Flying Machines of the Future
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Greetings Members and Friends of EAA Chapter 866
Dunn Airpark approx.. 1 mile west Landing This is Chain of Lakes Park behind Parrish Hospital. Dunn Airpark flyers take note, one of ours used this to land on NO damage done to plane or anything on the ground! Commendable! Greetings Members and Friends of EAA Chapter 866, Les Boatright Happy Early Independence Day!! I hope you all have a Happy, Safe, and Fun-Filled Fourth of July! With all the long hours of daylight, this is a great time of year to do some aviating, just make sure you steer clear of the “Bombs Bursting in Air” and other Independence Day Holiday Hazards. But most of all, don’t forget that we’ll be serving up some Firecracker Hot Flap-Jacks on the morning Saturday July 1st. I hope to see you all there! PANTHER UPDATE As most of you know, since the beginning of the year I’ve been working with two other chapter members, your V.P. Ed Brennan, and also Bob Rychel to build a Panther Light Sport Aircraft. One of the great things about building this airplane is the fact that it gives me something else to write about in the monthly chapter newsletter. That reminds me . You other builders out there who have some amazing projects underway, we’d love to read something about your projects too. Tell us how they’re coming along, and send a few pictures. I know there are at least a dozen active builder projects in our chapter right now with at least 3 that are close to being finished. -
The Space Elevator Development Program
55th International Astronautical Congress 2004 - Vancouver, Canada IAC-04-IAA.3.8.2.01 THE SPACE ELEVATOR DEVELOPMENT PROGRAM Bradley C. Edwards Carbon Designs, Inc., United States [email protected] ABSTRACT For 40 years, the space elevator has been a concept in science fiction and appearing occasionally in technical journals. Versions of the space elevator concept have generally been megalithic in design. However, recent advances in technology and new designs for an initial space elevator have presented a much smaller and a more realistic version that has created a renewed interest in serious technical study. There are now over a dozen entities and hundreds of engineers and scientists with active research related to the space elevator. The activity includes conferences, engineering competitions, extensive media coverage, international collaborations, publications and private investment. These activities are rapidly expanding with the number of publications in 2004 nearly ten times the total for the prior forty years. INTRODUCTION The space elevator concept has been around for spacecraft, the power delivery system, many years (Tower of Babel, Jack and the challenges to the system, etc. Beanstalk, Clarke’s Fountains of Paradise, Robinson’s Red Mars) and between 1960 and The basic design presented in the NIAC work 1999 a few technical studies addressed the has stressed simplicity – a single, small, static basics of the system (Moravec, 1977; Isaacs, ribbon with mechanical climbers that ascend 1966; Pearson, 1975; Smitherman, 2000). These using conventional electric motors (figure 1). studies addressed the oscillations inherit in the The design implements conventional technology system, the taper requirements, and the general with little or no development wherever possible. -
Cislunar Tether Transport System
FINAL REPORT on NIAC Phase I Contract 07600-011 with NASA Institute for Advanced Concepts, Universities Space Research Association CISLUNAR TETHER TRANSPORT SYSTEM Report submitted by: TETHERS UNLIMITED, INC. 8114 Pebble Ct., Clinton WA 98236-9240 Phone: (206) 306-0400 Fax: -0537 email: [email protected] www.tethers.com Report dated: May 30, 1999 Period of Performance: November 1, 1998 to April 30, 1999 PROJECT SUMMARY PHASE I CONTRACT NUMBER NIAC-07600-011 TITLE OF PROJECT CISLUNAR TETHER TRANSPORT SYSTEM NAME AND ADDRESS OF PERFORMING ORGANIZATION (Firm Name, Mail Address, City/State/Zip Tethers Unlimited, Inc. 8114 Pebble Ct., Clinton WA 98236-9240 [email protected] PRINCIPAL INVESTIGATOR Robert P. Hoyt, Ph.D. ABSTRACT The Phase I effort developed a design for a space systems architecture for repeatedly transporting payloads between low Earth orbit and the surface of the