Vitamin Status and Needs for People with Stages 3-5 Chronic Kidney Disease Alison L

Total Page:16

File Type:pdf, Size:1020Kb

Vitamin Status and Needs for People with Stages 3-5 Chronic Kidney Disease Alison L REVIEW Vitamin Status and Needs for People with Stages 3-5 Chronic Kidney Disease Alison L. Steiber, PhD,* and Joel D. Kopple, MD†‡ Patients with chronic kidney disease (CKD) often experience a decline in their nutrient intake starting at early stages of CKD. This reduction in intake can affect both energy-producing nutrients, such as carbohydrates, proteins, and fats, as well as vitamins, minerals, and trace elements. Knowledge of the burden and bioactivity of vitamins and their effect on the health of the patients with CKD is very incomplete. However, without sufficient data, the use of nutri- tional supplements to prevent inadequate intake may result in either excessive or insufficient intake of micronutrients for people with CKD. The purpose of this article is to briefly summarize the current knowledge regarding vitamin requirements for people with stages 3, 4, or 5 CKD who are not receiving dialysis. Ó 2011 by the National Kidney Foundation, Inc. All rights reserved. Overview generally address nutritional contributions from EASURES OF PROTEIN–ENERGY proteins, energy, fats, macrominerals such as sodium, chloride, and potassium, vitamin D, and M wasting are strongly correlated with mortal- 2–6 ity in end-stage renal disease (ESRD).1 The findings iron. Several reviews of the nutritional status that body fat, skeletal muscle mass, and body mass and requirements for vitamins in patients on maintenance dialysis have been published in the index (BMI), including very large BMIs, have inde- 5,6 pendent and direct associations with survival in past several years. To the authors’ knowledge, chronic kidney disease (CKD) patients2–4 suggest no such review currently exists for patients who that reduced nutritional status, besides have stages 3-5 CKD and who are not at ESRD inflammation, may be both a predictor and or awaiting renal transplantation. This review a cause of death in these individuals. Although discusses the literature concerning nutritional there are many observational studies describing status and requirements for vitamins in patients the nutritional status of patients on maintenance with CKD stages 3 (glomerular filtration rate [GFR], ,60 mL/min/1.73 m2), 4 (GFR, ,29 dialysis and those with CKD who are not 2 , receiving maintenance dialysis, these investigations months/min/1.73 m ), and 5 (GFR, 15 months/min/1.73 m2), who are not receiving renal replacement therapy. *Department of Nutrition, School of Medicine, Case Western Vitamin deficiencies are common in people Reserve University, Cleveland, Ohio. with advanced renal failure who do not take nutri- †Division of Nephrology and Hypertension and Department of 7 Medicine, Los Angeles Biomedical Research Institute at Harbor- tional supplements. The causes for such vitamin UCLA Medical Center, the David Geffen School of Medicine at deficiencies have been reviewed and include low UCLA, Los Angeles, California. dietary intake that may be because of anorexia, or ‡David Geffen School of Medicine, UCLA School of Public the impaired ability to buy,prepare, or ingest foods Health, Los Angeles, California. Conflict of interest: The authors are members of the Clinical that are high in nutrient content. Dietary prescrip- Advisory Board for Nephroceuticals, Inc. tion may limit foods which are high in vitamins, Address reprint requests to Alison L. Steiber, RD, PhD, Depart- particularly water-soluble vitamins, because of ment of Nutrition, Case Western Reserve University School of Med- their high potassium or phosphorus content.7 icine, Cleveland, OH 44106. E-mail: [email protected] Also, some medicines may interfere with the Ó 2011 by the National Kidney Foundation, Inc. All rights metabolism or actions of certainvitamins including reserved. 