Novel Monoamine Oxidase Inhibitors, 3-(2-Aminoethoxy)-1,2- Benzisoxazole Derivatives, and Their Differential Reversibility

Total Page:16

File Type:pdf, Size:1020Kb

Novel Monoamine Oxidase Inhibitors, 3-(2-Aminoethoxy)-1,2- Benzisoxazole Derivatives, and Their Differential Reversibility Jpn. J. Pharmacol. 88, 174 – 182 (2002) Novel Monoamine Oxidase Inhibitors, 3-(2-Aminoethoxy)-1,2- benzisoxazole Derivatives, and Their Differential Reversibility Kenji Yoshimi1,*, Masao Kozuka1, Jyunichi Sakai1, Tomoko Iizawa1, Yuki Shimizu1, Isao Kaneko1, Kouichi Kojima2 and Nobuyoshi Iwata3 1Neuroscience and Immunology Research Laboratories, Sankyo Co., Ltd., 2-58, Hiromachi 1-chome, Shinagawa-ku, Tokyo 140-8710, Japan 2Institute of Science and Technology, Inc., 10-2, Kitashinagawa 3-chome, Shinagawa-ku, Tokyo 140-0001, Japan 3Science Information Co., Ltd., 2-58, Hiromachi 1-chome, Shinagawa-ku, Tokyo 140-8710, Japan Received August 3, 2001 Accepted November 19, 2001 ABSTRACT—Although possible usefulness of non-selective monoamine oxidase (MAO) inhibitors for Parkinson’s disease therapy has been suggested in the literature, MAO inhibitors whose inhibition is reversible and have dual action to both MAO-A and -B subtypes is not available yet. Subtype selectivity and reversibility of a series of novel MAO inhibitors, 3-(2-aminoethoxy)-1,2-benzisoxazole derivatives, were studied. Several dual MAO inhibitors, which inhibit both MAO-A and -B, were obtained. When admin- istered to mice, their effects were generally reversible. Among the derivatives, RS-1636 and RS-1653 had much longer duration of brain MAO-B inhibition than that of MAO-A. In vitro, the inhibited MAO-A activity by these compounds was partially recovered by buffer change at 4°C, while little MAO-B activity was recovered. Although it is not fully elucidated yet, the reversibility of these inhibitors is probably determined primarily by this dissociation profile. This unique differential reversibility indicates that optimization of the balance of actions can be achieved by differentiating reversibility to each target molecule. Keywords: Monoamine oxidase, Tight-binding inhibitor, Reversibility, Parkinson’s disease Monoamine oxidase (MAO, EC 1.4.3.4) inhibitors were lazabemide (9) are some such selective inhibitors to MAO- discovered by their effect on mood disorders in the 1950s B that have a mild anti-Parkinsonian effect. However, (1, 2), and have been used as antidepressants since then. potential usefulness of reversible MAO inhibitors that Two isozymes, MAO-A and MAO-B have been identified have dual action to both MAO-A and MAO-B (10) have (1, 2). MAO-A is selectively inhibited by clorgyline and not been verified yet. preferentially deaminates serotonin (5-HT) and noradrena- In this paper, a new family of MAO inhibitors, 3-(2- line (NA). MAO-B is selectively inhibited by l-deprenyl aminoethoxy)-1,2-benzisoxazole derivatives, is presented. and preferentially deaminates 2-phenylethylamine (PEA) Several reversible MAO inhibitors to both MAO-A and -B and benzylamine. Recently, marked advances have been were obtained. Among the reversible dual inhibitors, made in the understanding of selective binding of substrates RS-1636 and RS-1653 had much longer duration of with MAO (3, 4). The old generation of MAO inhibitors, MAO-B inhibition than that of MAO-A. The profile of such as isocarboxazid, phenelzine and tranylcypromine, MAO inhibition in vitro was studied to verify the mecha- inhibit both A and B isozymes irreversibly. Several in- nism of this differential reversibility. hibitors selective to only MAO-A or MAO-B, with both reversible and irreversible characteristics, were developed MATERIALS AND METHODS later. Clorgyline, moclobemide (2), brofaromine (5), toloxatone and RS-8359 (6, 7) are some such MAO-A Animals selective inhibitors that are strong antidepressants. l- Male C57BL/6 mice (5 – 7 week-old, 18 – 22 g body Deprenyl (selegiline) (8), rasagiline, MDL-72974 and weight, from Charles River, Tokyo), which are widely used in rodent models of Parkinson’s disease, were used *Corresponding author. FAX: +81-3-5436-8566 throughout the pharmacological studies