Material Composition and Geochemical Characteristics of Technogenic River Silts E

Total Page:16

File Type:pdf, Size:1020Kb

Material Composition and Geochemical Characteristics of Technogenic River Silts E ISSN 0016-7029, Geochemistry International, 2019, Vol. 57, No. 13, pp. 1361–1454. © Pleiades Publishing, Ltd., 2019. Material Composition and Geochemical Characteristics of Technogenic River Silts E. P. Yanin* Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia *e-mail: [email protected] Received May 20, 2019; revised June 7, 2019; accepted June 7, 2019 Abstract—The paper discusses the results of many years of studying the material composition and geochem- ical characteristics, conditions, and processes in the formation of technogenic river silts: a new type of mod- ern river sediments formed in riverbeds within the boundaries and zones of influence of industrial–urbanized areas. The article examines the main sources and most important characteristics of technogenic sedimentary material flowing into rivers, as well as the geochemical conditions of technogenic alluvial sedimentation, the morphology and structure of technogenic silts, the extent of their spatial distribution in riverbeds, their grain size characteristics, and mineral and chemical composition. Special attention is paid to analyzing the group composition of organic matter in river sediments and the features of its transformation in pollution zones. The study analyzes the technogenic geochemical associations that form in silts in zones of influence of various impact sources, the features of the concentration and distribution of chemical elements, heavy metal specia- tion, the composition of exchangeable cations in technogenic silts and natural (background) alluvium, and the composition of silt water. Possible secondary transformations of technogenic silts and their significance as a long-term source of pollution of the water mass and hydrobionts are substantiated. Keywords: alluvium, sedimentary material, river, river channel, technogenic silt, city, pollution source, geo- chemistry, material composition, chemical elements, heavy metals, speciation, geochemical anomaly DOI: 10.1134/S0016702919130020 INTRODUCTION eral background that predetermines the lithological, mineralogical, and geochemical characteristics of allu- Sedimentogenesis, i.e., the formation of loose sedi- vial sediments. The end result of the concomitant ments, is rightly regarded as the most important process impact of these processes, manifested in the accumula- in the natural dynamics of the Earth’s surface. It is tion of alluvium, also depends on the hydrological manifested on the entire surface of our planet and in regime of watercourses, which in turn is governed by the fact is a global geochemical process associated with dif- interacting factors that directly or indirectly influence ferentiation of sedimentary material and migration of river runoff. Mechanical differentiation and fraction- chemical elements. The characteristics of the end prod- ation of solid phases, the physicochemical parameters ucts of sedimentogenesis largely depend on the input of the alluvial sedimentation setting, and processes that sources, the material composition of the material determine the behavior of chemical elements in the involved in sedimentation, and the geochemical condi- water column and bottom sediments, as well as seasonal tions of the sedimentation setting. In the general sedi- changes in the hydrological regime of the river, water mentogenesis scheme, two successive stages are distin- flow hydraulics, and the degree of saturation of its sed- guished: (1) catchment-area (slope–valley–delta) and imentary material—all of these are particularly import- (2) basin sedimentogenesis (Strakhov, 1983). One of ant for the material composition of alluvium and its the products that forms at the first stage is alluvium, i.e., subsequent transformation. Usually, under natural con- sediments that accumulate in river channels and valleys ditions, there is a certain sedimentary material balance and the floodplains and terraces making them up. in catchment area–riverbed and erosion–transport– Under natural conditions, the formation of alluvium accumulation systems. is controlled by the nature and intensity of erosion and In industrial–urbanized areas (in technogenic removal of soil and rock and the transport and deposi- landscapes), considerable masses of material are tion of sedimentary material by