First Phylogenetic Analysis of Avipoxvirus (APV) in Brazil1

Total Page:16

File Type:pdf, Size:1020Kb

First Phylogenetic Analysis of Avipoxvirus (APV) in Brazil1 Pesq. Vet. Bras. 36(5):357-362, maio 2016 DOI: 10.1590/S0100-736X2016000500001 First phylogenetic analysis of Avipoxvirus (APV) in Brazil1 2 2 2 2 3 2 2 4 Hiran C. Kunert-Filho *, Samuel P. Cibulski , Fabrine2 Finkler , Tiela T. Grassotti , Fátima R.F. Jaenisch , Kelly C.T. de Brito , Daiane Carvalho , Maristela Lovato ABSTRACT.- and Benito G. de Brito First phylogenetic analysis of Avipoxvi- rus (APV) in Kunert-FilhoBrazil. Pesquisa H.C., Veterinária Cibulski S.P., Brasileira Finkler 36(5):357-362F., Grassotti T.T., Jaenisch F.R.F., Brito K.C.T., Carvalho D., Lovato M. & Brito B.G. 2016. Laboratório de Saúde E-mail:das Aves e Inovação Tecnológica, Instituto de Pesquisas Veterinárias Desidério Finamor, FEPAGRO Saúde Animal, Estrada do Conde 6000, Eldorado do Sul, RS 92990-000, Brazil. [email protected] This study represents the first phylogenetic analysis of avian poxvirus recovered from- turkeys in Brazil. The clinical disorders related to fowlpox herein described occurred in a turkey housing system. The birds displaying characteristic pox lesions which were ob served on the neck, eyelids and beak of the turkeys. Four affected turkeys were randomly chosen, euthanized and necropsied. Tissues samples were submitted for histopathologicalP4b analysis and total DNA was further extracted, amplified by conventional PCR, sequenced- and phylogenetically analyzed. Avian poxviruses specific PCR was performed basedP4b on core protein gene sequence. The histological analysis revealed dermal inflammatory pro- cess, granulation tissue, hyperplasia of epithelial cells and inclusion bodies. The ® gene was detected in all samples. Sequencing revealed a 100% nucleotide and amino acid se quence identity among the samples, andAvipoxvirus the sequences were deposited in GenBank . The four Avian poxviruses fragments sequenced in this study clustered along the A1 clade of avipoxviruses, and were classified as (APV). Additional studies, such as virus isolation, PCR and sequencing includinga large number of specimens from the Brazilian- turkey production must be conducted due to the hazardous risk that poxvirus infections may cause to the Brazilian poultry production scenario, given that Brazil’s turkey produc tion attracts attention due to its economic importance worldwide. Our findings point to- the need to identify the prevalence of APV in Brazilian turkey production, to perform risk assessment studies and continued surveillance of APV infections in both wild and commer Poxviridae Avipoxvirus cial avian species. RESUMO.- [PrimeiraINDEX análiseTERMS: Turkey, filogenética de ,Avipoxvirus , APV, PCR,Brasil. phylogenetic analysis. - (APV) no Brasil.] Este trabalho representa a primeira aná- Os distúrbios clínicos relacionados com bouba aviá ria aqui descritos ocorreram em um sistema de alojamento lise filogenética de Poxvirus aviário detectado em perus no de perus. As aves apresentaram lesões características de- 1 varíola observadas no pescoço, pálpebras e bico das aves. 2 Received on October 22, 2015. - Quatro perus com sinais característicos foram escolhi- Accepted for publication on February 4, 2016. - Laboratório de Saúde das Aves & Inovação Tecnológica (LSAIT), Insti dos aleatoriamente, sacrificados e submetidos à autópsia.