High-Throughput Functional Analysis of Lncrna Core Promoters Elucidates Rules Governing Tissue-Specificity
Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue-specificity Kaia Mattioli1,2, Pieter-Jan Volders1,3,4, Chiara Gerhardinger1,5, James C. Lee1,6, Philipp G. Maass1,7,8, Marta Melé*,†,1,5,9, John L. Rinn*,†,1,5,10,11 * these authors contributed equally to this work † corresponding author 1Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA 2Department of Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA 3Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium 4VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium 5Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA 6Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK 7Genetics and Genome Biology Program, Sickkids Research Institute, Toronto ON, M5G 0A4, Canada 8Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada 9Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, 08034, Spain 10Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA 11Department of Biochemistry, University of Colorado, BioFrontiers Institute, Boulder, CO, 80301, USA Abstract Transcription initiates at both coding and non-coding genomic elements, including mRNA and long non-coding RNA (lncRNA) core promoters and enhancer RNAs (eRNAs). However, each class has different expression profiles with lncRNAs and eRNAs being the most tissue-specific. How these complex differences in expression profiles and tissue-specificities are encoded in a single DNA sequence remains unresolved.
[Show full text]