watercourses, all of involved in alluvial sedimentogenesis, the occurrence which act as an erosion–accumulation complex (Mak- of which in the sedimentary cycle is related to human kaveev and Chalov, 1986). The geological structure and economic activity and is characterized by a specific vegetative–soil cover of catchment areas create the gen- material composition and high concentrations of 1361 1362 YANIN speciation, the composition of exchangeable cations in technogenic silts and natural alluvium, and the com- Verbilki position of silt water. Possible secondary transforma- N tions of technogenic silts and their significance as a Vysokovsk Dmitrov Lotoshino Klin long-term source of pollution of the water mass and hydrobionts are substantiated. Volokolamsk Lake Senezhskoe Katuar The author is grateful to his teacher, doctor of geol- Shchelkovo ogy–mineralogy Yu.E. Saet (1934–1988), at whose Lake Glubokoe Obukhovo Moscow initiative and under whose leadership studies of the Moscow R. Kosinskie Lakes I processes and products of technogenic alluvial sedi- mentogenesis were begun in 1978. The author is par- Vereya Podolsk Khorlovo ticularly grateful to Academician E.M. Galimov for Voskresensk II valuable comments and friendly support in preparing Kolomna Karasevo the work for publication. Oka R. Zaraysk Kamira BRIEF DESCRIPTION OF THE MAIN AREAS AND RESEARCH METHODS Expeditionary studies, the results of which form the basis of this work, were carried out in different years within Moscow oblast (Moscow region), the Republic Fig. 1. Sketch map of Moscow region (not to scale): I, back- of Mordovia (Mordovia region), and central Kazakh- ground area; II, Pakhra River basin. stan (Kazakhstan region). These regions are character- ized, on the one hand, by a high degree of economic development, and on the other, their borders contain many chemical elements and compounds (Yanin, territories not directly affected by technogenesis. This 2002a, 2007b, 2018). This ultimately disrupts the made it possible to obtain material reflecting the differ- above-mentioned sedimentary material balance and ent intensities of technogenic impact on water systems leads to the formation of a new type of sediment in riv- and study a number of situations unique from the eco- erbeds: technogenic silts, which differ from natural logical and geochemical aspect, largely due to active channel alluvium in morphological appearance, technogenic alluvial sedimentation. material composition, physicochemical properties, and geochemical characteristics (Yanin, 1994, 2013a, Within the Moscow region, field studies were car- 2018). In most cases, it is the intensity and scale of ried out in the Pakhra River basin (the Pakhra proper technogenic alluvial sedimentation, the main material and nearly all of its tributaries), on rivers (Moscow, product of which is technogenic silts, that determine Klyazma, Vokhonka, Lavrovka, Lama, Vyaz, Protva, the most important ecological and geochemical fea- Osyotr, Sestra, Istra, etc.), and large streams in the tures of rivers in developed areas. zones of influence of various cities and towns (Mos- cow, Shchelkovo, Noginsk, Elektrostal, Obukhovo, The proposed work is based on materials and data Kolomna, Dmitrov, Voskresensk, Volokolamsk, obtained by the author in 1978–2018 in different Vereya, Khorlovo, Zaraysk, Lotoshino, Katuar, Kara- regions of the former Soviet Union and contemporary sevo, Klin, etc.), and on lakes (Glubokoe, Senezhs- Russia while carrying out scientific and applied hydro- koe, Kosinskoe) (Fig. 1). The most detailed studies chemical, ecological, and geochemical studies, as well were carried out within the typical small Pakhra River as scientific and problem-oriented prospecting, engi- basin, a right tributary of the Moscow River (Resursy…, neering, and environmental surveys. The article con- 1973a). The length of the Pakhra is 135 km, and the siders the main sources and the most important char- catchment area is 2720 km2. acteristics of technogenic sedimentary material flow- ing into rivers, as well as the geochemical conditions of The materials of the geological survey indicate that technogenic alluvial sedimentation, the morphology the rocks that have the main influence on local land- and structure of technogenic silts, the extent of their scapes are characterized by relative depletion of the spatial distribution in river channels, the grain size mineral composition and the content of most chemical characteristics, and mineral