cohort and longitudinal studies. The report is based on work undertaken by the EAGDA secretariat at the Group’s request. The contributions of David Carr, Natalie Banner, Grace Gottlieb, Joanna Scott and Katherine Littler at the Wellcome Trust are gratefully acknowledged. EAGDA would also like to thank the representatives of the MRC, ESRC and Cancer Research UK for their support and input throughout the project. Most importantly, EAGDA owes a considerable debt of gratitude to the many individuals from the research community who contributed to this study through feeding in their expert views via surveys, interviews and focus groups. The Expert Advisory Group on Data Access Martin Bobrow (Chair) Bartha Maria Knoppers James Banks Mark McCarthy Paul Burton Andrew Morris George Davey Smith Onora O'Neill Rosalind Eeles Nigel Shadbolt Paul Flicek Chris Skinner Mark Guyer Melanie Wright Tim Hubbard 1 EXECUTIVE SUMMARY This project was developed as a key component of the workplan of the Expert Advisory Group on Data Access (EAGDA). EAGDA wished to understand the factors that help and hinder individual researchers in making their data (both published and unpublished) available to other researchers, and to examine the potential need for new types of incentives to enable data access and sharing. -
The Bioperl Toolkit: Perl Modules for the Life Sciences
Downloaded from genome.cshlp.org on January 25, 2012 - Published by Cold Spring Harbor Laboratory Press The Bioperl Toolkit: Perl Modules for the Life Sciences Jason E. Stajich, David Block, Kris Boulez, et al. Genome Res. 2002 12: 1611-1618 Access the most recent version at doi:10.1101/gr.361602 Supplemental http://genome.cshlp.org/content/suppl/2002/10/20/12.10.1611.DC1.html Material References This article cites 14 articles, 9 of which can be accessed free at: http://genome.cshlp.org/content/12/10/1611.full.html#ref-list-1 Article cited in: http://genome.cshlp.org/content/12/10/1611.full.html#related-urls Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article or click here To subscribe to Genome Research go to: http://genome.cshlp.org/subscriptions Cold Spring Harbor Laboratory Press Downloaded from genome.cshlp.org on January 25, 2012 - Published by Cold Spring Harbor Laboratory Press Resource The Bioperl Toolkit: Perl Modules for the Life Sciences Jason E. Stajich,1,18,19 David Block,2,18 Kris Boulez,3 Steven E. Brenner,4 Stephen A. Chervitz,5 Chris Dagdigian,6 Georg Fuellen,7 James G.R. Gilbert,8 Ian Korf,9 Hilmar Lapp,10 Heikki Lehva¨slaiho,11 Chad Matsalla,12 Chris J. Mungall,13 Brian I. Osborne,14 Matthew R. Pocock,8 Peter Schattner,15 Martin Senger,11 Lincoln D. Stein,16 Elia Stupka,17 Mark D. Wilkinson,2 and Ewan Birney11 1University Program in Genetics, Duke University, Durham, North Carolina 27710, USA; 2National Research Council of -
Downloaded Were Considered to Be True Positive While Those from the from UCSC Databases on 14Th September 2011 [70,71]
Basu et al. BMC Bioinformatics 2013, 14(Suppl 7):S14 http://www.biomedcentral.com/1471-2105/14/S7/S14 RESEARCH Open Access Examples of sequence conservation analyses capture a subset of mouse long non-coding RNAs sharing homology with fish conserved genomic elements Swaraj Basu1, Ferenc Müller2, Remo Sanges1* From Ninth Annual Meeting of the Italian Society of Bioinformatics (BITS) Catania, Sicily. 2-4 May 2012 Abstract Background: Long non-coding RNAs (lncRNA) are a major class of non-coding RNAs. They are involved in diverse intra-cellular mechanisms like molecular scaffolding, splicing and DNA methylation. Through these mechanisms they are reported to play a role in cellular differentiation and development. They show an enriched expression in the brain where they are implicated in maintaining cellular identity, homeostasis, stress responses and plasticity. Low sequence conservation and lack of functional annotations make it difficult to identify homologs of mammalian lncRNAs in other vertebrates. A computational evaluation of the lncRNAs through systematic conservation analyses of both sequences as well as their genomic architecture is required. Results: Our results show that a subset of mouse candidate lncRNAs could be distinguished from random sequences based on their alignment with zebrafish phastCons elements. Using ROC analyses we were able to define a measure to select significantly conserved lncRNAs. Indeed, starting from ~2,800 mouse lncRNAs we could predict that between 4 and 11% present conserved sequence fragments in fish genomes. Gene ontology (GO) enrichment analyses of protein coding genes, proximal to the region of conservation, in both organisms highlighted similar GO classes like regulation of transcription and central nervous system development. -
Biological Sequence Analysis Probabilistic Models of Proteins and Nucleic Acids
This page intentionally left blank Biological sequence analysis Probabilistic models of proteins and nucleic acids The face of biology has been changed by the emergence of modern molecular genetics. Among the most exciting advances are large-scale DNA sequencing efforts such as the Human Genome Project which are producing an immense amount of data. The need to understand the data is becoming ever more pressing. Demands for sophisticated analyses of biological sequences are driving forward the newly-created and explosively expanding research area of computational molecular biology, or bioinformatics. Many of the most powerful sequence analysis methods are now based on principles of probabilistic modelling. Examples of such methods include the use of probabilistically derived score matrices to determine the significance of sequence alignments, the use of hidden Markov models as the basis for profile searches to identify distant members of sequence families, and the inference of phylogenetic trees using maximum likelihood approaches. This book provides the first unified, up-to-date, and tutorial-level overview of sequence analysis methods, with particular emphasis on probabilistic modelling. Pairwise alignment, hidden Markov models, multiple alignment, profile searches, RNA secondary structure analysis, and phylogenetic inference are treated at length. Written by an interdisciplinary team of authors, the book is accessible to molecular biologists, computer scientists and mathematicians with no formal knowledge of each others’ fields. It presents the state-of-the-art in this important, new and rapidly developing discipline. Richard Durbin is Head of the Informatics Division at the Sanger Centre in Cambridge, England. Sean Eddy is Assistant Professor at Washington University’s School of Medicine and also one of the Principle Investigators at the Washington University Genome Sequencing Center. -
Research Computing Facility an Update from Dr
Research Computing Facility An Update from Dr. Francesca Dominici June 20, 2013 Dear all, We are very excited to provide you some important updates regarding the research computing facility at the Faculty of Arts and Science (FASRC) http://rc.fas.harvard.edu. Please note that we are phasing out the HSPH cluster, and if you are currently leasing nodes on the HSPH cluster we will be working with you to migrate to FASRC. We have developed a FAQ document, which is available at the web link https://rc.fas.harvard.edu/hsph-at-fas-rc-frequently- asked-questions/ and also included in this message. Updates: 1. 158 HSPH accounts have been opened on FASRC, enabling users to run computing jobs on the FAS High Performance Computing Cluster (HPCC), also known as Odyssey 2. Several HSPH faculty have worked with the FASRC team to purchase data storage equipment and hardware that have been deployed at FASRC in Cambridge and linked to Odyssey via a secured network 3. FASRC has developed personalized solutions for our faculty to transfer secure data from HSPH to FAS in accordance with data user agreements. 4. FASRC has been mentioned as a key strength in training and research grant applications from HSPH, and high impact papers have been published that previously were delayed for lack of computing power 5. Please bookmark the web site http://rc.fas.harvard.edu/hsph- overview/ for additional and up to date information To access FASRC you will be charged approximately $3000 per year per account. Access for PhD and ScD students is free.