- tuto de Pesquisas Veterinárias Desidério Finamor (IPVDF), FEPAGRO Saú Amostras de tecido foram submetidas à análise histopato de3 Animal, Estrada do Conde 6000, Eldorado do Sul, RS 92990-000, Brazil. lógica e o DNA total foi extraído, amplificado por PCR con *Corresponding author: [email protected] vencional e os amplicons foram sequenciados e analisados ​​ 4 Laboratório de Patologia, Embrapa Suínos e Aves, Rodovia BR-153 Km filogeneticamente. A PCR específica para Poxvírus aviário 10, Cx. Postal 21, Concórdia, SC 89700-000, Brazil. P4b Laboratório Central de Diagnóstico de Patologias Aviárias (LCDPA), foi realizada com base na seqüência do gene da proteína Departamento de Medicina Veterinária Preventiva (DMVP), Centro de do núcleo . A análise histológica revelou um processoP4b Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Av. inflamatório dérmico, tecido de granulação, hiperplasia de Roraima 1000, Santa Maria, RS 97105-900, Brazil. células epiteliais e corpúsculos de inclusão. O gene foi 357 Hiran C. Kunert-Filho et al. 358 - mopoxvirus Gammaentomopoxvirus one ( Avipoxvirus detectado em todas as amostras. O sequenciamento reve- , and a not assingned lou uma identidade® entre nucleotídeos e aminoácido de- www.ictvonline.org/virusTaxonomy.asp). 100% entre as amostras e as sequências foram deposita is the only genus capable of infecting birds (Gubser et al. das no GenBank . Os quatro fragmentos de poxvírusAvipoxvirus aviá 2004). Avipoxvirus: Canarypox virus Fowlpox virus rio sequenciado neste estudo foram agrupados no clado- JuncopoxTo date, virus ten Mynahpoxspecies have virus beenPigeonpox described virus as belongingPsittaci- A1 de avipoxvirus e foram classificados como nepoxto the virusgenusQuailpox virus Sparrowpox virus, Starlingpox, (APV). Estudos adicionais, como isolamento viral, PCR e se virus Turkeypox, virus , , quenciamento, incluindo um grande número de perus da , , , - produção brasileira devem ser conduzidos devido ao grave and Peacockpox. There virus are Penguinpoxthree other virusspeciesCro as- risco que a infecção por poxvírus pode causar ao cenário de wpoxadditional virus attempt ( by the International Commitee on Taxo produção avícola brasileira, tendo em vista que a produção nomy of Viruses: Fowlpox, virus , - brasileira de perus atrai atenção devido a sua importância www.ictvonline.org/virusTaxonomy.asp). The mundial. Nossos resultados apontam para a necessidade de- prototype of the APV family is (FWPV), whi identificar a prevalência da APV na produção de peru no ch causes lesions on the skin and in the upper respiratory- Brasil, para realizar estudos de avaliação de risco e conti tract (Tadese et al. 2008). nuada monitoração de infecções por APV nas espécies de Poxvirus infections cause cutaneous and internal le Poxviridae, Avipoxvirus, aves comerciais e silvestres. sions and may affect chickens and turkeys (Tripathy & Reed TERMOS DE INDEXAÇÃO: Peru, APV, PCR, 2013). Microscopically, the skin lesions are characterized- análise filogenética. INTRODUCTION by severe hypertrophy and hyperplasia of epidermal cell,- many of which undergoing ballooning degeneration and of- - ten containing intracytoplasmic eosinophilic inclusion bo dies called Bollinger bodies. These inclusion bodies are pa Avian poxviruses cause a common viral disease in bird spe thognomonic for Avian poxvirus infection (Fletcher 2008). cies. It is worldwide distributed, affecting at least 3% of Histopathological examination is considered the major 232 species of birds (Bolte et al. 1999, Tripathy et al. 2000, method for APV diagnosis, but other techniques, such as Kim et al. 2003, Godoy et al. 2013). APV may manifest in- cell tissue cultures, virus isolation in CAM of embryonated two different ways: lesions on the skin, commonly named chicken eggs, serologic methods and electron microscopy- as cutaneous form, and lesions in the mouth, pharynx, la (Tripathy & Reed 2013) are available to isolate or detect rynx, esophagus and trachea, called diphtheritic form. Avipoxvirus the virus. To date, the most sensitive techniques includeP4b se These two forms may occur simultaneously (Biswas et