and chemical composi- elements within their global distribution parameters in tion. Special attention is paid to analyzing the group the lithosphere and sedimentary rocks. The main type composition of organic matter in river sediments and of relief in interfluvial spaces is loamy moraine plain, the features of its transformation in pollution zones. dissected by an erosion network of gullies and ravines. The study analyzes the technogenic geochemical asso- Up to 50% of the Pakhra catchment area is covered with ciations that form in silts in zones of influence of var- mixed forests on soddy-podzolic soil. ious impact sources, the features of the concentration The hydrological regime and water content of the and distribution of chemical
Recommended publications
  • Geodiagnostics of Lithogydrogenic Systems for Forecasting Exoggeodynamic Processes
    MATEC Web of Conferences 265, 03008 (2019) https://doi.org/10.1051/matecconf/201926503008 GCCETS 2018 Geodiagnostics of lithogydrogenic systems for forecasting exoggeodynamic processes Anatoliy Yamashkin1, Stanislav Yamashkin1,*, Vladimir Erofeev1, and Anna Piksaykina1 1National Research Mordovia State University, Saransk, Republic of Mordovia, 430005, Russia Abstract. The landscape indication, based on the automated analysis of remote sensing data, is one of the key methods of research and mapping of lithohydrogene geosystems. The article describes a set of methods for effective detection of types of lithohydrogene systems, including a set of modules for identifying dynamic and invariant descriptors of the territory; assessment of geophysical diversity of landscapes; analysis of the geophysical shell through the calculation of the descriptors of the neighborhood; ensemble-analysis of remote sensing data for monitoring the state of geosystems and forecasting of natural processes. The system of methods for detecting types of landscapes made it possible to conduct geodiagnostics of lithohydrogene systems of the Privolzhskaya Upland and the marginal part of the Oka-Don lowland reservoir within the boundaries of the Republic of Mordovia in order to predict the development of exogeodynamic processes. 1 Introduction The most important directions of modern research in the Earth sciences are the development of a methodology and methods for searching for patterns of development of exogeodynamic processes (EGP) for forecasting development and minimizing
    [Show full text]
  • Revista Inclusiones Issn 0719-4706 Volumen 7 – Número Especial – Octubre/Diciembre 2020
    CUERPO DIRECTIVO Mg. Amelia Herrera Lavanchy Universidad de La Serena, Chile Director Dr. Juan Guillermo Mansilla Sepúlveda Mg. Cecilia Jofré Muñoz Universidad Católica de Temuco, Chile Universidad San Sebastián, Chile Editor Mg. Mario Lagomarsino Montoya OBU - CHILE Universidad Adventista de Chile, Chile Editor Científico Dr. Claudio Llanos Reyes Dr. Luiz Alberto David Araujo Pontificia Universidad Católica de Valparaíso, Chile Pontificia Universidade Católica de Sao Paulo, Brasil Dr. Werner Mackenbach Editor Europa del Este Universidad de Potsdam, Alemania Dr. Aleksandar Ivanov Katrandzhiev Universidad de Costa Rica, Costa Rica Universidad Suroeste "Neofit Rilski", Bulgaria Mg. Rocío del Pilar Martínez Marín Cuerpo Asistente Universidad de Santander, Colombia Traductora: Inglés Ph. D. Natalia Milanesio Lic. Pauline Corthorn Escudero Universidad de Houston, Estados Unidos Editorial Cuadernos de Sofía, Chile Dra. Patricia Virginia Moggia Münchmeyer Portada Pontificia Universidad Católica de Valparaíso, Chile Lic. Graciela Pantigoso de Los Santos Editorial Cuadernos de Sofía, Chile Ph. D. Maritza Montero Universidad Central de Venezuela, Venezuela COMITÉ EDITORIAL Dra. Eleonora Pencheva Dra. Carolina Aroca Toloza Universidad Suroeste Neofit Rilski, Bulgaria Universidad de Chile, Chile Dra. Rosa María Regueiro Ferreira Dr. Jaime Bassa Mercado Universidad de La Coruña, España Universidad de Valparaíso, Chile Mg. David Ruete Zúñiga Dra. Heloísa Bellotto Universidad Nacional Andrés Bello, Chile Universidad de Sao Paulo, Brasil Dr. Andrés Saavedra Barahona Dra. Nidia Burgos Universidad San Clemente de Ojrid de Sofía, Bulgaria Universidad Nacional del Sur, Argentina Dr. Efraín Sánchez Cabra Mg. María Eugenia Campos Academia Colombiana de Historia, Colombia Universidad Nacional Autónoma de México, México Dra. Mirka Seitz Dr. Francisco José Francisco Carrera Universidad del Salvador, Argentina Universidad de Valladolid, España Ph.
