Avian Pox in Shearwaters on Lord Howe Island
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evaluation of T-Cell and B-Cell Epitopes and Design of Multivalent Vaccines Against Htlv-1 Diseases
EVALUATION OF T-CELL AND B-CELL EPITOPES AND DESIGN OF MULTIVALENT VACCINES AGAINST HTLV-1 DISEASES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Roshni Sundaram, M.S. * * * * * The Ohio State University 2003 Dissertation Committee: Approved by Professor Pravin T.P. Kaumaya, Adviser Professor Christopher M. Walker Adviser Professor Neil R. Baker Department of Microbiology Professor Marshall V. Williams ABSTRACT Human T-cell lymphotropic virus type I (HTLV-1) is a C type retrovirus that is the causative agent of an aggressive T-cell malignancy, adult T-cell leukemia/lymphoma (ATLL). The virus is also implicated in a number of inflammatory disorders, the most prominent among them being HTLV-1 associated myelopathy or tropical spastic paraparesis (HAM/TSP). HTLV-1, like many viruses that cause chronic infection, has adapted to persist in the face of an active immune response in infected individuals. The viral transactivator Tax is the primary target of the cellular immune response and humoral responses are mainly directed against the envelope protein. Vaccination against HTLV-1 is a feasible option as there is very little genetic and antigenic variability. Vaccination regimes against chronic viruses must be aimed at augmenting the immune response to a level that is sufficient to clear the virus. This requires that the vaccine delivers a potent stimulus to the immune system that closely resembles natural infection to activate both the humoral arm and the cellular arm. It is also clear that multicomponent vaccines may be more beneficial in terms of increasing the breadth of the immune response as well as being applicable in an outbred population. -
Evolution of the PRD1-Adenovirus Lineage: a Viral Tree of Life Incongruent with the Cellular 3 Universal Tree of Life 4 5 Authors 6 Anthony C
bioRxiv preprint doi: https://doi.org/10.1101/741942; this version posted August 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title 2 Evolution of the PRD1-adenovirus lineage: a viral tree of life incongruent with the cellular 3 universal tree of life 4 5 Authors 6 Anthony C. Woo1,2*, Morgan Gaia1,2, Julien Guglielmini3, Violette Da Cunha1,2 and Patrick 7 Forterre1,2* 8 9 Affiliations 1 10 Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Department of 11 Microbiology, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France. 2 12 Department of Microbiology, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 13 Institute for Integrative Biology of the Cell (I2BC), Bâtiment 21, Avenue de la Terrasse, 14 91190 Gif-sur-Yvette cedex, France. 3 15 HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, Institut Pasteur, 25-28 16 Rue du Docteur Roux, 75015 Paris, France 17 *corresponding authors: 18 Anthony Woo: [email protected] 19 Patrick Forterre: [email protected] 20 21 Abstract 22 Double-stranded DNA viruses of the PRD1-adenovirus lineage are characterized by 23 homologous major capsid proteins containing one or two β-barrel domains known as the jelly 24 roll folds. Most of them also share homologous packaging ATPases of the FtsK/HerA 25 superfamily P-loop ATPases. Remarkably, members of this lineage infect hosts from the three 26 domains of life, suggesting that viruses from this lineage could be very ancient and share a 27 common ancestor. -
A Brief Speculative History of Avipoxvirus in New Zealand
A brief, speculative history of avipoxvirus in New Zealand Brett Gartrell, Laryssa Howe, Maurice Alley, Hye-Jeong Ha Intro to avipoxvirus (APV) • Global distribution • Reports in >280 bird species, 70 families, 20 orders globally • Economic losses in domestic poultry • Biodiversity losses in island ecosystems (Hawaii, Galapagos, Canary Islands) in conjunction with avian malaria (vaccinia virus, copyright E. Niles). APV infection characteristics • Excellent environmental stability • Need a break in the epithelium for infection to establish • Insect and mechanical vectors are main route of infection • Host specificity varies between strains APV molecular characteristics • Fowlpox virus is the type