al. veral molecular approaches (Manarolla et al. 2010). Hence,- 2011). When (APV) affects poultry production, the amplification of a 578-base pair (bp) region of , a it can lead to decreased egg production, reduced growth,- highly conserved gene of APV, is commonlyP4b used to diag and increased mortality. In canaries, APV causes severe nose APV infections, which is highly conserved amongst all- pulmonary damage, leading to extremely high mortality ra- poxviruses (Binns et al. 1989). The gene has already tes (Manarolla et al. 2010). been reported in other phylogenetic studies of APV to dis Viruses belonging to the APV family are large, oval, bri- tinguish between clades A, B, C, A1-4 and B1-2 (Lüschow et ck-shaped, and enveloped. Double-stranded DNA ranging al. 2004, Weli et al. 2004, Jarmin et al. 2006). In addition, from 130 to 375 kb in linear configuration is the main cha conventional and real time PCR techniques provide results racteristic of the members of this family (Bolte et al. 1999, more rapidly than virus isolation. Manarolla et al. 2010). APV DNA usually presents a low The aim was to characterize Avian poxvirus isolates (about 30e.g. to 40%) GC-content (Bolte et al. 1999), encoding from turkeys in Southern Brazil. For this purpose we used about 150 genes (Lefkowitz et al. 2006). Avian cell tissue histopathologicalMATERIALS analysis, PCR, AND and METHODS phylogenetic analysis. cultures ( , chicken embryo fibroblasts, chicken embryo dermis and kidney cells, and duck embryo fibroblast) and Sample collection. - Meleagris gallopavo - chorioallantoic membrane (CAM) of embryonated eggs are In this survey, about 80 out of 120- the tissues of choice for APV isolation, due to its easily re 140-days-old turkeys ( ) housed in the Insti plication. Nonetheless, turkeys isolates may fail to grow in- tuto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldo- these cell lines, even after repeated passages (Tripathy &- rado do Sul, Rio Grande do Sul State, Brazil, demonstrated clinical- Reed 2013). According to Jarmin et al. (2006), APV repli signs consistent with Pox. The characteristic lesions were obser catesChordopoxvirinae
Recommended publications
  • Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Yellow-Eyed Penguin (Megadyptes Antipodes)
    viruses Article Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Yellow-Eyed Penguin (Megadyptes antipodes) Subir Sarker 1,* , Ajani Athukorala 1, Timothy R. Bowden 2,† and David B. Boyle 2 1 Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; [email protected] 2 CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia; [email protected] (T.R.B.); [email protected] (D.B.B.) * Correspondence: [email protected]; Tel.: +61-3-9479-2317; Fax: +61-3-9479-1222 † Present address: CSIRO Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia. Abstract: Emerging viral diseases have become a significant concern due to their potential con- sequences for animal and environmental health. Over the past few decades, it has become clear that viruses emerging in wildlife may pose a major threat to vulnerable or endangered species. Diphtheritic stomatitis, likely to be caused by an avipoxvirus, has been recognised as a signifi- cant cause of mortality for the endangered yellow-eyed penguin (Megadyptes antipodes) in New Zealand. However, the avipoxvirus that infects yellow-eyed penguins has remained uncharacterised. Here, we report the complete genome of a novel avipoxvirus, penguinpox virus 2 (PEPV2), which was derived from a virus isolate obtained from a skin lesion of a yellow-eyed penguin. The PEPV2 genome is 349.8 kbp in length and contains 327 predicted genes; five of these genes were found to be unique, while a further two genes were absent compared to shearwaterpox virus 2 (SWPV2).