on the MAO in- E-mail: [email protected] hibitors. Male ddY mice weighing 30 – 35 g from SLC 174 Differential Reversibility of MAO Inhibitor 175 (Shizuoka) were used to obtain brain mitochondria, follow- and sensitive MAO assay was determined in our previous ing our previously reported method (6, 7). Animals were experiments (6). Then radiolabeled substrate, [14C]-5-HT housed in our temperature- and humidity-controlled animal (final concentration of 100 mM and radioactivity of quarters with free access to food and water for more than 15 mCi/mmol) or [14C]-PEA (final concentration of 20 mM 1 week before use. All experiments were carried out in and radioactivity of 25 mCi/mmol), was added to the tubes, accordance with the guidelines provided by the Institutional and incubation was continued for another 20 min. After the Animal Care and Use Committee of Sankyo Co., Ltd. reaction was stopped with HCl, the labeled metabolites (Tokyo). were extracted into ethyl acetate-toluene (1:1 V/V) by vigorous mixing using a vortex mixer and the organic layer Chemicals was counted for radioactivity with Topcount® (Packard [14C]5-Hydroxytryptamine creatinine sulphate (5-HT) Instrument Company, Inc., Meriden, CT, USA) using (55 mCi/mmol) and [14C]2-phenylethylamine hydro- Microscint-0® (Packard). In the experiments of in vitro chloride (PEA) (56 mCi/mmol) were obtained from reversibility (Figs. 3 and 4), pre-incubation and incubation Amersham Pharmacia Biotech (Buckinghamshire, UK). times were changed as described in the text. 5-HT, tranylcypromine hydrochloride and PEA were pur- In ex vivo MAO determination of the brain, C57BL/6 chased from Sigma Chemical Co. (St. Louis, MO, USA), mice were orally administered the test compounds. The Aldrich (Milwaukee, WI, USA) and Tokyo Kasei (Tokyo), brains were removed 1 h later and frozen on dry ice and respectively. l-Deprenyl hydrochloride and clorgyline kept at -80°C until further assay. The brain tissue was hydrochloride were purchased from Research Biochemi- homogenized with Polytron® in tenfold volume of cold cals, Inc. (Natick, MA, USA). RS-8359 ((±)-4-(cyanoani- 0.32 M sucrose and 10 mM sodium phosphate buffer lino)-7-hydroxycyclopenta[3,2-e]pyrimidine) and moclo- (pH 7.4). Determination of MAO activity was carried out bemide were synthesized by Ube Kosan Co., Ltd. (Yama- essentially by the methods described above. The brain guchi) and the Institute of Science and Technology, Inc. homogenate was further diluted ninefold with 50 mM (Tokyo), respectively. Reserpine solution (Apoplon®) was phosphate buffer, and the temperature of the diluted homo- purchased from Daiichi Pharmaceutical Co., Ltd. (Tokyo). genate and tubes stabilized for 10 min at 38°C in a water- Novel 3-(2-aminoethoxy)-1,2-benzisoxazole derivatives bath incubator. Then [14C]-5-HT or [14C]-PEA was added and lazabemide hydrochloride were synthesized in our and the homogenate was further incubated exactly 3 min or laboratories. Compounds were dissolved in saline for 2 min, respectively. The final concentration of the brain administration to animals, except RS-8359 and moclo- homogenate was 0.9% (w/v). bemide which were suspended in 0.5% carboxymethyl- To evaluate simple dissociation of inhibitors from the cellulose solution. enzyme, recovery of MAO activity of mitochondria was determined after repeated washing (Fig. 3). Mitochondria Radiochemical assay of MAO activity were pre-incubated with test compounds for 90 min at MAO activity was assayed as described previously (6, 7, 38°C, and then unbound inhibitors were removed by 11). Pooled whole brains of ddY mice were homogenized repeated buffer change five times by centrifugation at in tenfold volume of cold 0.32 M sucrose and 10 mM 15,000´g and re-suspension in 50 mM phosphate buffer at sodium phosphate buffer (pH 7.4) with a teflon-glass 4°C. Concentrations of test compounds were adjusted to homogenizer. The mitochondrial fraction was obtained by give about 75% inhibition, IC75, calculated according to the a differential centrifugation technique. Supernatant centri- dose-response curve for IC50 determination. Compounds fuged at 600´g and 4°C for 10 min