species of the Avipoxvirus genus • complete genomic sequences of Fowlpox virus and Canarypox virus • The two genomes are highly diverged, sharing only ca. 70% sequence identity • The 365-kbp genome of Canarypox virus is larger than that of Fowlpox virus (288 kbp) and shows significant differences in gene content APV phylogeny • Initially assigned strain/species status on host affected but confused by multi-host pathogenic strains • DNA sequences of the 4b core protein coding genomic region currently used. • Wide variation in genome has limited other pan-genus PCR primers • the vast majority of avian poxvirus isolates clustered into three major clades, represented by the Fowlpox virus (clade A), the Canarypox virus (clade B), and the Psittacinepox virus (clade C) APV phylogeny from NZ birds (HJ Ha PhD) Silvereye © P Sorrell Ha, H.J., Howe, L., Alley, M., Gartrell, B. 2011. The phylogenetic analysis of avipoxvirus in New Zealand. Veterinary Microbiology 150: 80–87 APV distribution in NZ Ha, H.J., Howe, L., Alley, M., Gartrell, B. -
Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Yellow-Eyed Penguin (Megadyptes Antipodes)
viruses Article Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Yellow-Eyed Penguin (Megadyptes antipodes) Subir Sarker 1,* , Ajani Athukorala 1, Timothy R. Bowden 2,† and David B. Boyle 2 1 Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; [email protected] 2 CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia; [email protected] (T.R.B.); [email protected] (D.B.B.) * Correspondence: [email protected]; Tel.: +61-3-9479-2317; Fax: +61-3-9479-1222 † Present address: CSIRO Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia. Abstract: Emerging viral diseases have become a significant concern due to their potential con- sequences for animal and environmental health. Over the past few decades, it has become clear that viruses emerging in wildlife may pose a major threat to vulnerable or endangered species. Diphtheritic stomatitis, likely to be caused by an avipoxvirus, has been recognised as a signifi- cant cause of mortality for the endangered yellow-eyed penguin (Megadyptes antipodes) in New Zealand. However, the avipoxvirus that infects yellow-eyed penguins has remained uncharacterised. Here, we report the complete genome of a novel avipoxvirus, penguinpox virus 2 (PEPV2), which was derived from a virus isolate obtained from a skin lesion of a yellow-eyed penguin. The PEPV2 genome is 349.8 kbp in length and contains 327 predicted genes; five of these genes were found to be unique, while a further two genes were absent compared to shearwaterpox virus 2 (SWPV2). -
Safety of Intravenous Administration of a Canarypox Virus Encoding The
Cancer Gene Therapy (2003) 10, 509–517 r 2003 Nature Publishing Group All rights reserved 0929-1903/03 $25.00 www.nature.com/cgt Safety of intravenous administration of a canarypox virus encoding the human wild-type p53 gene in colorectal cancer patients Anand G Menon,1 Peter JK Kuppen,1 Sjoerd H van der Burg,2 Rienk Offringa,2 Marie Claude Bonnet,5 Bert IJ Harinck,1 Rob AEM Tollenaar,1 Anke Redeker,2 Hein Putter,4 Philippe Moingeon,5 Hans Morreau,3 Cornelis JM Melief,2 and Cornelis JH van de Velde1 1Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands; 2Department of Immunohematology and Bloodbank, Leiden University Medical Center, Leiden, The Netherlands; 3Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands; 4Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands; and 5Aventis Pasteur, Lyon, France. Overexpression of p53 occurs in more than 50% of colorectal cancers. Therefore, p53 represents an attractive target antigen for immunotherapy. We assessed the safety of a canarypox virus encoding the human wild-type p53 gene given intravenously to end- stage colorectal cancer patients in a three-step dose escalation study aimed at inducing p53 immune responses. Patients with metastatic disease of p53-overexpressing colorectal cancers were vaccinated three times at 3-week intervals, each time with 106.5 7.0 7.5 CCID50 (CCID50 ¼ cell culture infectious dose 50%; group 1, n ¼ 5), 10 CCID50 (group 2, n ¼ 5) or 10 CCID50 (group 3, n ¼ 6). Vital signs and the occurrence of adverse events were monitored and blood was analyzed for biochemical and hematological parameters as well as signs of auto-immune safety. -
