Cyclin H Binding to the RAR Activation Function

Total Page:16

File Type:pdf, Size:1020Kb

Cyclin H Binding to the RAR Activation Function Cyclin H binding to the RAR␣ activation function (AF)-2 domain directs phosphorylation of the AF-1 domain by cyclin-dependent kinase 7 Gae´ tan Bour*†, Emilie Gaillard*†, Nathalie Bruck*, Se´ bastien Laleve´ e*, Jean-Luc Plassat*, Didier Busso‡, Jean-Pierre Samama‡, and Ce´ cile Rochette-Egly*§ *De´partement de Biologie Cellulaire et de Transduction du Signal and ‡De´partement de Biologie et Ge´nomique Structurales, Institut de Ge´ne´ tique et de Biologie Mole´culaire et Cellulaire, Centre National de la Recherche Scientifique͞Institut National de la Sante´et de la Recherche Me´dicale͞Universite´Louis Pasteur, UMR 7104, BP 10142, 67404 Illkirch Cedex, France Edited by Joan Massague, Memorial Sloan–Kettering Cancer Center, New York, NY, and approved October 3, 2005 (received for review July 1, 2005) The transcriptional activity of nuclear retinoic acid receptors altering the architecture of TFIIH results into a drop in the ability (RARs), which act as RAR͞retinoid X receptor (RXR) heterodimers, of RAR␣ to be phosphorylated by TFIIH and to activate tran- depends on two activation functions, AF-1 and AF-2, which are scription. targets for phosphorylations and synergize for the activation of The serine residues located in the N-terminal AF-1 domain of retinoic acid target genes. The N-terminal AF-1 domain of RAR␣ is RARs belong to a proline-rich motif (Fig. 1A) and could, in phosphorylated at S77 by the cyclin-dependent kinase (cdk)-acti- principle, be phosphorylated by all proline-dependent serine͞ vating kinase (CAK) subcomplex (cdk7͞cyclin H͞MAT1) of the threonine kinases, including cdks and mitogen-activated protein general transcription factor TFIIH. Here, we show that phosphor- kinases. The current thought is that specificity for the appropriate ylation of S77 governing the transcriptional activity of RAR␣ kinase arises from the presence of a docking site on the protein depends on cyclin H binding at a RAR␣ region that encompasses substrate. Our observation that RAR phosphorylation by cdk7 loop 8–9 and the N-terminal tip of helix 9 of the AF-2 domain. We results from an interaction between the receptor and TFIIH (8, 9) propose a model in which the structural constraints of this region raised the hypothesis that phosphorylation of the AF-1 domain of control the architecture of the RAR͞RXR͞TFIIH complex and there- RARs might require molecular recognition by another TFIIH fore the efficiency of RAR␣ phosphorylation by cdk7. To our subunit. Concomitantly, cyclins have been shown to contribute in knowledge, this study provides the first example of a cooperation both the catalytic activity of cdks and interactions with the substrate between the AF-2 and AF-1 domains of RARs through a kinase at docking sites distinct from the phosphorylation site, thereby complex. directing the kinase to phosphorylate specific residues (12, 13). Here, we provide evidence that cdk7 recruits RAR␣ through ͉ retinoic acid receptor transcription cyclin H binding to a specific region within the AF-2 domain corresponding to loop 8–9 and the N-terminal tip of helix 9 of the etinoic acid (RA) regulates the expression of specific networks LBD. Cyclin H binding controls the efficiency of AF-1 domain Rof genes through two families of nuclear receptors, the RA phosphorylation by cdk7, providing evidence for cooperation be- receptors (RARs) (␣, ␤, and ␥) and the retinoid X receptors tween the AF-2 and AF-1 domains through interaction with, and (RXRs) (␣, ␤, and ␥), which act as ligand-dependent heterodimeric phosphorylation by, a cdk͞cyclin complex. Our results suggest the RAR͞RXR transcription activators (1, 2). The transcriptional route for the formation of the RAR͞RXR͞TFIIH complex, lead- activity of RARs depends on activation function (AF) 1 and AF-2, ing to the phosphorylation of the AF-1 domain of RAR␣ and the which synergize for the activation of RA target genes. The C- transcriptional activity of the nuclear receptor. terminal AF-2 domain encompasses the ligand-binding domain (LBD), consisting of 11 ␣-helices (H1 and H3-H12) forming a Materials and Methods compact structure (3, 4). Ligand binding promotes complex allo- Plasmids and Reagents. The pSG5-based expression vectors for steric effects and conformational changes, the most striking one human (h) RAR␣1WT, hRAR␥1WT, and hRAR␥1S79A and being the swing of helix 12 (5, 6), which leads to dissociation of mouse (m) RXR␣ were previously