was re-centrifuged at and concentrations used for assay were 1 nM clorgyline, 15,000´g and 4°C for 10 min, the pellet was suspended 2000 nM RS-8359, 1000 nM RS-1622, 30 nM RS-1636, and centrifuged again, and then diluted to yield a protein 20 nM RS-1650 and 70 nM RS-1653 for MAO-A and 8 nM concentration of 1 mg/ml and stored at -80°C. The protein l-deprenyl, 200 nM lazabemide, 200 nM RS-1622, 20 nM content was determined according to the method of Lowry RS-1636, 20 nM RS-1650 and 20 nM RS-1653 for (12), using bovine serum albumin as a standard. MAO-B. Control mitochondria were treated using the same MAO activity was determined by the traditional radio- procedure without inhibitors to define 100% MAO activity. chemical technique essentially as described by Wurtmann For the control of inhibition without washing, mitochondria and Axelrod (11). To determine the IC50 values of MAO were stood on ice during repeated centrifuge and re-suspen- inhibition, incubation tubes containing 0.1 mg-protein/ml sion. Percent inhibition was separately calculated for mitochondrial preparation in 50 mM sodium phosphate samples with and without washing. To evaluate incubation- buffer (pH 7.4) with various concentrations of test com- time dependency (Fig. 4), pre-incubation time was varied pounds were pre-incubated in a water bath at 38°C for from 0 to 180 min and the MAO activity was determined 20 min. Optimum substrate concentration for selective as described above. 176 K. Yoshimi et al. Inhibition of reserpine-induced ptosis obtained by changing the residues on the benzisoxazole To evaluate MAO-A inhibition in vivo, the antagonistic ring (Table 1). Several MAO inhibitors, which have dual effect on reserpine-induced ptosis was tested (13, 14). action to both MAO-A and MAO-B, were obtained as well Reserpine at 2 mg/kg was given to C57BL/6 mice sub- as selective inhibitors.
Recommended publications
  • Novel Neuroprotective Compunds for Use in Parkinson's Disease
    Novel neuroprotective compounds for use in Parkinson’s disease A thesis submitted to Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science By Ahmed Shubbar December, 2013 Thesis written by Ahmed Shubbar B.S., University of Kufa, 2009 M.S., Kent State University, 2013 Approved by ______________________Werner Geldenhuys ____, Chair, Master’s Thesis Committee __________________________,Altaf Darvesh Member, Master’s Thesis Committee __________________________,Richard Carroll Member, Master’s Thesis Committee ___Eric_______________________ Mintz , Director, School of Biomedical Sciences ___Janis_______________________ Crowther , Dean, College of Arts and Sciences ii Table of Contents List of figures…………………………………………………………………………………..v List of tables……………………………………………………………………………………vi Acknowledgments.…………………………………………………………………………….vii Chapter 1: Introduction ..................................................................................... 1 1.1 Parkinson’s disease .............................................................................................. 1 1.2 Monoamine Oxidases ........................................................................................... 3 1.3 Monoamine Oxidase-B structure ........................................................................... 8 1.4 Structural differences between MAO-B and MAO-A .............................................13 1.5 Mechanism of oxidative deamination catalyzed by Monoamine Oxidases ............15 1 .6 Neuroprotective effects
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Isocarboxazid Item No. 23625 CAS Registry No.: 59-63-2 Formal Name: 5-methyl-3-isoxazolecarboxylic acid, 2-(phenylmethyl)hydrazide Synonyms: NSC 169893, Ro 5-0831 H N N H MF: C12H13N3O2 FW: 231.3 N O Purity: ≥98% O Supplied as: A solid Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Isocarboxazid is supplied as a solid. A stock solution may be made by dissolving the isocarboxazid in the solvent of choice. Isocarboxazid is slightly soluble in acetonitrile and chloroform. Description 1 Isocarboxazid is an inhibitor of monoamine oxidase (MAO; IC50 = 4.8 μM for rat brain MAO). It induces a 4-fold increase in tryptamine