moon without significant use of propellant. This architecture consists of one rotating tether in elliptical, equatorial Earth orbit and a second rotating tether in a circular low lunar orbit. The Earth-orbit tether picks up a payload from a circular low Earth orbit and tosses it into a minimal-energy lunar transfer orbit. When the payload arrives at the Moon, the lunar tether catches it and deposits it on the surface of the Moon. Simultaneously, the lunar tether picks up a lunar payload to be sent down to the Earth orbit tether. By transporting equal masses to and from the Moon, the orbital energy and momentum of the system can be conserved, eliminating the need for transfer propellant. Using currently available high-strength tether materials, this system could be built with a total mass of less than 28 times the mass of the payloads it can transport. -
Air and Space Power Journal: Fall 2011
Fall 2011 Volume XXV, No. 3 AFRP 10-1 From the Editor Personnel Recovery in Focus ❙ 6 Lt Col David H. Sanchez, Deputy Chief, Professional Journals Capt Wm. Howard, Editor Senior Leader Perspective Air Force Personnel Recovery as a Service Core Function ❙ 7 It’s Not “Your Father’s Combat Search and Rescue” Brig Gen Kenneth E. Todorov, USAF Col Glenn H. Hecht, USAF Features Air Force Rescue ❙ 16 A Multirole Force for a Complex World Col Jason L. Hanover, USAF Department of Defense (DOD) Directive 3002.01E, Personnel Recovery in the Department of Defense, highlights personnel recovery (PR) as one of the DOD’s highest priorities. As an Air Force core function, PR has experienced tremendous success, having performed 9,000 joint/multinational combat saves in the last two years and having flown a total of 15,750 sorties since 11 September 2001. Despite this admirable record, the author contends that the declining readiness of aircraft and equipment as well as chronic staffing shortages prevents Air Force rescue from meeting the requirements of combatant commanders around the globe. To halt rescue’s decline, a numbered Air Force must represent this core function, there- by ensuring strong advocacy and adequate resources for this lifesaving, DOD-mandated function. Strategic Rescue ❙ 26 Vectoring Airpower Advocates to Embrace the Real Value of Personnel Recovery Maj Chad Sterr, USAF The Air Force rescue community has expanded beyond its traditional image of rescuing downed air- crews to encompass a much larger set of capabilities and competencies that have strategic impact on US operations around the world. -
Aerodynamic Characteristics of Two Waverider-Derived Hypersonic Cruise Configurations
NASA Technical Paper 3559 Aerodynamic Characteristics of Two Waverider-Derived Hypersonic Cruise Configurations Charles E. Cockrell, Jr., Lawrence D. Huebner, and Dennis B. Finley July 1996 NASA Technical Paper 3559 Aerodynamic Characteristics of Two Waverider-Derived Hypersonic Cruise Configurations Charles E. Cockrell, Jr. and Lawrence D. Huebner Langley Research Center • Hampton, Virginia Dennis B. Finley Lockheed-Fort Worth Company • Fort Worth, Texas National Aeronautics and Space Administration Langley Research Center • Hampton, Virginia 23681-0001 July 1996 Available electronically at the following URL address: http:lltechreports.larc.nasa.govlltrslitrs.html Printed copies available from the following: NASA Center for AeroSpace Information National Technical Information Service (NTIS) 800 Elkridge Landing Road 5285 Port Royal Road Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171 (301) 621-0390 (703) 487-4650 Abstract An evaluation was made of the effects of integrating the required aircraft compo- nents with hypersonic high-lift configurations known as waveriders to create hyper- sonic cruise vehicles. Previous studies suggest that waveriders offer advantages in aerodynamic performance and propulsionairframe integration (PAl) characteristics over conventional non-waverider hypersonic shapes. A wind-tunnel model was devel- oped that integrates vehicle components, including canopies, engine components, and control surfaces, with two pure waverider shapes, both conical-flow-derived wave- riders for a design Mach number of 4.0. Experimental data and limited computational fluid dynamics (CFD) solutions were obtained over a Mach number range of 1.6 to 4.63. The experimental data show the component build-up effects and the aero- dynamic characteristics of the fully integrated configurations, including control sur- face effectiveness. -