described, as well as the corepressor complexes. It also generates an interaction surface for hRAR␤2-Luc and DR1-tk-CAT reporter genes (9, 14, 15). Vectors coactivators, which then recruit a battery of intermediary proteins, for hRAR␣S77A, S77E, P345G͞D346A, and L342T were con- including chromatin remodellers and modifiers. They act in a structed by double PCR amplification. The pXJ41-based expression ͞ coordinated and or combinatorial manner to decompact chroma- vectors for cyclin H and MAT1 were as described in ref. 8. tin and direct the RNA polymerase II and the general transcription Baculovirus expressing hRAR␣1WT as a flag fusion protein was factors to the promoter (7), leading to the activation of the RA constructed in the pSK278 vector (BD Biosciences). Baculoviruses responsive genes. expressing cdk7, MAT1, and His-tagged cyclin H were as described In the last several years, researchers have witnessed additional in refs. 16 and 17. The prokaryotic vectors encoding hRXR␣ and layers of regulation of transcription by RARs through their N- hRAR␣1 [WT, DEF (amino acids 153–462), DE (amino acids terminal AF-1 domain, which is targeted by phosphorylation pro- cesses. Indeed, the RAR␣1 and RAR␥1 isotypes are phosphory- lated in their AF-1 domain at S77 and S79, respectively (Fig. 1A), Conflict of interest statement: No conflicts declared. by the cyclin-dependent kinase (cdk)-activating kinase (CAK) This paper was submitted directly (Track II) to the PNAS office. complex of the general transcription factor TFIIH (8, 9). TFIIH Abbreviations: cdk, cyclin-dependent kinase; CAK, cdk-activating kinase; AF, activation consists of 10 subunits (10) assembled into two subcomplexes: the function; RA, retinoic acid; RAR, RA receptor; RXR, retinoid X receptor; LBD, ligand-binding core complex and CAK (composed of the cdk7, cyclin H, and domain; siRNA, short interfering RNA; CAT, chloramphenicol acetyltransferase; SP, syn- MAT1 subunits). The key role of this phosphorylation process in thetic peptide. the RA response has been highlighted by studies performed with †G.B. and E.G. contributed equally to this work. patients carrying a mutation in one subunit [XPD (xeroderma §To whom correspondence should be addressed. E-mail: [email protected]. pigmentosum group D)] of the core of TFIIH (11). This mutation © 2005 by The National Academy of Sciences of the USA 16608–16613 ͉ PNAS ͉ November 15, 2005 ͉ vol. 102 ͉ no. 46 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0505556102 Downloaded by guest on September 23, 2021 Cell Lines, Transfections, Reporter Assays and in Vivo Phosphorylation. HeLa cells were grown as described in ref. 11. COS-1 cells were grown and transiently transfected in six-well plates by using DM- RIE-C reagent (Invitrogen) as in ref. 19. Whole-cell extracts were prepared, resolved by 10% SDS͞PAGE, electrotransferred to nitrocellulose membranes, and immunoprobed as described in ref. 19. Chloramphenicol acetyltransferase (CAT) assays were per- formed by using the ELISA method (19). Luciferase activities were determined according to standard procedures. The results were normalized to the CAT or luciferase activities in the absence of receptor and in the presence of ligand. For in vivo phosphorylation, transfected COS-1 cells were labeled with [32P]orthophosphate and processed as described in ref. 8. Overexpression of Recombinant CAK Subunits and Purification of Binary and Ternary Complexes. Insect Sf9 cells were infected with baculoviruses expressing cdk7, His-cyclin H, MAT1, or FLAG- RAR␣, either alone or in combination, and extracts were prepared as described in refs. 16 and 17. Cyclin H was purified from the crude Sf9 extracts by metal chelate affinity chromatography (16, 17). cdk7 and MAT1 were purified by affinity chromatography with the corresponding antibodies cross-linked to protein A Sepharose (16). cdk7͞cyclin H binary and cdk7͞cyclin H͞MAT1 ternary complexes were purified essentially as described in ref. 20 by metal chelate affinity chromatography (Talon, BD Biosciences) followed by Mono S ion exchange chromatography. Then, purification was completed by a second ion exchange chromatography (Mono Q), and the histidine tag fused to cyclin H was removed with thrombin BIOCHEMISTRY (Sigma). Finally, after addition of 5 mM Pefabloc (Roche Applied Science, Indianapolis), complexes were polished by gel filtration on an S200 column. Fractions containing the recombinant complexes were pooled and concentrated on Filtron 50 (Pall Filtron, North- Fig. 1. RARs interact with cyclin H. (A) Schematic