    [Show full text]
  • Vol 67-Uus.Indd
    Forestry Studies | Metsanduslikud Uurimused, Vol. 67, Pages 109–115 Population density of the Eurasian beaver (Castor fi ber L.) (Castoridae, Rodentia) in the Middle Volga of Russia Alexey Andreychev Andreychev, A. 2017. Population density of the Eurasian beaver (Castor fi ber L.) (Cas- toridae, Rodentia) in the Middle Volga of Russia. – Forestry Studies | Metsandusli- kud Uurimused 67, 109–115. ISSN 1406-9954. Journal homepage: http://mi.emu.ee/ forestry.studies Abstract. The article presents research on the population density of the Eurasian beaver in the large, medium and small rivers of the Republic of Mordovia. The population density of the beaver in the large rivers of the region varies from 0.45 to 0.62 colonies per km (average 0.52). The population density in medium rivers ranges from 0.36 to 0.48 colonies per km (average 0.4). In small rivers, population density ranges from 0.2 to 0.94 colonies per km (average 0.46). The total number of beavers in the region is about 17,000 individuals as at 2016. Key words: Eurasian beaver, Castor fi ber, density population, colonies, European Russia, Mordovia. Author’s address: Department of Zoology, Mordovian State University, Bolshevist- skaya str. 68, 430005, Saransk, Republic of Mordovia, Russia; e-mail: andreychev1@ rambler.ru on re-acclimatisation. In total, 34 beavers Introduction were released. The Eurasian beaver was imported from the Voronezh Game Re- Currently, the populations of the Eurasian serve. The release into the wild was carried beaver (Castor fi ber L.) are being restored or out in small batches. The beavers were re- will be restored in many regions in Russia.
    [Show full text]
  • N.I.Il`Minskii and the Christianization of the Chuvash
    Durham E-Theses Narodnost` and Obshchechelovechnost` in 19th century Russian missionary work: N.I.Il`minskii and the Christianization of the Chuvash KOLOSOVA, ALISON,RUTH How to cite: KOLOSOVA, ALISON,RUTH (2016) Narodnost` and Obshchechelovechnost` in 19th century Russian missionary work: N.I.Il`minskii and the Christianization of the Chuvash, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/11403/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 1 Narodnost` and Obshchechelovechnost` in 19th century Russian missionary work: N.I.Il`minskii and the Christianization of the Chuvash PhD Thesis submitted by Alison Ruth Kolosova Material Abstract Nikolai Il`minskii, a specialist in Arabic and the Turkic languages which he taught at the Kazan Theological Academy and Kazan University from the 1840s to 1860s, became in 1872 the Director of the Kazan Teachers‟ Seminary where the first teachers were trained for native- language schools among the Turkic and Finnic peoples of the Volga-Urals and Siberia.
    [Show full text]
  • Russian Museums Visit More Than 80 Million Visitors, 1/3 of Who Are Visitors Under 18
    Moscow 4 There are more than 3000 museums (and about 72 000 museum workers) in Russian Moscow region 92 Federation, not including school and company museums. Every year Russian museums visit more than 80 million visitors, 1/3 of who are visitors under 18 There are about 650 individual and institutional members in ICOM Russia. During two last St. Petersburg 117 years ICOM Russia membership was rapidly increasing more than 20% (or about 100 new members) a year Northwestern region 160 You will find the information aboutICOM Russia members in this book. All members (individual and institutional) are divided in two big groups – Museums which are institutional members of ICOM or are represented by individual members and Organizations. All the museums in this book are distributed by regional principle. Organizations are structured in profile groups Central region 192 Volga river region 224 Many thanks to all the museums who offered their help and assistance in the making of this collection South of Russia 258 Special thanks to Urals 270 Museum creation and consulting Culture heritage security in Russia with 3M(tm)Novec(tm)1230 Siberia and Far East 284 © ICOM Russia, 2012 Organizations 322 © K. Novokhatko, A. Gnedovsky, N. Kazantseva, O. Guzewska – compiling, translation, editing, 2012 [email protected] www.icom.org.ru © Leo Tolstoy museum-estate “Yasnaya Polyana”, design, 2012 Moscow MOSCOW A. N. SCRiAbiN MEMORiAl Capital of Russia. Major political, economic, cultural, scientific, religious, financial, educational, and transportation center of Russia and the continent MUSEUM Highlights: First reference to Moscow dates from 1147 when Moscow was already a pretty big town.