    [Show full text]
  • Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics
    viruses Article Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics Ashleigh F. Porter 1, Mang Shi 1, John-Sebastian Eden 1,2 , Yong-Zhen Zhang 3,4 and Edward C. Holmes 1,3,* 1 Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life & Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] (A.F.P.); [email protected] (M.S.); [email protected] (J.-S.E.) 2 Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia 3 Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 201500, China; [email protected] 4 Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China * Correspondence: [email protected]; Tel.: +61-2-9351-5591 Received: 17 October 2019; Accepted: 23 November 2019; Published: 25 November 2019 Abstract: DNA viruses comprise a wide array of genome structures and infect diverse host species. To date, most studies of DNA viruses have focused on those with the strongest disease associations. Accordingly, there has been a marked lack of sampling of DNA viruses from invertebrates. Bulk RNA sequencing has resulted in the discovery of a myriad of novel RNA viruses, and herein we used this methodology to identify actively transcribing DNA viruses in meta-transcriptomic libraries of diverse invertebrate species. Our analysis revealed high levels of phylogenetic diversity in DNA viruses, including 13 species from the Parvoviridae, Circoviridae, and Genomoviridae families of single-stranded DNA virus families, and six double-stranded DNA virus species from the Nudiviridae, Polyomaviridae, and Herpesviridae, for which few invertebrate viruses have been identified to date.
    [Show full text]
  • Avian Pox in Shearwaters on Lord Howe Island
    Association of Avian Veterinarians Australasian Committee Ltd. Annual Conference Proceedings Auckland New Zealand 2017. 25: 63-68. Avian Pox in Shearwaters on Lord Howe Island Subir Sarker1, Shubhagata Das2, Jennifer L. Lavers3, Ian Hutton4, Karla Helbig1, Chris Upton5, Jacob Imbery5, and Shane R. Raidal2 1. Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, 3086 2. School of Animal and Veterinary Sciences, Charles Sturt University, NSW 2678 3. Institute for Marine and Antarctic Studies, University of Tasmania, TAS 7004 4. Lord Howe Island Museum, Lord Howe Island, NSW 2898 5. Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada. Abstract fungal infections are common and contribute to mortality (van Riper and Forrester, 2007). Until recently six avipox- Avipoxvirus infections occur in a wide range of bird spe- virus genomes were published; a pathogenic American cies worldwide. In Australia pox is common in the Aus- strain of Fowlpox virus (Afonso et al., 2000), an attenuat- tralian magpie (Cracticus tibicen), Currawongs (Strepera ed European strain of Fowlpox virus (Laidlaw and Skinner spp.) and Silvereyes (Zosterops lateralis) but very little , 2004), a virulent Canarypox virus (Tulman et al., 2004), a is known about the evolution of this family of viruses pathogenic South African strain of Pigeonpox virus, a Pen- or the disease ecology of avian poxviruses in seabirds. guinpox virus (Offerman et al., 2014) and a pathogenic Pox lesions have been seen in colonies of Shy Albatross Hungarian strain of Turkeypox virus (Banyai et al., 2015). (Thalassarche cauta) in Bass Strait but the epidemiology of pox in pelagic birds is not very well elucidated.