representation of the borough, MA). The purity of the individual subunits and of the functional domains and the major phosphorylation sites of RAR␣1 and RAR␥1. binary and ternary complexes were analyzed by SDS͞PAGE, (B) GST, GST-RAR␣, and GST-RAR␥ proteins immobilized on glutathione- followed by Coomassie blue staining and immunoblotting. Sepharose beads were incubated with recombinant cdk7 (lanes 1–4) or cdk7͞ cyclin H binary complex (lanes 5–8) purified from Sf9 extracts (see Materials In Vitro Binding and Phosphorylation Assays. Equimolar amounts of and Methods). Bound cdk7 and cyclin H were analyzed by immunoblotting. GST and GST fusion proteins expressed in Escherichia coli were Lanes 1 and 5 correspond to 5% of the loaded material. (C) Immobilized purified onto gluthatione-Sepharose beads (Amersham Pharmacia GST-RXR␣, -RAR␣, and -RAR␥ proteins were incubated with recombinant Biosciences) and incubated with recombinant cyclin H, cdk7, cyclin H (free of cdk7, lanes 1–5) or cdk7 (free of cyclin H, lanes 6–10) purified ͞ from Sf9 extracts. Bound cdk7 or cyclin H were analyzed as in B.(D) Extracts MAT1, or the purified cdk7 cyclin H and CAK complexes in the Ϫ7 from Sf9 cells coinfected with baculoviruses encoding cyclin H and FLAG- presence or absence of RA (10 M) as described in ref.
Recommended publications
  • The Cryoelectron Microscopy Structure of the Human CDK-Activating Kinase
    The cryoelectron microscopy structure of the human CDK-activating kinase Basil J. Grebera,b,1,2, Juan M. Perez-Bertoldic, Kif Limd, Anthony T. Iavaronee, Daniel B. Tosoa, and Eva Nogalesa,b,d,f,2 aCalifornia Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720; bMolecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; cBiophysics Graduate Group, University of California, Berkeley, CA 94720; dDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; eQB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, CA 94720; and fHoward Hughes Medical Institute, University of California, Berkeley, CA 94720 Edited by Seth A. Darst, Rockefeller University, New York, NY, and approved August 4, 2020 (received for review May 14, 2020) The human CDK-activating kinase (CAK), a complex composed of phosphoryl transfer (11). However, in addition to cyclin binding, cyclin-dependent kinase (CDK) 7, cyclin H, and MAT1, is a critical full activation of cell cycle CDKs requires phosphorylation of the regulator of transcription initiation and the cell cycle. It acts by T-loop (9, 12). In animal cells, these activating phosphorylations phosphorylating the C-terminal heptapeptide repeat domain of are carried out by CDK7 (13, 14), itself a cyclin-dependent ki- the RNA polymerase II (Pol II) subunit RPB1, which is an important nase whose activity depends on cyclin H (14). regulatory event in transcription initiation by Pol II, and it phos- In human and other metazoan cells, regulation of transcription phorylates the regulatory T-loop of CDKs that control cell cycle initiation by phosphorylation of the Pol II-CTD and phosphor- progression.
    [Show full text]
  • Gene Expression Profile of THZ1-Treated Nasopharyngeal Carcinoma Cell Lines Indicates Its Involvement in the Inhibition of the Cell Cycle
    460 Original Article Gene expression profile of THZ1-treated nasopharyngeal carcinoma cell lines indicates its involvement in the inhibition of the cell cycle Lijuan Gao1,2,3#, Shuang Xia4#, Kunyi Zhang1,2,3#, Chengguang Lin1,2,3, Xuyu He4, Ying Zhang4 1Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China; 2State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China; 3Department of Radiation Oncology, Cancer Center, Sun Yat-sen University, Guangzhou, China; 4Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China Contributions: (I) Conception and design: L Gao, S Xia, K Zhang; (II) Administrative support: X He, Y Zhang; (III) Provision of study materials or patients: L Gao, S Xia, K Zhang; (IV) Collection and assembly of data: C Lin; (V) Data analysis and interpretation: C Lin, X He, Y Zhang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #The authors contributed equally to this work. Correspondence to: Xuyu He; Ying Zhang. Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd road, Guangzhou 510080, China. Email: [email protected]; [email protected]. Background: The aim of this study was to identify downstream target genes and pathways regulated by THZ1 in nasopharyngeal carcinoma (NPC). Methods: The gene expression profile of GSE95750 in two NPC cell lines, untreated group and treated with THZ1 group, was analyzed.