8 1051-2276/$36.00 vitamin B6, folate, and possibly riboflavin. Sea- doi:10.1053/j.jrn.2010.12.004 sonal variations may predispose to deficiency of Journal of Renal Nutrition, Vol 21, No 5 (September), 2011: pp 355–368 355 356 STEIBER AND KOPPLE some vitamins because of reduced access to fresh Definition of Terms Concerning fruits and vegetables, to dietary protein restrictions, Nutritional Adequacy and to sunlight.9 Superimposed illnesses may con- tribute to low intake, impaired digestion, absorp- Traditionally, the adequacy of the body content tion or actions of some vitamins, or may require and functional activity of vitamins are determined by measuring dietary intake, the corresponding the use of medicines that interfere with the actions 7 biochemical values of these compounds––usually of vitamins. measured in serum or plasma or red blood cells, Our knowledge of the body concentration, occasionally in urine, and in enzyme activities, function, metabolic effects, and clinical response and other biological processes or clinical manifes- to reduced intake and low serum concentrations tations of deficiency or excess. For example, the on these nutrients in nondialyzed patients with effects of certain vitamin intakes on hemoglobin stages 3-5 CKD is incomplete. Whether there is production or plasma and urinary oxalate levels altered nutrient metabolism in stages 3-5 CKD, may be indicators of deficiency or excess. The rec- as there can be in patients suffering from ESRD 10,11 ommended amount of a specific nutrient which is and those on dialysis, is unclear. Data from 8,9 considered to support health is referred to as the the National Health and Examination Survey dietary reference intake (DRI).16 and the Modification of Diet in Renal Disease Study10 show that the daily ingestion of nutrients Hence, the DRIs can be standards by which the begins to decline in as early as stage 3 CKD.11–13 adequacy of nutrient intake could be assessed. This reduction in intake may affect energy They allow clinicians to compare the quantity of producing nutrients (carbohydrates, protein, and a given nutrient in a patient’s diet with an estab- lished standard. The DRIs for nutrients are gener- fat), macrominerals, vitamins, and trace elements. ally determined by considering several other The Dialysis Outcome Practice Patterns Study reported that patients on maintenance established standards regarding nutrient intake. hemodialysis taking water-soluble vitamin supple- These include the estimated average requirement ments had a 16% lower mortality than similar (EAR) for the nutrient, the recommended daily 14 allowance (RDA), and the adequate intake (AI) patients not taking such preparations. This latter of the nutrient in question. Initially, wherever suf- analysis was adjusted for age, gender, race, comor- ficient data are available, an EAR is established for bidity, hemoglobin, serum albumin, BMI, and a specific nutrient. The EAR is the amount of other potential confounders. Whether such sup- nutrient needed by one-half of the healthy popula- plements may increase survival in people with tion to support normal biological and physiologi- stages 3-5 CKD is unknown. cal processes. In the Dietary Reference Guidelines, Although the optimal intake of macrominerals, it should be noted that the terms, ‘‘healthy popula- iron, and vitamin D nutrition has received substan- tion’’ and ‘‘general population’’ are often conflated. tial attention, less is written or known concerning The RDAis statistically derived from the EAR; it is recommended allowances or body burden of vita- calculated to be 2 standard deviations (SD) more mins and trace elements in stage 3-5 CKD.Possible than the EAR. Thus, RDA values are the average adverse consequences of excessive vitamin intake daily requirement for practically the entire general by patients with CKD are an important concern, population (97% to 98%) to support biochemical because vitamin supplements are commonly taken and physiological processes. Data to establish the in the United States. Approximately one-half of EARs are obtained, where possible, from clinical elderly prescription medication users are reported trials; however, there are insufficient data to deter- to take dietary supplements, predominantly multi- 15 mine these values for some nutrients. When there vitamins. It is likely that some CKD patients take are insufficient data, an AI is established instead. AI excessive and hazardous amounts of certain sup- is defined as