    [Show full text]
  • Governance on Russia's Early-Modern Frontier
    ABSOLUTISM AND EMPIRE: GOVERNANCE ON RUSSIA’S EARLY-MODERN FRONTIER DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Matthew Paul Romaniello, B. A., M. A. The Ohio State University 2003 Examination Committee: Approved by Dr. Eve Levin, Advisor Dr. Geoffrey Parker Advisor Dr. David Hoffmann Department of History Dr. Nicholas Breyfogle ABSTRACT The conquest of the Khanate of Kazan’ was a pivotal event in the development of Muscovy. Moscow gained possession over a previously independent political entity with a multiethnic and multiconfessional populace. The Muscovite political system adapted to the unique circumstances of its expanding frontier and prepared for the continuing expansion to its east through Siberia and to the south down to the Caspian port city of Astrakhan. Muscovy’s government attempted to incorporate quickly its new land and peoples within the preexisting structures of the state. Though Muscovy had been multiethnic from its origins, the Middle Volga Region introduced a sizeable Muslim population for the first time, an event of great import following the Muslim conquest of Constantinople in the previous century. Kazan’s social composition paralleled Moscow’s; the city and its environs contained elites, peasants, and slaves. While the Muslim elite quickly converted to Russian Orthodoxy to preserve their social status, much of the local population did not, leaving Moscow’s frontier populated with animists and Muslims, who had stronger cultural connections to their nomadic neighbors than their Orthodox rulers. The state had two major goals for the Middle Volga Region.
    [Show full text]
  • Influence of Different Factors on the Sediment Yield of the Oka Basin Rivers (Central Russia)
    Sediment Dynamics and the Hydromorphology of Fluvial Systems (Proceedings of a symposium held in 28 Dundee, UK, July 2006). IAHS Publ. 306, 2006. Influence of different factors on the sediment yield of the Oka basin rivers (central Russia) VALENTIN GOLOSOV Laboratory for Soil Erosion and Fluvial Processes, Faculty of Geography, Moscow State University, GSP-2, 119992, Moscow, Russia [email protected] Abstract In order to investigate links between basin/land-use characteristics and sediment fluxes of rivers within the Oka River basin, a database has been compiled from observations obtained at 25 gauging stations located in different parts of the basin. Relatively high correlations have been found between sediment yield from basin hillslopes and river sediment yield for: (i) rivers of the forest and northern part of forest-steppe zones (r2 = 0.50); and (ii) rivers of forest-steppe zones (r2 = 0.52). A linear positive relationship (r2 = 0.71) has been found between sediment delivery ratio and weighted average gradient of river channel separately for the large river basins and small river basins of the forest zone. A negative relationship between sediment delivery ratio and forested area within basins is found separately for the small (S < 2500 km2) rivers and large rivers of the Oka River basin. The influence of other factors as well as the problem of small river aggradation is also discussed. Key words erosion; gauging station; river aggradation; Russia; sediment yield INTRODUCTION Under natural conditions, the contribution of the basin-derived sediment yield component decreases and the channel-derived component increases slowly from the upper parts of fluvial systems to the large river basins (Dedkov & Mozzerin, 2000).