    [Show full text]
  • Cytotoxic Effects and Changes in Gene Expression Profile
    Toxicology in Vitro 34 (2016) 309–320 Contents lists available at ScienceDirect Toxicology in Vitro journal homepage: www.elsevier.com/locate/toxinvit Fusarium mycotoxin enniatin B: Cytotoxic effects and changes in gene expression profile Martina Jonsson a,⁎,MarikaJestoib, Minna Anthoni a, Annikki Welling a, Iida Loivamaa a, Ville Hallikainen c, Matti Kankainen d, Erik Lysøe e, Pertti Koivisto a, Kimmo Peltonen a,f a Chemistry and Toxicology Research Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, Finland b Product Safety Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, c The Finnish Forest Research Institute, Rovaniemi Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland d Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, FI-00014, Finland e Plant Health and Biotechnology, Norwegian Institute of Bioeconomy, Høyskoleveien 7, NO -1430 Ås, Norway f Finnish Safety and Chemicals Agency (Tukes), Opastinsilta 12 B, FI-00521 Helsinki, Finland article info abstract Article history: The mycotoxin enniatin B, a cyclic hexadepsipeptide produced by the plant pathogen Fusarium,isprevalentin Received 3 December 2015 grains and grain-based products in different geographical areas. Although enniatins have not been associated Received in revised form 5 April 2016 with toxic outbreaks, they have caused toxicity in vitro in several cell lines. In this study, the cytotoxic effects Accepted 28 April 2016 of enniatin B were assessed in relation to cellular energy metabolism, cell proliferation, and the induction of ap- Available online 6 May 2016 optosis in Balb 3T3 and HepG2 cells. The mechanism of toxicity was examined by means of whole genome ex- fi Keywords: pression pro ling of exposed rat primary hepatocytes.
    [Show full text]
  • Cell Cycle–Regulated Phosphorylation of P220 by Cyclin E/Cdk2 in Cajal Bodies Promotes Histone Gene Transcription
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Cell cycle–regulated phosphorylation of p220NPAT by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription Tianlin Ma,1,8 Brian A. Van Tine,4,5,8 Yue Wei,2 Michelle D. Garrett,6 David Nelson,7 Peter D. Adams,7 Jin Wang,1,3 Jun Qin,1,3 Louise T. Chow,4 and J. Wade Harper1,2,9 1Department of Biochemistry and Molecular Biology, 2Department of Molecular Physiology and Biophysics, 3Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA; 4Department of Biochemistry and Molecular Genetics, 5Department of Pathology, University of Alabama, Birmingham, Alabama 35294, USA; 6CRC Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, SM2 5NG, United Kingdom; 7Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA Cyclin E/Cdk2 acts at the G1/S-phase transition to promote the E2F transcriptional program and the initiation of DNA synthesis. To explore further how cyclin E/Cdk2 controls S-phase events, we examined the subcellular localization of the cyclin E/Cdk2 interacting protein p220NPAT and its regulation by phosphorylation. p220 is localized to discrete nuclear foci. Diploid fibroblasts in Go and G1 contain two p220 foci, whereas S- and G2-phase cells contain primarily four p220 foci. Cells in metaphase and telophase have no detectable focus. p220 foci contain cyclin E and are coincident with Cajal bodies (CBs), subnuclear organelles that associate with histone gene clusters on chromosomes 1 and 6. Interestingly, p220 foci associate with chromosome 6 throughout the cell cycle and with chromosome 1 during S phase.