    [Show full text]
  • Pathogenicity of Avipoxviruses in Chickens Isolated from Field Outbreaks Reported in Chhattisgarh
    Journal of Animal Research: v.8 n.5, p. 789-795. October 2018 DOI: 10.30954/2277-940X.10.2018.8 Pathogenicity of Avipoxviruses in Chickens Isolated from Field Outbreaks Reported in Chhattisgarh Varsha Rani Gilhare*, S.D. Hirpurkar, C. Sannat and N. Rawat Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Chhattisgarh Kamdhenu Vishwavidyalay, Anjora, Durg, Chhattisgarh, INDIA *Corresponding author: VR Gilhare; Email: [email protected] Received: 18 June, 2018 Revised: 02 Oct., 2018 Accepted: 08 Oct., 2018 ABSTRACT Virulence of field isolates ofAvipoxviruses was assayed by pathogenicity test performed in 5 weeks old unvaccinated chickens. Viruses as dry scab were collected from naturally pox infected chickens, turkeys and pigeon and propagated in CAM of embryonated chickens upto various passages. In two separate trials 1 and 2, the chickens were infected with 5th and 20th passage CAM suspension, respectively by feather follicle method. All chicken groups in both trials (except control group) developed primary lesions as ‘take’ reaction from 48 to 72 hr PI and there after further progressive development of primary lesion did not differ among field isolates. In trial 1, secondary stage began with recovery from primary lesions at feather follicle, spread of infection to comb and wattles with development of secondary pox lesions and finally recovery from disease was observed after 15 days in FPV and TPV infected chickens, but not in PPV infected chickens. In trial 2, secondary pox lesions were not observed in any of the chickens, indicating that 20 passage virus induced ‘take’ at site without further spread of infection.
    [Show full text]
  • Sarker Subir Bmcgenomics 2017.Pdf
    UVicSPACE: Research & Learning Repository _____________________________________________________________ Faculty of Science Faculty Publications _____________________________________________________________ Genomic characterization of two novel pathogenic avipoxviruses isolated from pacific shearwaters (Ardenna spp.) Subir Sarker, Shubhagata Das, Jennifer L. Lavers, Ian Hutton, Karla Helbig, Jacob Imbery, Chris Upton, and Shane R. Raidal 13 April 2017 © 2017 Sarker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. http://creativecommons.org/licenses/by/4.0 This article was originally published at: https://doi.org/10.1186/s12864-017-3680-z Citation for this paper: Sarker, S.; Das, S.; Lavers, J.L.; Hutton, I.; Helbig, K.; … & Raidal, S.R. (2017). Genomic characterization of two novel pathogenic avipoxviruses isolated from pacific shearwaters (Ardenna spp.). BMC Genomics, 18(298). https://doi.org/10.1186/s12864-017-3680-z Sarker et al. BMC Genomics (2017) 18:298 DOI 10.1186/s12864-017-3680-z RESEARCH ARTICLE Open Access Genomic characterization of two novel pathogenic avipoxviruses isolated from pacific shearwaters (Ardenna spp.) Subir Sarker1* , Shubhagata Das2, Jennifer L. Lavers3, Ian Hutton4, Karla Helbig1, Jacob Imbery5, Chris Upton5 and Shane R. Raidal2 Abstract Background: Over the past 20 years, many marine seabird populations have been gradually declining and the factors driving this ongoing deterioration are not always well understood. Avipoxvirus infections have been found in a wide range of bird species worldwide, however, very little is known about the disease ecology of avian poxviruses in seabirds. Here we present two novel avipoxviruses from pacific shearwaters (Ardenna spp), one from a Flesh-footed Shearwater (A. carneipes) (SWPV-1) and the other from a Wedge-tailed Shearwater (A.