action in isolated rat fundal strips at a concentration of 50 nM. In vivo, isocarboxazid potentiates tryptamine toxicity (LD50 = 8 mg/kg following subcutaneous administration of 250 mg/kg tryptamine). It inhibits 90% of MAO activity in isolated rat hearts and reduces cardiomegaly induced by isoproterenol (Item No. 15592) in rats at a dose of 20 mg/kg.2 Oral administration of isocarboxazid (10 mg/kg) increases levels of dopamine and norepinephrine and reduces levels of the monoamine metabolites DOPAC, homovanillic acid (HVA; Item No. 20877), and 5-hydroxy indole-3-acetic acid (5-HIAA; Item No. 22889) by 43, 32, and 28%, respectively, in mouse brain.3 Formulations containing isocarboxazid have been used for the treatment of minor depression.4 References 1. Maxwell, D.R., Gray, W.R., and Taylor, E.M. Relative activity of some inhibitors of mono-amine oxidase in potentiating the action of tryptamine in vitro and in vivo.
    [Show full text]
  • Studies on the Metabolism and Toxicity of Hydrazine in The~Rat~
    STUDIES ON THE METABOLISM AND TOXICITY OF HYDRAZINE IN THE~RAT~ Andrew Michael Jenner, B.Sc. Submitted to the University of London for the examination of the degree for Doctor of Philosophy, 1992 Toxicology Department The School of Pharmacy Brunswick Square London ProQuest Number: U068521 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U068521 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKNOWLEDGEMENTS I would like to express my sincere appreciation to my supervisor Dr. John Timbrell for his invaluable advice, guidance and support. Many people have assisted the progress of my studies in a wide variety of ways, including everyone who has worked alongside me in the Toxicology Unit, both past and present. Particular thanks go to Simon (ET) for his critical eye and mutual, down to earth Yorkshire mentality and also to Cathy for her heartening encouragement. I would also like to thank Dr. Alan Boobis for his assistance in obtaining human liver samples and to the USAF for funding this project. Finally I would like to recognise Jacqui for her designs, Maria for her typing, Justina for her continuous care and support and to my mum and dad for their understanding and my much appreciated conveyance through life.
    [Show full text]
  • Ayahuasca: Spiritual Pharmacology & Drug Interactions
    Ayahuasca: Spiritual Pharmacology & Drug Interactions BENJAMIN MALCOLM, PHARMD, MPH [email protected] MARCH 28 TH 2017 AWARE PROJECT Can Science be Spiritual? “Science is not only compatible with spirituality; it is a profound source of spirituality. When we recognize our place in an immensity of light years and in the passage of ages, when we grasp the intricacy, beauty and subtlety of life, then that soaring feeling, that sense of elation and humility combined, is surely spiritual. The notion that science and spirituality are somehow mutually exclusive does a disservice to both.” – Carl Sagan Disclosures & Disclaimers No conflicts of interest to disclose – I don’t get paid by pharma and have no potential to profit directly from ayahuasca This presentation is for information purposes only, none of the information presented should be used in replacement of medical advice or be considered medical advice This presentation is not an endorsement of illicit activity Presentation Outline & Objectives Describe what is known regarding ayahuasca’s pharmacology Outline adverse food and drug combinations with ayahuasca as well as strategies for risk management Provide an overview of spiritual pharmacology and current clinical data supporting potential of ayahuasca for treatment of mental illness Pharmacology Terms Drug ◦ Term used synonymously with substance or medicine in this presentation and in pharmacology ◦ No offense intended if I call your medicine or madre a drug! Bioavailability ◦ The amount of a drug that enters the body and is able to have an active effect ◦ Route specific: bioavailability is different between oral, intranasal, inhalation (smoked), and injected routes of administration (IV, IM, SC) Half-life (T ½) ◦ The amount of time it takes the body to metabolize/eliminate 50% of a drug ◦ E.g.