    [Show full text]
  • Pharmacodynamic Effects of Seliciclib, an Orally Administered
    Cancer Therapy: Clinical Pharmacodynamic Effects of Seliciclib, an Orally Administered Cell Cycle Modulator, in Undifferentiated Nasopharyngeal Cancer Wen-Son Hsieh,4 Ross Soo,1Bee-Keow Peh,2 Thomas Loh,4 Difeng Dong,3 Donny Soh,5 Lim-SoonWong,3,5 Simon Green,6 Judy Chiao,6 Chun-Ying Cui,1Yo k e -F o n g L a i , 4 Soo-Chin Lee,1Benjamin Mow,1 Richie Soong,2 Manuel Salto-Tellez,2 and Boon-Cher Goh1, 2 Abstract Purpose: Cell cycle dysregulation resulting in expression of antiapoptotic genes and uncontrolled proliferation is a feature of undifferentiated nasopharyngeal carcinoma. The pharmacodynamic effects of seliciclib, a cyclin-dependent kinase (CDK) inhibitor, were studied in patients with nasopharyngeal carcinoma. Experimental Design: Patients with treatment-naI«ve locally advanced nasopharyngeal carci- noma received seliciclib at 800 mg or 400 mg twice daily on days1 to 3 and 8 to12.Paired tumor samples obtained at baseline and on day 13 were assessed by light microscopy, immunohisto- chemistry, and transcriptionalprofiling using real-time PCR low-density array consisting of apanel of 380 genes related to cell cycle inhibition, apoptosis, signal transduction, and cell proliferation. Results: At 800 mg bd, one patient experienced grade 3 liver toxicity and another had grade 2 vomiting; no significant toxicities were experienced in 13 patients treated at 400 mg bd. Seven of fourteen evaluable patients had clinical evidence of tumor reduction. Some of these responses were associated with increased tumor apoptosis, necrosis, and decreases in plasma EBV DNA posttreatment. Reduced protein expression of Mcl-1, cyclin D1, phosphorylated retinoblastoma protein pRB (T821), and significant transcriptional down-regulation of genes related to cellular proliferation and survival were shown in some patients posttreatment, indicative of cell cycle modulation by seliciclib, more specifically inhibition of cdk2/cyclin E, cdk7/cyclin H, and cdk9/cyclinT.
    [Show full text]
  • Expression and Subcellular Localization of Cyclin H in Bombyx Mori
    Life Science Journal 2013;10(3) http://www.lifesciencesite.com Expression and subcellular localization of cyclin H in Bombyx mori Zhang Haihua, Jiang Yan, Chen Chen, Zhang Hanming,Yu Wei, Zhang Yaozhou, Tong Fudan* Biochemistry Institute of Zhejiang Sci-tech University, Hangzhou, Zhejiang 310018, China [email protected] Abstract:Cyclin H is normally associated with cyclin-dependent kinase 7 (Cdk7). However, cyclin H is also a substrate of protein kinase 2, a ubiquitously expressed serine/threonine protein kinase required for cell viability and cell-cycle progression. Studies of cyclin H have focused mainly on vertebrates, and little is known about its expression in the silkworm Bombyx mori. In the present study, the cDNA sequence of cyclin H, which encodes a protein of 250 amino acid residues, was identified in a silkworm pupa cDNA library constructed in our laboratory (GenBank No. AV406047). The open reading frame was 753-bp long and encodes a protein (BmCyc H) with a conserved domain Ccl 1 motif. Recombinant BmCyc H was expressed in Escherichia coli BL21(DE3), purified, and used to prepare polyclonal antibodies. Western blotting revealed that the protein was expressed in various tissues in fifth instar larvae, and also in each differentiated growth stage of B. mori, with the highest expression in the pupa and spiracle of the fifth instar larvae. The lowest levels were detected in eggs, ovaries, and heart in fifth instar larvae. The results of real-time quantitative polymerase chain reaction revealed that BmCyc H mRNA was widespread in different tissues and growth stages of B. mori, with the highest expression levels in the moth and pupa and in the spiracles, fatty body, and heart of the fifth instar larvae, with the lowest levels in eggs, and in Malpighian tubules, ovaries, epidermis, gut, and silk gland in fifth instar larvae.