    [Show full text]
  • A Multiplex PCR for Detection of Poxvirus and Papillomavirus in Cutaneous Warts from Live Birds and Museum Skins
    Submitted, accepted and published by AVIAN DISEASES 55:545–553, 2011 A Multiplex PCR for Detection of Poxvirus and Papillomavirus in Cutaneous Warts from Live Birds and Museum Skins a AG BG C D C E C J . Pe´rez-Tris, R. A. J. Williams, E. Abel-Ferna´ndez, J. Barreiro, J. J. Conesa, J. Figuerola, M. Martinez-Mart´ınez, A CF A. Ram´ırez, and L. Benitez ADepartmento de Zoolog´ıa y Antropolog´ıa F´ısica, Facultad de Biolog´ıa, Universidad Complutense de Madrid, C/ Jose Antonio Novais, 28040, Madrid, Spain BNatural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, KS 66045 CDepartmento de Microbiolog´ıa III, Facultad de Biolog´ıa, Universidad Complutense de Madrid, C/ Jose Antonio Novais, 28040, Madrid, Spain DMuseo Nacional de Ciencias Naturales, C/Jose´ Gutie´rrez Abascal 2, 28006 Madrid, Spain EEstacion Biologica de Don˜ ana, Consejo Superior de Investigaciones Cient´ıficas, 41013 Seville, Spain SUMMARY. Viral cutaneous lesions are frequent in some bird populations, though we are generally ignorant of the causal agent. In some instances, they represent a threat to livestock and wildlife health. We present here a multiplex PCR which detects and distinguishes infection by two such agents, avipoxviruses and papillomaviruses, in avian hosts. We assayed biopsies and superficial skin swabs from field and preserved museum skin specimens. Ninety-three percent of samples from symptomatic specimens tested positive for the presence of avipox (n 5 23) or papillomavirus (n 5 5). Sixteen and five sequences, corresponding to the P4b and L1 genes, were obtained from avipox and papillomavirus, respectively.
    [Show full text]
  • Taqman Quantitative Real-Time PCR for Detecting Avipoxvirus DNA in Various Sample
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.983460; this version posted March 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Baek et al. 1 TaqMan quantitative real-time PCR for detecting Avipoxvirus DNA in various sample 2 types from hummingbirds 3 Hanna E. Baek¹, Ravinder N. Sehgal¹, Ruta R. Bandivadekar², Pranav Pandit3, Michelle Mah², 4 and Lisa A. Tell² 5 6 1Dept. of Biology, San Francisco State University, San Francisco, CA, USA 7 ²Dept of Medicine and Epidemiology, School of Veterinary Medicine, University of California, 8 Davis, CA, USA 9 3EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, 10 University of California, Davis, CA, USA 11 12 Co-Corresponding Authors: 13 Lisa A. Tell ([email protected]) 14 Ravinder Sehgal ([email protected]) 15 16 17 18 19 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.983460; this version posted March 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Baek et al. 22 Abstract 23 Background: 24 Avian pox is a viral disease documented in a wide range of bird species. Disease related 25 detrimental effects can cause dyspnea and dysphagia, therefore birds with high metabolic 26 requirements, such as hummingbirds, are especially vulnerable.
    [Show full text]
  • Pathology of Avipoxvirus Isolates in Chicken Embryonated Eggs
    Int.J.Curr.Microbiol.App.Sci (2019) 8(9): 422-430 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 09 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.809.051 Pathology of Avipoxvirus Isolates in Chicken Embryonated Eggs Bhavesh Sharma1, Nawab Nashiruddullah1*, Jafrin Ara Ahmed2, Sankalp Sharma1 and D. Basheer Ahamad3 1Division of Veterinary Pathology, 2Division of Veterinary Physiology & Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Science and Technology of Jammu, RS Pura-181102, India 3Department of Veterinary Pathology, Veterinary College and Research Institute, Tamil Nadu University of Veterinary and Animal Sciences, Tirunelveli, India *Corresponding author ABSTRACT K e yw or ds Fowlpox virus (FWPV) and Pigeonpox virus (PGPV) isolates from domesticated fowls and Avipoxvirus , pigeons from Jammu region were inoculated on chorioallantoic membrane (CAM) of Chicken chicken embryonated eggs (CEE) through three passage levels to observe their cytopathic embryonated eggs effects (CPE) and underlying pathology. Development of PGPV induced lesions was (CEE), earlier than FWPV, and more severe. PGPV progressed from small white opaque lesions Chorioallantoic from first passage; to CAM thickening, haemorrhages and very prominent and extensive membrane (CAM), pock lesions at second; and by third passage, focal areas of necrosis was evident. With Cytopathic effect FWPV, opaque thickening with haemorrhages at first passage; to tiny, discrete, white foci (CPE) , Fowlpoxvirus on second; and at third passage, small, round, raised circular white pock were distinctly visible. CAM histology revealed PGPV induced hyperplasia of the chorionic epithelium; (FWPV), Pigeonpoxvirus oedema, thrombosis, massive fibroblastic proliferation, necrosis and islands of vacuolated (PGPV) epithelial cells containing eosinophilic intra-cytoplasmic inclusions in the mesoderm.