Pathogenicity of Avipoxviruses in Chickens Isolated from Field Outbreaks Reported in Chhattisgarh
Journal of Animal Research: v.8 n.5, p. 789-795. October 2018 DOI: 10.30954/2277-940X.10.2018.8 Pathogenicity of Avipoxviruses in Chickens Isolated from Field Outbreaks Reported in Chhattisgarh Varsha Rani Gilhare*, S.D. Hirpurkar, C. Sannat and N. Rawat Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Chhattisgarh Kamdhenu Vishwavidyalay, Anjora, Durg, Chhattisgarh, INDIA *Corresponding author: VR Gilhare; Email: [email protected] Received: 18 June, 2018 Revised: 02 Oct., 2018 Accepted: 08 Oct., 2018 ABSTRACT Virulence of field isolates ofAvipoxviruses was assayed by pathogenicity test performed in 5 weeks old unvaccinated chickens. Viruses as dry scab were collected from naturally pox infected chickens, turkeys and pigeon and propagated in CAM of embryonated chickens upto various passages. In two separate trials 1 and 2, the chickens were infected with 5th and 20th passage CAM suspension, respectively by feather follicle method. All chicken groups in both trials (except control group) developed primary lesions as ‘take’ reaction from 48 to 72 hr PI and there after further progressive development of primary lesion did not differ among field isolates. In trial 1, secondary stage began with recovery from primary lesions at feather follicle, spread of infection to comb and wattles with development of secondary pox lesions and finally recovery from disease was observed after 15 days in FPV and TPV infected chickens, but not in PPV infected chickens. In trial 2, secondary pox lesions were not observed in any of the chickens, indicating that 20 passage virus induced ‘take’ at site without further spread of infection. -
HIV VACCINE RESEARCH and DEVELOPMENT CD8 Group
GLOSSARY OF KEY HIV VACCINE TERMS Immunogenicity – when attributed to a test vaccine, defines the • Since 2001, USAID has contributed $134 million to help discover an HIV vaccine. Currently, USAID is committing annual product’s ability to cause the body to produce antibodies or T-cells funding of $28 million through 2011 for HIV vaccine R&D. that may protect against an infection, disease, or foreign substance. • USAID provides support for all phases of HIV vaccine applied R&D, infrastructure, and capacity building for clinical trial Innate Immunity – a relatively nonspecific response that protects conduct, public communications, and policy analysis through a partnership with the International AIDS Vaccine Initiative. against a whole class or type of invaders but does not generate USAID does not support basic research. TECHNICAL ISSUE BRIEF immune memory (see adaptive immune response). Killer T-cells – a group of T-cells that is activated by helper T-cells • USAID plans involvement with the Global HIV/AIDS Vaccine Enterprise. PATHWAYS OF DISCOVERY: and has the ability to destroy cells infected by foreign invaders (such as viruses). Also known as cytotoxic T-cells, they may belong to the • USAID facilitates coordination between HIV vaccine clinical trial activities and HIV/AIDS prevention, care, and treatment HIV VACCINE RESEARCH AND DEVELOPMENT CD8 group. programs in developing countries. Lymphocytes – the diverse set of white blood cells (each with different functions) that are responsible for immune responses. virologists convenes twice a year to review the R&D portfolio activities. As the Global HIV/AIDS Vaccine Enterprise evolves Introduction There are two main types: B-cells (responsible for producing anti- under consideration by the organization. -
Sarker Subir Bmcgenomics 2017.Pdf