    [Show full text]
  • Molecular Mechanism of Nucleotide Excision Repair
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Molecular mechanism of nucleotide excision repair Wouter L. de Laat, Nicolaas G.J. Jaspers, and Jan H.J. Hoeijmakers1 Medical Genetic Center, Department of Cell Biology and Genetics, Erasmus University, 3000 DR Rotterdam, The Netherlands From its very beginning, life has faced the fundamental Two modes of NER can be distinguished: repair of le- problem that the form in which genetic information is sions over the entire genome, referred to as global ge- stored is not chemically inert. DNA integrity is chal- nome NER (GG–NER), and repair of transcription-block- lenged by the damaging effect of numerous chemical and ing lesions present in transcribed DNA strands, hence physical agents, compromizing its function. To protect called transcription-coupled NER (TC–NER). Most XP this Achilles heel, an intricate network of DNA repair groups harbor defects in a common component of both systems has evolved early in evolution. One of these is NER subpathways. GG–NER is dependent on the activ- nucleotide excision repair (NER), a highly versatile and ity of all factors mentioned above, including the GG– sophisticated DNA damage removal pathway that coun- NER-specific complex XPC–hHR23B. The rate of repair teracts the deleterious effects of a multitude of DNA for GG–NER strongly depends on the type of lesion. For lesions, including major types of damage induced by en- instance, 6-4PPs are removed much faster from the ge- vironmental sources. The most relevant lesions subject nome than CPDs, probably because of differences in af- to NER are cyclobutane pyrimidine dimers (CPDs) and finity of the damage sensor XPC–hHR23B.
    [Show full text]
  • CDK8-Novel Therapeutic Opportunities
    pharmaceuticals Review CDK8-Novel Therapeutic Opportunities Ingeborg Menzl, Agnieszka Witalisz-Siepracka and Veronika Sexl * Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria; [email protected] (I.M.); [email protected] (A.W.-S.) * Correspondence: [email protected]; Tel.: +43-1-25077-2910 Received: 10 May 2019; Accepted: 17 June 2019; Published: 19 June 2019 Abstract: Improvements in cancer therapy frequently stem from the development of new small-molecule inhibitors, paralleled by the identification of biomarkers that can predict the treatment response. Recent evidence supports the idea that cyclin-dependent kinase 8 (CDK8) may represent a potential drug target for breast and prostate cancer, although no CDK8 inhibitors have entered the clinics. As the available inhibitors have been recently reviewed, we focus on the biological functions of CDK8 and provide an overview of the complexity of CDK8-dependent signaling throughout evolution and CDK8-dependent effects that may open novel treatment avenues. Keywords: CDK8; mediator complex; cancer 1. Introduction Cyclin-dependent kinases (CDKs) represent a protein family with a serine/threonine catalytic core that is controlled by the binding of regulatory subunits. As the activating partners are tightly controlled by cell cycle-dependent synthesis and degradation, they are known as cyclins. The first CDK, CDK1, was discovered in 1986 in Schizosaccharomyces pombe and Saccharomyces cerevisiae by the analysis of mutants with a defect in the cell cycle [1]. The cyclin-dependent kinase family rapidly grew, with newly identified members initially named on the basis of the amino acid sequence in their conserved domains.
    [Show full text]
  • Original Article Bioinformatic Analysis of the Role of MNAT1 in the Progression of Lung Cancer and Its Correlation with the Prognosis of Patients
    Int J Clin Exp Med 2019;12(7):8098-8106 www.ijcem.com /ISSN:1940-5901/IJCEM0090087 Original Article Bioinformatic analysis of the role of MNAT1 in the progression of lung cancer and its correlation with the prognosis of patients Lifei Wang1, Furong Tan1, Yali Qiu1, Gang Chen2 1Department of Respiration, The Third Hospital of Changzhou, Changzhou, China; 2Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhaung, China Received December 18, 2018; Accepted April 9, 2019; Epub July 15, 2019; Published July 30, 2019 Abstract: Objective: The objective of the present study was to analyse the effects of MNAT1 on the progression of lung cancer and its role in predicting the prognosis of patients with lung cancer. Methods: Gene expression array data of lung cancer patients and non-lung cancer patients was downloaded from a public database (GEO) for bio- informatics analysis. DAVID and STRING databases were used to screen differentially expressed genes, which were then subjected to GO enrichment analysis, signal pathway analysis and protein interaction analysis. In addition, the clinical data of the lung cancer patients was obtained from the Oncomine database and used to analyse the effect of MNAT1 expression levels on overall survival. Results: A total of 178 differentially expressed genes were obtained from the matrix database, among which 14 genes were expressed at a high level, including MNAT1, and 164 were expressed at a low level. GO enrichment analysis showed that the differentially expressed genes were mainly locat- ed in the nucleus and cytoplasm and were involved in cell cycle regulation and DNA repair.