    [Show full text]
  • Acetylcholinesterase and Monoamine Oxidase-B Inhibitory Activities By
    www.nature.com/scientificreports OPEN Acetylcholinesterase and monoamine oxidase‑B inhibitory activities by ellagic acid derivatives isolated from Castanopsis cuspidata var. sieboldii Jong Min Oh1, Hyun‑Jae Jang2, Myung‑Gyun Kang3, Soobin Song2, Doo‑Young Kim2, Jung‑Hee Kim2, Ji‑In Noh1, Jong Eun Park1, Daeui Park3, Sung‑Tae Yee1 & Hoon Kim1* Among 276 herbal extracts, a methanol extract of Castanopsis cuspidata var. sieboldii stems was selected as an experimental source for novel acetylcholinesterase (AChE) inhibitors. Five compounds were isolated from the extract by activity‑guided screening, and their inhibitory activities against butyrylcholinesterase (BChE), monoamine oxidases (MAOs), and β‑site amyloid precursor protein cleaving enzyme 1 (BACE‑1) were also evaluated. Of these compounds, 4′‑O‑(α‑l‑rhamnopyranosyl)‑ 3,3′,4‑tri‑O‑methylellagic acid (3) and 3,3′,4‑tri‑O‑methylellagic acid (4) efectively inhibited AChE with IC50 values of 10.1 and 10.7 µM, respectively. Ellagic acid (5) inhibited AChE (IC50 = 41.7 µM) less than 3 and 4. In addition, 3 efectively inhibited MAO‑B (IC50 = 7.27 µM) followed by 5 (IC50 = 9.21 µM). All fve compounds weakly inhibited BChE and BACE‑1. Compounds 3, 4, and 5 reversibly and competitively inhibited AChE, and were slightly or non‑toxic to MDCK cells. The binding energies of 3 and 4 (− 8.5 and − 9.2 kcal/mol, respectively) for AChE were greater than that of 5 (− 8.3 kcal/mol), and 3 and 4 formed a hydrogen bond with Tyr124 in AChE. These results suggest 3 is a dual‑targeting inhibitor of AChE and MAO‑B, and that these compounds should be viewed as potential therapeutics for the treatment of Alzheimer’s disease.
    [Show full text]
  • The Effects of Phenelzine and Other Monoamine Oxidase Inhibitor
    British Journal of Phammcology (1995) 114. 837-845 B 1995 Stockton Press All rights reserved 0007-1188/95 $9.00 The effects of phenelzine and other monoamine oxidase inhibitor antidepressants on brain and liver 12 imidazoline-preferring receptors Regina Alemany, Gabriel Olmos & 'Jesu's A. Garcia-Sevilla Laboratory of Neuropharmacology, Department of Fundamental Biology and Health Sciences, University of the Balearic Islands, E-07071 Palma de Mallorca, Spain 1 The binding of [3H]-idazoxan in the presence of 106 M (-)-adrenaline was used to quantitate 12 imidazoline-preferring receptors in the rat brain and liver after chronic treatment with various irre- versible and reversible monoamine oxidase (MAO) inhibitors. 2 Chronic treatment (7-14 days) with the irreversible MAO inhibitors, phenelzine (1-20 mg kg-', i.p.), isocarboxazid (10 mg kg-', i.p.), clorgyline (3 mg kg-', i.p.) and tranylcypromine (10mg kg-', i.p.) markedly decreased (21-71%) the density of 12 imidazoline-preferring receptors in the rat brain and liver. In contrast, chronic treatment (7 days) with the reversible MAO-A inhibitors, moclobemide (1 and 10 mg kg-', i.p.) or chlordimeform (10 mg kg-', i.p.) or with the reversible MAO-B inhibitor Ro 16-6491 (1 and 10 mg kg-', i.p.) did not alter the density of 12 imidazoline-preferring receptors in the rat brain and liver; except for the higher dose of Ro 16-6491 which only decreased the density of these putative receptors in the liver (38%). 3 In vitro, phenelzine, clorgyline, 3-phenylpropargylamine, tranylcypromine and chlordimeform dis- placed the binding of [3H]-idazoxan to brain and liver I2 imidazoline-preferring receptors from two distinct binding sites.