the average amount of a nutrient that plemental vitamins as well as inadequate quantities a group of healthy people consume. It is assumed of other vitamins. This review summarizes the pre- that because these latter individuals are healthy, viously published data concerning the function, their intake of the nutrient in question should be food sources, and evidence for inadequate or adequate. Finally, the tolerable upper intake level excessive intake of vitamins in people with stage is the maximum daily amount of a nutrient that 3-5 CKD who are not receiving dialysis therapy seems to be safe for most healthy people and above and do not have a functioning kidney transplant. VITAMINS IN CHRONIC KIDNEY DISEASE 357 which there is an increased risk of adverse health consumed an average of 1.26 mg of thiamin/day effects. from the foods in their diet. Their mean plasma These terms and values are in reference to thiamin concentration was 64.2 nmol/L, and their healthy people and represent oral intakes; they do ETK-AC (erythrocyte transketolase activity coef- not necessarily reflect the values for the intakes of ficients, an indicator of thiamin adequacy) was people with CKD, especially if their nutrients are 1.18 6 0.19 (SD) (an ETK-AC indicating no not taken orally. Thus, the DRIs can be used as deficiency is ,1.20). ETK-AC has been regarded general benchmarks, but extrapolating these as a good functional indicator of thiamin status.8 benchmarks to patients with CKD or other mor- Thus, according to the data generated by Frank bid conditions should be done with caution. The et al.,6 a substantial proportion of patients with focus of this article is to describe what is currently stages 4 and 5 CKD had ETK-AC values .1.20, reported in the published data regarding vitamin indicating a thiamin-deficient status. These data status and requirements for nontransplanted adult are presented as mean 6 SD, and the medians patients with CKD stages 3-5 who do not require were not provided in this study.
Recommended publications
  • Recent Insights Into the Role of Vitamin B12 and Vitamin D Upon Cardiovascular Mortality: a Systematic Review
    Acta Scientific Pharmaceutical Sciences (ISSN: 2581-5423) Volume 2 Issue 12 December 2018 Review Article Recent Insights into the Role of Vitamin B12 and Vitamin D upon Cardiovascular Mortality: A Systematic Review Raja Chakraverty1 and Pranabesh Chakraborty2* 1Assistant Professor, Bengal School of Technology (A College of Pharmacy), Sugandha, Hooghly, West Bengal, India 2Director (Academic), Bengal School of Technology (A College of Pharmacy),Sugandha, Hooghly, West Bengal, India *Corresponding Author: Pranabesh Chakraborty, Director (Academic), Bengal School of Technology (A College of Pharmacy), Sugandha, Hooghly, West Bengal, India. Received: October 17, 2018; Published: November 22, 2018 Abstract since the pathogenesis of several chronic diseases have been attributed to low concentrations of this vitamin. The present study Vitamin B12 and Vitamin D insufficiency has been observed worldwide at all stages of life. It is a major public health problem, throws light on the causal association of Vitamin B12 to cardiovascular disorders. Several evidences suggested that vitamin D has an effect in cardiovascular diseases thereby reducing the risk. It may happen in case of gene regulation and gene expression the vitamin D receptors in various cells helps in regulation of blood pressure (through renin-angiotensin system), and henceforth modulating the cell growth and proliferation which includes vascular smooth muscle cells and cardiomyocytes functioning. The present review article is based on identifying correct mechanisms and relationships between Vitamin D and such diseases that could be important in future understanding in patient and healthcare policies. There is some reported literature about the causative association between disease (CAD). Numerous retrospective and prospective studies have revealed a consistent, independent relationship of mild hyper- Vitamin B12 deficiency and homocysteinemia, or its role in the development of atherosclerosis and other groups of Coronary artery homocysteinemia with cardiovascular disease and all-cause mortality.