    [Show full text]
  • University of Dundee Expression of CDK7, Cyclin H and MAT1 Is Elevated in Breast Cancer and Is Prognostic in Estrogen Receptor
    University of Dundee Expression of CDK7, cyclin H and MAT1 is elevated in breast cancer and is prognostic in estrogen receptor- positive breast cancer Patel, Hetal; Abduljabbar, Rezvan; Lai, Chun Fui; Periyasamy, Manikandan; Harrod, Alison; Gemma, Carolina Published in: Clinical Cancer Research DOI: 10.1158/1078-0432.CCR-15-1104 Publication date: 2016 Document Version Peer reviewed version Link to publication in Discovery Research Portal Citation for published version (APA): Patel, H., Abduljabbar, R., Lai, C. F., Periyasamy, M., Harrod, A., Gemma, C., Steel, J., Patel, N., Busonero, C., Jerjees, D., Remenyi, J., Smith, S., Gomm, J. J., Magnani, L., Gyorffy, B., Jones, J. L., Fuller-Pace, F. V., Shousha, S., Buluwela, L., ... Ali, S. (2016). Expression of CDK7, cyclin H and MAT1 is elevated in breast cancer and is prognostic in estrogen receptor- positive breast cancer. Clinical Cancer Research, 22(23), 5929- 5938. https://doi.org/10.1158/1078-0432.CCR-15-1104 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Transcriptional Blackjack with P21
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Transcriptional blackjack with p21 Adam Wood1 and Ali Shilatifard1,2,3 1Department of Biochemistry and 2Saint Louis University Cancer Center, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA Transcriptional regulation by RNA polymerase II (RNA inhibitor doxorubicin induces double-stranded DNA Pol II) is an amalgamated process requiring the collective breaks and is also a potent stimulator of p53 activity action of a large number of transcription factors to en- (Ravizza et al. 2004). The results presented by Gomes et sure proper synthesis of messenger RNA (mRNA). Sev- al. (2006) in the previous issue of Genes & Development eral RNA Pol II elongation factors and proper phosphory- give new insight into the complicated mechanisms cells lation of the C-terminal domain (CTD) of the RPB1 sub- use to respond to various stresses, and strongly suggest unit of Pol II have been shown to be essential for the existence of highly specialized cellular responses transcription when RNA Pol II enters its processive elon- that are specific for each type of stress-inducing factor. gation stage. In a study reported in the previous issue of Genes & Development, Emerson and colleagues (Gomes p21 transcriptional activation is mediated by p53 in et al. 2006) demonstrated an exception to this rule. Tran- response to DNA damage scription of p21, a target gene within the p53 pathway, Cells change their transcriptional profile as they respond bypasses the requirements for RNA Pol II elongation fac- to cellular stress.
    [Show full text]
  • Cyclin-Dependent Kinases 7 and 9 Specifically Regulate Neutrophil
    Cell Death and Differentiation (2012) 19, 1950–1961 & 2012 Macmillan Publishers Limited All rights reserved 1350-9047/12 www.nature.com/cdd Cyclin-dependent kinases 7 and 9 specifically regulate neutrophil transcription and their inhibition drives apoptosis to promote resolution of inflammation AE Leitch1, CD Lucas1, JA Marwick1, R Duffin1, C Haslett1 and AG Rossi*,1 Terminally differentiated neutrophils are short-lived but the key effector cells of the innate immune response, and have a prominent role in the pathogenesis and propagation of many inflammatory diseases. Delayed apoptosis, which is responsible for their extended longevity, is critically dependent on a balance of intracellular survival versus pro-apoptotic proteins. Here, we elucidate the mechanism by which the cyclin-dependent kinase (CDK) inhibitor drugs such as R-roscovitine and DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole) mediate neutrophil apoptosis. We demonstrate (by a combination of microarray, confocal microscopy, apoptosis assays and western blotting) that the phosphorylation of RNA polymerase II by CDKs 7 and 9 is inhibited by R-roscovitine and that specific effects on neutrophil transcriptional capacity are responsible for neutrophil apoptosis. Finally, we show that specific CDK7 and 9 inhibition with DRB drives resolution of neutrophil-dominant inflammation. Thus, we highlight a novel mechanism that controls both primary human neutrophil transcription and apoptosis that could be targeted by selective CDK inhibitor drugs to resolve established inflammation.
    [Show full text]