    [Show full text]
  • Designing Inhibitors Via Molecular Modelling Methods for Monoamine Oxidase Isozymes a and B Filiz Varnali Kadir Has Universit
    DESIGNING INHIBITORS VIA MOLECULAR MODELLING METHODS FOR MONOAMINE OXIDASE ISOZYMES A AND B FİLİZ VARNALI KADİR HAS UNIVERSITY 2012 DESIGNING INHIBITORS VIA MOLECULAR MODELLING METHODS FOR MONOAMINE OXIDASE ISOZYMES A AND B FİLİZ VARNALI M.S. in Computational Biology and Bioinformatics, Kadir Has University, 2012 Submitted to the Graduate School of Science and Engineering in partial fulfilment of the requirements for the degree of Master of Science in Computational Biology and Bioinformatics KADİR HAS UNIVERSITY 2012 DESIGNING INHIBITORS VIA MOLECULAR MODELING METHODS FOR MONOAMINE OXIDASE ISOZYMES A AND B Abstract In drug development studies, a large number of new drug candidates (leads) have to be synthesized and optimized by changing several moieties of the leads in order to increase efficacies and decrease toxicities. Each synthesis of these new drug candidates include multi-steps procedures. Overall, discovering a new drug is a very time-consuming and very costly works. The development of molecular modelling programs and their applications in pharmaceutical research have been formalized as a field of study known computer assisted drug design (CADD) or computer assisted molecular design (CAMD). In this study, using the above techniques, Monoamine Oxidase isozymes, which play an essential role in the oxidative deamination of the biogenic amines, were studied. Compounds that inhibit these isozymes were shown to have therapeutic value in a variety of conditions including several psychiatric and neurological as well as neurodegenerative diseases. First, a series of new pyrazoline derivatives were screened using molecular modelling and docking methods and promising lead compounds were selected, and proposed for synthesis as novel selective MAO-A or –B inhibitors.
    [Show full text]
  • Human Pharmacology of Ayahuasca: Subjective and Cardiovascular Effects, Monoamine Metabolite Excretion and Pharmacokinetics
    TESI DOCTORAL HUMAN PHARMACOLOGY OF AYAHUASCA JORDI RIBA Barcelona, 2003 Director de la Tesi: DR. MANEL JOSEP BARBANOJ RODRÍGUEZ A la Núria, el Marc i l’Emma. No pasaremos en silencio una de las cosas que á nuestro modo de ver llamará la atención... toman un bejuco llamado Ayahuasca (bejuco de muerto ó almas) del cual hacen un lijero cocimiento...esta bebida es narcótica, como debe suponerse, i á pocos momentos empieza a producir los mas raros fenómenos...Yo, por mí, sé decir que cuando he tomado el Ayahuasca he sentido rodeos de cabeza, luego un viaje aéreo en el que recuerdo percibia las prespectivas mas deliciosas, grandes ciudades, elevadas torres, hermosos parques i otros objetos bellísimos; luego me figuraba abandonado en un bosque i acometido de algunas fieras, de las que me defendia; en seguida tenia sensación fuerte de sueño del cual recordaba con dolor i pesadez de cabeza, i algunas veces mal estar general. Manuel Villavicencio Geografía de la República del Ecuador (1858) Das, was den Indianer den “Aya-huasca-Trank” lieben macht, sind, abgesehen von den Traumgesichten, die auf sein persönliches Glück Bezug habenden Bilder, die sein inneres Auge während des narkotischen Zustandes schaut. Louis Lewin Phantastica (1927) Agraïments La present tesi doctoral constitueix la fase final d’una idea nascuda ara fa gairebé nou anys. El fet que aquest treball sobre la farmacologia humana de l’ayahuasca hagi estat una realitat es deu fonamentalment al suport constant del seu director, el Manel Barbanoj. Voldria expressar-li la meva gratitud pel seu recolzament entusiàstic d’aquest projecte, molt allunyat, per la natura del fàrmac objecte d’estudi, dels que fins al moment s’havien dut a terme a l’Àrea d’Investigació Farmacològica de l’Hospital de Sant Pau.