UVicSPACE: Research & Learning Repository _____________________________________________________________ Faculty of Science Faculty Publications _____________________________________________________________ Genomic characterization of two novel pathogenic avipoxviruses isolated from pacific shearwaters (Ardenna spp.) Subir Sarker, Shubhagata Das, Jennifer L. Lavers, Ian Hutton, Karla Helbig, Jacob Imbery, Chris Upton, and Shane R. Raidal 13 April 2017 © 2017 Sarker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. http://creativecommons.org/licenses/by/4.0 This article was originally published at: https://doi.org/10.1186/s12864-017-3680-z Citation for this paper: Sarker, S.; Das, S.; Lavers, J.L.; Hutton, I.; Helbig, K.; … & Raidal, S.R. (2017). Genomic characterization of two novel pathogenic avipoxviruses isolated from pacific shearwaters (Ardenna spp.). BMC Genomics, 18(298). https://doi.org/10.1186/s12864-017-3680-z Sarker et al. BMC Genomics (2017) 18:298 DOI 10.1186/s12864-017-3680-z RESEARCH ARTICLE Open Access Genomic characterization of two novel pathogenic avipoxviruses isolated from pacific shearwaters (Ardenna spp.) Subir Sarker1* , Shubhagata Das2, Jennifer L. Lavers3, Ian Hutton4, Karla Helbig1, Jacob Imbery5, Chris Upton5 and Shane R. Raidal2 Abstract Background: Over the past 20 years, many marine seabird populations have been gradually declining and the factors driving this ongoing deterioration are not always well understood. Avipoxvirus infections have been found in a wide range of bird species worldwide, however, very little is known about the disease ecology of avian poxviruses in seabirds. Here we present two novel avipoxviruses from pacific shearwaters (Ardenna spp), one from a Flesh-footed Shearwater (A. carneipes) (SWPV-1) and the other from a Wedge-tailed Shearwater (A. -
First Phylogenetic Analysis of Avipoxvirus (APV) in Brazil1
Pesq. Vet. Bras. 36(5):357-362, maio 2016 DOI: 10.1590/S0100-736X2016000500001 First phylogenetic analysis of Avipoxvirus (APV) in Brazil1 2 2 2 2 3 2 2 4 Hiran C. Kunert-Filho *, Samuel P. Cibulski , Fabrine2 Finkler , Tiela T. Grassotti , Fátima R.F. Jaenisch , Kelly C.T. de Brito , Daiane Carvalho , Maristela Lovato ABSTRACT.- and Benito G. de Brito First phylogenetic analysis of Avipoxvi- rus (APV) in Kunert-FilhoBrazil. Pesquisa H.C., Veterinária Cibulski S.P., Brasileira Finkler 36(5):357-362F., Grassotti T.T., Jaenisch F.R.F., Brito K.C.T., Carvalho D., Lovato M. & Brito B.G. 2016. Laboratório de Saúde E-mail:das Aves e Inovação Tecnológica, Instituto de Pesquisas Veterinárias Desidério Finamor, FEPAGRO Saúde Animal, Estrada do Conde 6000, Eldorado do Sul, RS 92990-000, Brazil. [email protected] This study represents the first phylogenetic analysis of avian poxvirus recovered from- turkeys in Brazil. The clinical disorders related to fowlpox herein described occurred in a turkey housing system. The birds displaying characteristic pox lesions which were ob served on the neck, eyelids and beak of the turkeys. Four affected turkeys were randomly chosen, euthanized and necropsied. Tissues samples were submitted for histopathologicalP4b analysis and total DNA was further extracted, amplified by conventional PCR, sequenced- and phylogenetically analyzed. Avian poxviruses specific PCR was performed basedP4b on core protein gene sequence. The histological analysis revealed dermal inflammatory pro- cess, granulation tissue, hyperplasia of epithelial cells and inclusion bodies. The ® gene was detected in all samples. Sequencing revealed a 100% nucleotide and amino acid se quence identity among the samples, andAvipoxvirus the sequences were deposited in GenBank . -
A Multiplex PCR for Detection of Poxvirus and Papillomavirus in Cutaneous Warts from Live Birds and Museum Skins
Submitted, accepted and published by AVIAN DISEASES 55:545–553, 2011 A Multiplex PCR for Detection of Poxvirus and Papillomavirus in Cutaneous Warts from Live Birds and Museum Skins a AG BG C D C E C J . Pe´rez-Tris, R. A. J. Williams, E. Abel-Ferna´ndez, J. Barreiro, J. J. Conesa, J. Figuerola, M. Martinez-Mart´ınez, A CF A. Ram´ırez, and L. Benitez ADepartmento de Zoolog´ıa y Antropolog´ıa F´ısica, Facultad de Biolog´ıa, Universidad Complutense de Madrid, C/ Jose Antonio Novais, 28040, Madrid, Spain BNatural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, KS 66045 CDepartmento de Microbiolog´ıa III, Facultad de Biolog´ıa, Universidad Complutense de Madrid, C/ Jose Antonio Novais, 28040, Madrid, Spain DMuseo Nacional de Ciencias Naturales, C/Jose´ Gutie´rrez Abascal 2, 28006 Madrid, Spain EEstacion Biologica de Don˜ ana, Consejo Superior de Investigaciones Cient´ıficas, 41013 Seville, Spain SUMMARY. Viral cutaneous lesions are frequent in some bird populations, though we are generally ignorant of the causal agent. In some instances, they represent a threat to livestock and wildlife health. We present here a multiplex PCR which detects and distinguishes infection by two such agents, avipoxviruses and papillomaviruses, in avian hosts. We assayed biopsies and superficial skin swabs from field and preserved museum skin specimens. Ninety-three percent of samples from symptomatic specimens tested positive for the presence of avipox (n 5 23) or papillomavirus (n 5 5). Sixteen and five sequences, corresponding to the P4b and L1 genes, were obtained from avipox and papillomavirus, respectively. -