    [Show full text]
  • The Complete Genome Sequences of Poxviruses Isolated from a Penguin
    Offerman et al. BMC Genomics 2014, 15:463 http://www.biomedcentral.com/1471-2164/15/463 RESEARCH ARTICLE Open Access The complete genome sequences of poxviruses isolated from a penguin and a pigeon in South Africa and comparison to other sequenced avipoxviruses Kristy Offerman1†, Olivia Carulei1†, Anelda Philine van der Walt2, Nicola Douglass1 and Anna-Lise Williamson1,3,4* Abstract Background: Two novel avipoxviruses from South Africa have been sequenced, one from a Feral Pigeon (Columba livia) (FeP2) and the other from an African penguin (Spheniscus demersus) (PEPV). We present a purpose-designed bioinformatics pipeline for analysis of next generation sequence data of avian poxviruses and compare the different avipoxviruses sequenced to date with specific emphasis on their evolution and gene content. Results: The FeP2 (282 kbp) and PEPV (306 kbp) genomes encode 271 and 284 open reading frames respectively and are more closely related to one another (94.4%) than to either fowlpox virus (FWPV) (85.3% and 84.0% respectively) or Canarypox virus (CNPV) (62.0% and 63.4% respectively). Overall, FeP2, PEPV and FWPV have syntenic gene arrangements; however, major differences exist throughout their genomes. The most striking difference between FeP2 and the FWPV-like avipoxviruses is a large deletion of ~16 kbp from the central region of the genome of FeP2 deleting a cc-chemokine-like gene, two Variola virus B22R orthologues, an N1R/p28-like gene and a V-type Ig domain family gene. FeP2 and PEPV both encode orthologues of vaccinia virus C7L and Interleukin 10. PEPV contains a 77 amino acid long orthologue of Ubiquitin sharing 97% amino acid identity to human ubiquitin.
    [Show full text]
  • Fowlpox Virus 4B Gene
    Techne ® qPCR test Fowlpox Virus 4b gene 150 tests For general laboratory and research use only Quantification of Fowlpox Virus genomes. 1 Advanced kit handbook HB10.03.07 Introduction to Fowlpox Virus Fowlpox is an avian disease caused by a double-stranded DNA virus of the genus Avipoxvirus which belongs to the Poxviridae family. The virus is generally brick-shaped measuring 330 x 280 x 220 nm with an outer coat of randomly arranged surface tubules covering an envelope which surrounds the viral core. There the linear genome of the virus, approximately 288 Kbp in length and encoding around 260 genes is located within a biconcave nucleoid. Outside the core, lateral bodies are found in the concaved recess on each side of the core. The primary method for dissemination of the virus is considered to be via mechanical transmission, although airborne transmission is also suspected in many cases. Infection can occur through injured or lacerated skin. Upon entering the cell the virus loses the outer membrane and subsequently after the second stage of the uncoating process, only the viral core moves through the cytoplasm. Once uncoated, the DNA undergoes transcription in two distinct stages temporally separated by viral genome replication. The replicated genome and translated proteins then assemble into a new viral particle in the host cytoplasm and exit the host cell using actin tails. Infection with Fowlpox virus causes dry skin lesions around the comb, eyes and wattles as well as diptheric lesions in the oral cavity and upper respiratory tract. Infection with this virus can lead to a potential drop in egg production, retarded growth in broilers and in some cases death.