Science & Technology Trends 2020-2040
Science & Technology Trends 2020-2040 Exploring the S&T Edge NATO Science & Technology Organization DISCLAIMER The research and analysis underlying this report and its conclusions were conducted by the NATO S&T Organization (STO) drawing upon the support of the Alliance’s defence S&T community, NATO Allied Command Transformation (ACT) and the NATO Communications and Information Agency (NCIA). This report does not represent the official opinion or position of NATO or individual governments, but provides considered advice to NATO and Nations’ leadership on significant S&T issues. D.F. Reding J. Eaton NATO Science & Technology Organization Office of the Chief Scientist NATO Headquarters B-1110 Brussels Belgium http:\www.sto.nato.int Distributed free of charge for informational purposes; hard copies may be obtained on request, subject to availability from the NATO Office of the Chief Scientist. The sale and reproduction of this report for commercial purposes is prohibited. Extracts may be used for bona fide educational and informational purposes subject to attribution to the NATO S&T Organization. Unless otherwise credited all non-original graphics are used under Creative Commons licensing (for original sources see https://commons.wikimedia.org and https://www.pxfuel.com/). All icon-based graphics are derived from Microsoft® Office and are used royalty-free. Copyright © NATO Science & Technology Organization, 2020 First published, March 2020 Foreword As the world Science & Tech- changes, so does nology Trends: our Alliance. 2020-2040 pro- NATO adapts. vides an assess- We continue to ment of the im- work together as pact of S&T ad- a community of vances over the like-minded na- next 20 years tions, seeking to on the Alliance. -
The Lapcat-Mr2 Hypersonic Cruiser Concept
THE LAPCAT-MR2 HYPERSONIC CRUISER CONCEPT J. Steelant and T. Langener* * ESA-ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, Netherlands Vehicle Design, Hypersonic Flight, Combined Cycle Engine, Dual-Mode Ramjet Abstract thus bringing the elliptical combustor cross section to a circular cross-section. During Ramjet-mode, this This paper describes the MR2, a Mach 8 nozzle was used as a combustor that thermally cruise passenger vehicle, conceptually designed for choked, allowing for supersonic expansion in the antipodal flight from Brussels to Sydney in less than second nozzle. The second nozzle itself was 4 hours. This is one of the different concepts studied streamtraced from an axisymmetric isentropic within the LAPCAT II project [1]. It is an evolution expansion and truncated to a suitable length. Both of a previous vehicle, the MR1 based upon a dorsal nozzles were designed for cruise conditions. mounted engine, as a result of multiple optimization The final vehicle is shown below in Figure 1 iterations [2] leading to the MR2.4 concepts. The while specific details of the design are expanded main driver was the optimal integration of a high upon in the next section. performance propulsion unit within an aerodynamically efficient wave rider design, whilst guaranteeing sufficient volume for tankage, payload and other subsystems. Introduction The aerodynamics for the MR2 is a waverider form based upon an adapted osculating cone method enabling to construct the vehicle from the leading edge while reducing integration problems between the aerodynamics and the intake. The intake was constructed using Figure 1 MR2 Vehicle streamtracing methods from an axisymmetric inward turning compression surface and was integrated on top of the waverider in a dorsal layout. -
Achievable Space Elevators for Space Transportation and Starship