    [Show full text]
  • Nialamide; SOCIETIES and LECTURES CORRECTION
    414 BRITISH MEDICAL JOURNAL 15 MAY 1971 care, and administration of health services. A. Clements, P. A. Connell, Patricia A. Crawford, G. A. Cupper, M. R. Dean, L. L. Dom- "It is, in short, medicine applied to a group SOCIETIES AND LECTURES bey, D. P. De Bono, J. P. Delamere, Gil- than to an individual patient." The lean P. Duncan, D. B. Dunger, C. E. G. Farqu- rather Br Med J: first published as 10.1136/bmj.2.5758.414 on 15 May 1971. Downloaded from statement adds that it is hoped that the pro- For attending lectures marked * a fee is charged or harson, Pamela C. Fenney, Daphne C. Fielding, a ticket is required. Applications should be made I. R. Fletcher, M. S. Fletcher, Po-Kai Fok, G. J. visional Faculty will be in a position to re- Frost, R. M. Galbraith, Elizabeth A. S. Galvin, first to the institution concerned. D. J. Giraldi, Jenifer I. Glover, B. A. Greenway, ceive applications from those wishing to be- Mary Griffin, J. F. Hamlyn, M. H. Hampton, come founder members later in the year. Monday, 17 May G. P. Harris, P. B. Harvey, A. C. Hillyard, Gillian M. M. Hodge, N. Holmes, Sheilagh M. Further announcements will be made. ABERDEEN UNIVERSITY.-At Medical Buildings, Hope, C. C. Hugh, Joanna E. Ide, Alison Ironside, Foresterhill, 5.30 p.m., dentj centennial lecture Keatley E. James, W. J. Jarrett, Celia A. Jenkins, by Sir Robert Bradlaw: Pigmentation. J. R. Jenner, P. D. Jones, C. L. Kennedy, N. D. Monoamine-oxidase Inhibitors INSTITUTE OF DERMATOLOGY.-4.30 p.m., Mr.
    [Show full text]
  • Drug-Induced Movement Disorders
    Medical Management of Early PD Samer D. Tabbal, M.D. May 2016 Associate Professor of Neurology Director of The Parkinson Disease & Other Movement Disorders Program Mobile: +961 70 65 89 85 email: [email protected] Conflict of Interest Statement No drug company pays me any money Outline So, you diagnosed Parkinson disease .Natural history of the disease .When to start drug therapy? .Which drug to use first for symptomatic treatment? ● Levodopa vs dopamine agonist vs MAOI Natural History of Parkinson Disease Before levodopa: Death within 10 years After levodopa: . “Honeymoon” period (~ 5-7 years) . Motor (ON/OFF) fluctuations & dyskinesias: ● Drug therapy effective initially ● Surgical intervention by 10-15 years - Deep brain stimulation (DBS) therapy Motor Response Dyskinesia 5-7 yrs >10 yrs Dyskinesia ON state ON state OFF state OFF state time time Several days Several hours 1-2 hour Natural History of Parkinson Disease Prominent gait impairment and autonomic symptoms by 20-25 years (Merola 2011) Behavioral changes before or with motor symptoms: . Sleep disorders . Depression . Anxiety . Hallucinations, paranoid delusions Dementia at anytime during the illness . When prominent or early: diffuse Lewy body disease Symptoms of Parkinson Disease Motor Symptoms Sensory Symptoms Mental Symptoms: . Cognitive and psychiatric Autonomic Symptoms Presenting Symptoms of Parkinson Disease Mood disorders: depression and lack of motivation Sleep disorders: “acting out dreams” and nightmares Early motor symptoms: Typically Unilateral . Rest tremor: chin, arms or legs or “inner tremor” . Bradykinesia: focal and generalized slowness . Rigidity: “muscle stiffness or ache” Also: (usually no early postural instability) . Facial masking with hypophonia: “does not smile anymore” or “looks unhappy all the time” .