    [Show full text]
  • CRR) of Moscow Region, Start-Up Complex № 4
    THE CENTRAL RING ROAD OF MOSCOW REGION INFORMATION MEMORANDUM Financing, construction and toll operation of the Central Ring Road (CRR) of Moscow Region, start-up complex № 4 July 2014, Moscow Contents Introduction 3–4 Project goals and objectives 5–7 Relevance of building the Central Ring Road Timeline for CRR project implementation Technical characteristics Brief description 8–34 Design features Cultural legacy and environmental protection Key technical aspects Concession agreement General provisions 34–37 Obligations of the concessionaire Obligations of the grantor Project commercial structure 38–46 Finance. Investment stage Finance. Operation stage Risk distribution 47–48 Tender criteria 49 Preliminary project schedule 50 The given information memorandum is executed for the purpose of acquainting market players in good time with information about the given project and the key conditions for its implementation. Avtodor SC reserves the right to amend this memorandum. 2 Introduction The investment project for construction and subsequent toll operation of the Central Ring Road of the Moscow Region A-113 consists of five Start-up complexes to be implemented on a public-private partnership basis. Start-up complex No. 4 of the Central Ring Road (the Project or SC No.4 of the CRR) provides for construction of a section of the CRR in the south-east of the Moscow Region, stretching from the intersection with the M-7 Volga express highway currently under construction to the intersection with the M-4 public highway. Section SC No. 4 of the CRR was distinguished as a separate investment project because the given section is of major significance both for the Region and for the economy of the Russian Federation in general.
    [Show full text]
  • United Nations Code for Trade and Transport Locations (UN/LOCODE) for Russia
    United Nations Code for Trade and Transport Locations (UN/LOCODE) for Russia N.B. To check the official, current database of UN/LOCODEs see: https://www.unece.org/cefact/locode/service/location.html UN/LOCODE Location Name State Functionality Status Coordinatesi RU 7RS Shemakha CHE Road terminal; Recognised location 5614N 05915E RU AAD Aleksandrov (Alexandrov) Road terminal; Request under consideration 5623N 03837E RU AAQ Anapa Airport; Code adopted by IATA or ECLAC RU ABA Abakan Road terminal; Recognised location 5342N 09125E RU ABC Ambarchik SA Port; Request under consideration 6937N 16218E RU ABD Abdulino ORE Rail terminal; Road terminal; Recognised location 5342N 05340E RU ABK Abinsk KDA Port; Rail terminal; Road terminal; Recognised location 4452N 03809E RU ABS Akhtubinsk Function not known Recognised location RU ACS Achinsk Airport; Code adopted by IATA or ECLAC RU ADH Aldan Airport; Code adopted by IATA or ECLAC RU ADT Ardatov NIZ Road terminal; Recognised location 5514N 04306E RU AER Sochi KDA Port; Rail terminal; Road terminal; Airport; Code adopted by IATA or ECLAC 4336N 03943E RU AGI Aginskoye Road terminal; QQ RU AGK Angarsk IRK Port; Rail terminal; Road terminal; Recognised location 5232N 10353E RU AHK Arkhangel'skoye STA Road terminal; Recognised location 4436N 04406E RU AHR Akhtari Function not known Request under consideration RU AKS Aksay ROS Port; Request under consideration 4715N 03953E RU ALA Nartkala KB Road terminal; Recognised location 4333N 04351E RU ALE Aleysk AL Rail terminal; Road terminal; Recognised location
    [Show full text]
  • (Hymenoptera, Chrysididae) in Mordovia and Adjacent Regions, Russia
    BIODIVERSITAS ISSN: 1412-033X Volume 20, Number 2, February 2019 E-ISSN: 2085-4722 Pages: 303-310 DOI: 10.13057/biodiv/d200201 Distribution, abundance, and habitats of rare species Parnopes grandior (Pallas 1771) (Hymenoptera, Chrysididae) in Mordovia and adjacent regions, Russia ALEXANDER B. RUCHIN1,♥, ALEXANDER V. ANTROPOV2,♥♥, ANATOLIY A. KHAPUGIN1 1Joint Directorate of the Mordovia State Nature Reserve and National Park "Smolny". ♥email: [email protected] 2Zoological Museum of Moscow University. Bol'shaya Nikitskaya Ulitsa, 2, Moscow, 125009, Russia. ♥♥email: [email protected] Manuscript received: 20 September 2018. Revision accepted: 2 January 2019. Abstract. Ruchin AB, Antropov AV, Khapugin AA. 2019. Distribution, abundance, and habitats of rare species Parnopes grandior (Pallas 1771) (Hymenoptera, Chrysididae) in Mordovia and adjacent regions, Russia. Biodiversitas 20: 303-310. The study of biological and ecological characteristics is essential in conservation efforts of threatened and locally rare species. Obtaining the comparable data in different regions of a species range allows developing a conservation strategy. We aimed to study the distribution, acquired characteristics of the abundance and habitats of the biology of a rare species Parnopes grandior (Pallas, 1771) in the Republic of Mordovia (European Russia). As a result of our study, the biology of Parnopes grandior found in the Republic of Mordovia and in five adjacent regions (Volga River Basin, Russia) is described. In the Republic of Mordovia in 2008-2018, 18 habitats of this species were identified. In all cases, it was found next to the host wasp colonies of Bembix rostrata (Linnaeus, 1758). The species population was low (no more than five individuals per study site).