1991012826-321 :1 TRANSPORTATIONACHIEVABLE SPACEAND ELEVATORSTARSHIPSACCELERATFOR SP_CEION ._ Fl_t_ Dynamic_L',_rator_ N91-22162 Wright-PattersonAFB,Ohio ABSTRACT Spaceelevatorconceptslorlow-costspacelau,'x,,hea_rereviewed.Previousconceptssuffered;rein requirementsforultra-high-strengthmaterials,dynamicallyunstablesystems,orfromdangerofoollisionwith spacedeb._s.Theuseofmagneticgrain_reams,firstF_posedby BenoitLeben,solvestheseproblems. Magneticgrain_reamscansupportshortspace6!evatorsforliftingpayloadscheaplyintoEarthorbit, overcomingthematerialstrengthp_Oiemin.buildingspaceelevators.Alternatively,thestreamcouldsupport an internationaspaceportl circling__heEarthdailyt_nsofmilesabovetheequator,accessibleto adv_ncad aircraft.Marscouldbe equippedwitha similargrainstream,usingmaterialfromitsmoonsPhobosandDefines. Grain-streamarcsaboutthesuncould_ usedforfastlaunchestotheouterplanetsandforaccelerating starshipsto nearikjhtspeedforinterstella:recor_naisar',cGraie. nstreamsareessentiallyimperviousto collisions,andcouldreducethecost_f spacetranspo_ationbyan o_er c,,fmagnih_e. iNTRODUCTION Themajorob_,tacletorapi( spacedevei,apmentisthehighco_ oflaunct_!,'D_gayloadsintoEarthorbit. Currentlaunchcostsare morethan_3000per kilogramand, rocketvehicles_ch asNASP,S,_nger_,'_the AdvancedLaunchSystemwiltstillcost$500perkilogram.Theprospectsforspaceente_dseandsettlement. arenotgoodunlessthesehighlaunchc_stsarereducedsignificantly. Overthepastthirtyyears,severalconceptshavebeendevelopedforlaunchir_la{_opayloadsintoEarth orbitcheaplyusing"_rJeceelevators."The._estructurescanbesupportedbyeithe.rs_ati,for:: -
The Electromagnetic Drive: an Equilibrium Between Forces at the Geostationary Orbit of Jupiter
The Electromagnetic Drive: an equilibrium between forces at the geostationary orbit of Jupiter Alberto Caballero1 Abstract: In this research note it is proposed how the equilibrium between the Lorentz force and the centrifugal force in a crewed spacecraft acting as a tidally stabilised skyhook, and orbiting the geostationary orbit of Jupiter, could prevent the spacecraft form deorbiting and reaching unbearable accelerations. A pair of superconducting electromagnetics would produce a constantly-increasing Lorentz Force, which would cancel the centrifugal force while producing a constant acceleration of 4 g, the limit that a crew could withstand during long periods of time. Key-words: Lorentz force, centrifugal force, electromagnetic propulsion, skyhook, space tether, interstellar travel, speed of light. Space tethers are long cables which can be used for propulsion, momentum exchange, stabilization and attitude control, as well as maintaining the relative positions of the components of a large dispersed satellite or spacecraft sensor system. One type of space tether is the skyhook. Specifically, a non-rotating skyhook is a vertical gravity-gradient stabilized tether. Here I wish to discuss how a balance between the Lorentz force (which would act as the centripetal force) and the centrifugal force could provide a high yet bearable acceleration to a crewed skyhook-style spacecraft orbiting Jupiter at geostationary altitude. The escape velocity of Jupiter is 59.5 km/s. Any spacecraft orbiting at a higher speed would leave the geostationary orbit, and the Lorentz force would gradually weaken to the point of disappearing. A possible balance between forces could be achieved with the proper configuration of a system formed by a pair of superconducting electromagnets, one on each side of the spacecraft. -
Space Colonization Using Space-Elevators from Phobos
Space Colonization Using Space-Elevators from Phobos Leonard M. Weinstein Advanced Measurement and Diagnostics Branch, NASA Langley Research Center, Hampton, VA 23681, USA Phone: (757)864-5543, fax: (757)864-8315, [email protected] Abstract. A novel approach is examined for creating an industrial civilization beyond Earth. The approach would take advantage of the unique configuration of Mars and its moon Phobos to make a transportation system capable of raising mass from the surface of Mars to space at a low cost. Mars would be used as the primary location for support personnel and infrastructure. Phobos would be used as a source of raw materials for space-based activity, and as an anchor for tethered carbon-nanotube-based space-elevators. One space-elevator would terminate at the upper edge of Mars' atmosphere. Small craft would be launched from Mars' surface to rendezvous with the moving elevator tip and their payloads detached and raised with solar powered loop elevators to Phobos. Another space-elevator would be extended outward from Phobos to launch craft toward the Earth/Moon system or the asteroid belt. The outward tip would also be used to catch arriving craft. This approach would allow Mars to be colonized, and allow transportation of people and supplies from Mars to support the space industry. In addition, large quantities of material obtained from Phobos could be used to construct space habitats and also supply propellant and material for space industry in the Earth/Moon system as well as around Mars. INTRODUCTION Numerous papers and books extensively examine the requirement and the potential value to establish a civilization in space and on other planets. -