    [Show full text]
  • Les Femmes Peuvent Prendre Du Viagra * Achat De Viagra En
    Viagra est indiquée pour le traitement de la dysfonction érectile masculine. >>> ORDER NOW <<< Les femmes peuvent prendre du viagra Tags: cialis ou viagra acheter vrai ou faux viagra risques avec viagra acheter du viagra sans ordonnance en suisse danger du faux viagra comment bien prendre viagra le prix du viagra en pharmacie au maroc les effets indesirable du viagra que ce que viagra de gaulle contre le viagra achat viagra internet doctissimo commande viagra belgique peut on avoir du viagra en pharmacie sans ordonnance comment prendre sildenafil pfizer nitrates and viagra interaction ordonnance ou pas pour viagra notice demballage viagran quels sont les effets du viagra quelle quantité de viagra prendre peut on acheter viagra en pharmacie sans ordonnance comment avoir le viagra site sur achat viagra nitrates viagra can deadly combination Recession quest ce qui peut remplacer le viagra review am astonishingly forgetful. Some things said caffeine was fine to consume (in drinks, food, etc) while on the med, others said caffeine decreased the effects of the med. Features of this disorder include dysphonia, dysarthria, and loss of pain and temperature over the ipsilateral face and contralateral body. Jeg vil også erklære, at du forlader soap ud. If you feel very bored when waiting for something or someone (a bus, your friend, your kids), distract yourself with a book, magazine, or crossword puzzle. The celexa is longer acting and must build in the system over time in order to work for anxiety. Medscape is the leading online destination for healthcare professionals seeking clinical information. Paxil over time increased my appetite but i think that is because les femmes peuvent prendre du viagra made me tired and lethargic, they did not increase appetite, in fact in the first few months they curbed it right down.
    [Show full text]
  • PAPER Monoamine Oxidase Inhibition Is Unlikely to Be Relevant To
    International Journal of Obesity (2001) 25, 1454–1458 ß 2001 Nature Publishing Group All rights reserved 0307–0565/01 $15.00 www.nature.com/ijo PAPER Monoamine oxidase inhibition is unlikely to be relevant to the risks associated with phentermine and fenfluramine: a comparison with their abilities to evoke monoamine release{ IC Kilpatrick1*, M Traut2 and DJ Heal1 1Knoll Limited Research and Development, Nottingham, UK; and 2Knoll GmbH, 50 Knollstrasse, D-67061, Ludwigshafen, Germany OBJECTIVE AND DESIGN: It has been proposed that the anti-obesity agent, phentermine, may act in part via inhibition of monoamine oxidase (MAO). The ability of phentermine to inhibit both MAOA and MAOB in vitro has been examined along with that of the fenfluramine isomers, a range of selective serotonin reuptake inhibitors and sibutramine and its active metabolites. RESULTS: In rat brain, harmaline and lazabemide showed potent and selective inhibition of MAOA and MAOB, their respective target enzymes, with IC50 values of 2.3 and 18 nM. In contrast, all other drugs examined were only weak inhibitors of MAOA and MAOB with IC50 values for each enzyme in the moderate to high micromolar range. For MAOA, the IC50 for phentermine was estimated to be 143 mM, that for S( þ )-fenfluramine, 265 mM and that for sertraline, 31 mM. For MAOB, example IC50s were as follows: phentermine (285 mM), S( þ )-fenfluramine (800 mM) and paroxetine (16 mM). Sibutramine was unable to inhibit either enzyme, even at its limit of solubility. CONCLUSION: We therefore suggest that MAO inhibition is unlikely to play a role in the pharmacodynamic properties of any of the tested drugs, including phentermine.
    [Show full text]