    [Show full text]
  • Construction of a Recombinant Avipoxvirus Expressing
    Zanotto et al. Virol J (2021) 18:50 https://doi.org/10.1186/s12985-021-01519-x RESEARCH Open Access Construction of a recombinant avipoxvirus expressing the env gene of Zika virus as a novel putative preventive vaccine Carlo Zanotto1, Francesca Paolini2, Antonia Radaelli1*† and Carlo De Giuli Morghen3† Abstract Background: Zika virus (ZIKV) has been declared a public health emergency that requires development of an efec- tive vaccine, as it might represent an international threat. Methods: Here, two novel DNA-based (pVAXzenv) and fowlpox-based (FPzenv) recombinant putative vaccine can- didates were constructed that contained the cPrME genes of ZIKV. The env gene inserted into the fowlpox vector was verifed for correct transgene expression by Western blotting and by immunofuorescence in diferent cell lines. The production of virus-like particles as a result of env gene expression was also demonstrated by electron microscopy. BALB/c mice were immunosuppressed with dexamethasone and immunized following a prime–boost strategy in a heterologous protocol where pVAXzenv was followed by FPzenv, to evaluate the immunogenicity of the Env protein. The mice underwent a challenge with an epidemic ZIKV after the last boost. Results: These data show that the ZIKV Env protein was correctly expressed in both normal human lung fbroblasts (MRC-5 cells) and green monkey kidney (Vero) cells infected with FPzenv, and that the transgene expression lasted for more than 2 weeks. After mucosal administration of FPzenv, the immunized mice showed specifc and signifcantly higher humoral responses compared to the control mice. However, virus neutralizing antibodies were not detected using plaque reduction assays.
    [Show full text]
  • Prevalence and Genetic Diversity of Avipoxvirus in House Sparrows in Spain
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UDORA - University of Derby Online Research Archive RESEARCH ARTICLE Prevalence and Genetic Diversity of Avipoxvirus in House Sparrows in Spain Jorge Ruiz-MartõÂnez1, Martina Ferraguti2, Jordi Figuerola2,3, Josue MartõÂnez-de la Puente2,3, Richard Alexander John Williams4¤, Amparo Herrera-Dueñas4, Jose Ignacio Aguirre4, Ramo n Soriguer2,3, Clara Escudero1, MichaeÈl Andre Jean Moens4, Javier PeÂrez-Tris4, Laura BenõÂtez1* 1 Departamento de MicrobiologõÂa III, Facultad de BiologõÂa, Universidad Complutense de Madrid, Madrid, Spain, 2 EstacioÂn BioloÂgica de Doñana, Consejo Superior de Investigaciones CientõÂficas, Sevilla, Spain, 3 CIBER EpidemiologõÂa y Salud PuÂblica (CIBERESP), Spain, 4 Departamento de ZoologõÂa y AntropologÂõa a1111111111 FõÂsica, Facultad de BiologõÂa, Universidad Complutense de Madrid, Madrid, Spain a1111111111 a1111111111 ¤ Current Address: Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, a1111111111 Kalmar, Sweden a1111111111 * [email protected] Abstract OPEN ACCESS Avipoxvirus (APV) is a fairly common virus affecting birds that causes morbidity and mortal- Citation: Ruiz-MartõÂnez J, Ferraguti M, Figuerola J, ity in wild and captive birds. We studied the prevalence of pox-like lesions and genetic diver- MartõÂnez-de la Puente J, Williams RAJ, Herrera- sity of APV in house sparrows (Passer domesticus) in natural, agricultural and urban areas Dueñas A, et al. (2016) Prevalence and Genetic in southern Spain in 2013 and 2014 and in central Spain for 8 months (2012±2013). Overall, Diversity of Avipoxvirus in House Sparrows in Spain. PLoS ONE 11(12): e0168690. doi:10.1371/ 3.2% of 2,341 house sparrows visually examined in southern Spain had cutaneous lesions journal.pone.0168690 consistent with avian pox.
    [Show full text]