From Leo to the Planets Using Waveriders
AlAA, 99-4803 From Leo. to th.e Planets Using Waveriders ‘. A. D. McRonald,J1 E. Randolph., Jet PropulsionLaboratory CaliforniaInstitute of Technology. M.‘J. Lewis Universityof Maryland E. p. Bbnfiglio,J:Longuski .- PurdueUn iversity I’ P.Kolodziej NASA-AmesResearch Center th International’ Space Planes and Hypersonic Systems arid Technologies Conference. and _ 3rd Weakly Ionized-Gases Workshop l-5. November 1’999 Norfolk, VA For permiss/on to copy or republish, contact the American Institute of Aeronautics and Astronautics 1801 Alexander Bell Drive, Suite 500, Reston, VA 20191 (c)l999 American Institute of Aeronautics & Astronautic‘s or publisher! with permission of author(s) and/or authdr(s)’ sponsoring organization. t i AIAA-99-4803 . FROM LEO TO THE PLANETS USING WAVERIDERS A. D. McRonald, J. E. Randolph Jet PropulsionLaboratory California Institute of Technology. M. J. Lewis University of Maryland E. P. Bonfiglio, J. Longuski PurdueUniversity P.Kolodziej Ames ResearchCenter ABSTRACT control surfaces, along with engines and propellant to escapefrom Earth, Other advantagesof this A revolution& interplanetary transportation techniqueover normalinterplanetary delivery methods techniqueknown as Aero-Gravity Assist (AGA) has will be discussed. beenstudied by JPL and others to enablerelatively, short trip times betweenEarth andthe other planets. INTRODUCTION AND BACKGROUND It takes advantageof an advancedhypersonic vehicle known as a waverider that uses its high lift to fly The idea to employ the terrestrialplanets as an energy through the atmospheresof Venus and Mars to sourceusing aero-gravity-assist(AGA) maneuversto provide exceptionally large velocity changesusing significantly increasethe velocity of interplanetary gravity-assist maneuvers. The concept has been spacecraft was first discussed for the Stat-probe understudy in a joint programbetween JPL and the mission to the sun] in 1982. -
Design Processes and Criteria for the X-51A Flight Vehicle Airframe
UNCLASSIFIED/UNLIMITED Design Processes and Criteria for the X-51A Flight Vehicle Airframe Jeffery Lane Boeing Integrated Defense Systems 5301 Bolsa Ave. M/C H010-B017 Huntington Beach, CA 92647 USA [email protected] ABSTRACT Flight vehicle airframes in today’s advanced flight systems are required to optimally integrate a variety of multi-functional requirements to maximize effectiveness with acceptable risk. The X-51A airframe design process and criteria draw upon decades of successful design of both manned and unmanned flight vehicles for production and experimental intent. This paper summarizes the X-51A vehicle mission requirements, system design, design processes used for airframe synthesis, design safety factors, success criteria and issues facing the incorporation of advanced optimization techniques in the development of airframes for vehicles such as the X-51A. 1.0 INTRODUCTION The X-51A program is a jointly funded project sponsored by two US government agencies: the Air Force Research Laboratory (AFRL) and the Defense Advanced Research Projects Agency (DARPA) with AFRL as the lead project office [1]. The fundamental objective of the X-51A flight test program is to flight demonstrate the USAF Hypersonic Technology (HyTech) scramjet engine being developed by Pratt & Whitney Rocketdyne under contract to the AFRL (Figure 1). The scramjet engine is based on a hydrocarbon fuel that ignites and operates in both acceleration and cruise modes in the Mach 4.5 to 6.5 range. The engine flowpath is cooled using fuel to both maintain tolerable flowpath temperatures as well as “crack” the fuel to facilitate ignition once it is injected into the combustion region of the scramjet engine.