A History of AIDS: Looking Back to See Ahead
S94 Warner C. Greene Eur. J. Immunol. 2007. 37: S94–102 Breakthroughs in Immunology A history of AIDS: Looking back to see ahead Warner C. Greene Gladstone Institute of Virology and Immunology, University of California, Received 5/7/05 San Francisco, CA, USA Revised 22/8/07 Accepted 4/9/07 [DOI 10.1002/eji.200737441] Since breaking onto the scene 26 years ago, HIV has proven an indefatigable foe. Over 60 million people have been infected with this retrovirus, and 25 million have already died of AIDS. HIV infection is hitting the hardest in the developing world [1]. Tragically, Key words: 1600 babies continue to acquire HIV every day from their infected mothers. Over 12 AIDS Á Drug design/ million children have also been orphaned by AIDS, and this number will likely double by discovery Á Global 2010. With these sobering statistics as a backdrop, this feature traces the history of the pandemic Á HIV devastating HIV/AIDS pandemic and offers a view for what the future may hold. Á Infectious diseases Unfolding of a pandemic The appearance of AIDS in Haiti fueled speculation that the disease had originated there. Although not compell- ing, these theories stoked the fear and prejudice AIDS was first recognized in the summer of 1981 surrounding the disease. (Table 1). Young gay men began falling ill and dying of By late 1982, epidemiologic evidence indicated that opportunistic infections their immune systems should AIDS was an infectious disease transferred by bodily have fended off [2]. Those afflicted became emaciated fluids and by exposure to contaminated blood or blood and often developed dark purple lesions on their arms products [3]. -
Pathology of Avipoxvirus Isolates in Chicken Embryonated Eggs
Int.J.Curr.Microbiol.App.Sci (2019) 8(9): 422-430 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 09 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.809.051 Pathology of Avipoxvirus Isolates in Chicken Embryonated Eggs Bhavesh Sharma1, Nawab Nashiruddullah1*, Jafrin Ara Ahmed2, Sankalp Sharma1 and D. Basheer Ahamad3 1Division of Veterinary Pathology, 2Division of Veterinary Physiology & Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Science and Technology of Jammu, RS Pura-181102, India 3Department of Veterinary Pathology, Veterinary College and Research Institute, Tamil Nadu University of Veterinary and Animal Sciences, Tirunelveli, India *Corresponding author ABSTRACT K e yw or ds Fowlpox virus (FWPV) and Pigeonpox virus (PGPV) isolates from domesticated fowls and Avipoxvirus , pigeons from Jammu region were inoculated on chorioallantoic membrane (CAM) of Chicken chicken embryonated eggs (CEE) through three passage levels to observe their cytopathic embryonated eggs effects (CPE) and underlying pathology. Development of PGPV induced lesions was (CEE), earlier than FWPV, and more severe. PGPV progressed from small white opaque lesions Chorioallantoic from first passage; to CAM thickening, haemorrhages and very prominent and extensive membrane (CAM), pock lesions at second; and by third passage, focal areas of necrosis was evident. With Cytopathic effect FWPV, opaque thickening with haemorrhages at first passage; to tiny, discrete, white foci (CPE) , Fowlpoxvirus on second; and at third passage, small, round, raised circular white pock were distinctly visible. CAM histology revealed PGPV induced hyperplasia of the chorionic epithelium; (FWPV), Pigeonpoxvirus oedema, thrombosis, massive fibroblastic proliferation, necrosis and islands of vacuolated (PGPV) epithelial cells containing eosinophilic intra-cytoplasmic inclusions in the mesoderm.