    [Show full text]
  • WCER Special Economic Zones
    Consortium for Economic Policy Research and Advice WCER Canadian Association Institute Working Academy International of Universities for the Economy Center of National Development and Colleges in Transition for Economic Economy Agency of Canada Reform Special Economic Zones Moscow IET 2007 UDC 332.122 BBC 65.046.11 S78 Special Economic Zones / Consortium for Economic Policy Research and Advice – Moscow : IET, 2007. – 247 p. : il. – ISBN 9785932552070 Agency CIP RSL Authors: Prihodko S., Volovik N., Hecht A., Sharpe B., Mandres M. Translated from the Russian by Todorov L. Page setting: Yudichev V. The work is concerned with free economic zones classification and basic principles of operation. Foreign experience of free economic zones creation is regarded. Considerable attention is paid to the his tory of free economic zones organization in Russia. The main causes of failures of their implementation are analyzed. At present the work on creation of special economic zones of main types – industrial and production, innovation and technological, tourist and recreation has started in Russia. The main part of the work is devoted to Canadian experience of regional development. JEL Classification: R0, R1. The research and the publication were undertaken in the framework of CEPRA (Consortium for Economic Policy Re search and Advice) project funded by the Canadian Agency for International Development (CIDA). UDC 332.122 BBC 65.046.11 ISBN 9785932552070 5, Gazetny per., Moscow, 125993 Russia Tel. (495) 6296736, Fax (495) 2038816 [email protected], http://www.iet.ru Table of Contents I. Regional Development in Canada..........................................7 1. An Introduction to Regional Development in Canada................7 2.
    [Show full text]
  • Privatization Programme for 2006 and Main Trend of the Federal Property Privatization for 2006-2008
    Approved by the Order of the Russian Federation government as of August 25, 2005 № 1306-р Privatization programme for 2006 and main trend of the federal property privatization for 2006-2008 Part I Main trend of the federal property privatization for 2006-2008 1. Purposes and objectives of the federal property privatization programme for 2006-2008 Privatization programme for 2006 and main trend of the federal property privatization for 2006-2008 (hereafter privatization programme) was developed in accordance with Federal law “Privatization of state-owned and municipal property”. Privatization programme is aimed at implementation of the tasks which were conceived in the President's Message to Federal Assembly of the Russian Federation in 2005. Main tasks of the federal property privatization programme for 2006-2008 are the following: − privatization of the federal property which is free from the state duty support; − stage-by-stage reduction of the federal state-owned unitary enterprises; − enhancement of privatization process; − income generation of the federal budget. 2. Anticipation of the federal property privatization influence on structural changes in economy As of June 1, 2005 Russian Federation is owner of 8293 federal state-owned unitary enterprises and stockholder of 3783 joint-stock companies. According to branch of economy, total amount of federal state-owned unitary enterprises and joint-stock companies which shares are belonging to federal property is the following: 1 Amount of joint-stock companies Amount of federal state-owned
    [Show full text]