    [Show full text]
  • Methionine Synthase Supports Tumor Tetrahydrofolate Pools
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.05.284521; this version posted September 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Methionine synthase supports tumor tetrahydrofolate pools Joshua Z. Wang1,2,#, Jonathan M. Ghergurovich1,3,#, Lifeng Yang1,2, and Joshua D. Rabinowitz1,2,* 1 Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA 2 Department of Chemistry, Princeton University, Princeton, New Jersey, USA 3 Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA # These authors contributed equally to this work. *Corresponding author: Joshua Rabinowitz Department of Chemistry and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Rd, Princeton, NJ 08544, USA Phone: (609) 258-8985; e-mail: [email protected] Conflict of Interest Disclosure: J.D.R. is a paid advisor and stockholder in Kadmon Pharmaceuticals, L.E.A.F. Pharmaceuticals, and Rafael Pharmaceuticals; a paid consultant of Pfizer; a founder, director, and stockholder of Farber Partners and Serien Therapeutics. JDR and JMG are inventors of patents in the area of folate metabolism held by Princeton University. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.05.284521; this version posted September 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Mammalian cells require activated folates to generate nucleotides for growth and division. The most abundant circulating folate species is 5-methyl tetrahydrofolate (5-methyl- THF), which is used to synthesize methionine from homocysteine via the cobalamin-dependent enzyme methionine synthase (MTR).
    [Show full text]
  • Download Leaflet View the Patient Leaflet in PDF Format
    Read all of this leaflet carefully before you are given this within the body usually caused by diseases of the gut, liver any other medicines. Driving and using machines medicine because it contains important information for or gall bladder. • Medicines for heart disease such as digoxin or verapamil as Ergocalciferol may cause drowsiness or your eyes to you. It is important that you have this medicine so that your these can cause high levels of calcium in the blood leading become very sensitive to light. If this happens to you, do bones and teeth form properly. • Keep this leaflet. You may need to read it again. to an irregular or fast heart beat. not drive or use machinery. • If you have any further questions, ask your doctor or nurse. 2. What you need to know before you are given • Antacids containing magnesium for indigestion. If you are 3. How you will be given Ergocalciferol • If you get any side effects, talk to your doctor or nurse. Ergocalciferol on kidney dialysis this can lead to high levels of Ergocalciferol will be given to you by your doctor or nurse. This includes any possible side effects not listed in this magnesium in the blood which causes muscle weakness, Important: Your doctor will choose the dose that is right leaflet. See section 4. You must not be given Ergocalciferol: low blood pressure, depression and coma. for you. In this leaflet, Ergocalciferol 300,000 IU Injection BP will • if you are allergic to ergocalciferol (vitamin D) or any of the other • Thiazide diuretics (‘water tablets’) to relieve water You will be given Ergocalciferol by your doctor or nurse as an injection into a muscle.
    [Show full text]
  • The Vitamin B12 Coenzyme
    THE VITAMIN B12 COENZYME D. DoLPHIN, A. W. JoHNSON, R. RoDRIGO and N. SHAW Department of Chemistry, University of Nottingham, U.K. INTRODUCTION In 19•58 Barker and his associatesl-3 recognized a new coenzyme which controlled the conversion of glutamate into ß-methylaspartate by Clostridium tetanomorpkim. The coenzyme was shown4 to be related to !f;-vitamin B12, i.e. contair ing an adenine nucleotide grouping in place of the 5,6-dimethyl­ benziminawle nucleotide of vitamin B12, although similar coenzymes con­ taining btnziminazole or 5,6-dimethylbenziminazole were produced by growing C. tetanomorphum in the presence of the a ppropriate base5. Other variations of the nucleotide base have been achieved using Propionibacterium arabinosum in the presence of other purines and benziminazoles6• The pres­ ence of;:he coenzymes in a wide variety of micro-organisms such as several species of Actinomycetes including Streptomyces olivaceus and S. griseus has been dem( mstrated by the glutamate isomerase assay7 or by isolation. I t appears thü Vitamin B12 and its analogues are always biosynthesized in the form of their coenzymes. Preliminary physical and chemical studies sug­ gested that in the 5,6-dimethylbenzirninazolyl cobamide coenzyme the cyanide gr )up of vitamin B12, cyanocobalamin, was replaced by an adenine nucleoside':, 5, 8 and the determination9 of the complete structure (I; R = 5'-de·)xyadenosyl) of the coenzyme by X-ray analysis revealed the existence c f an essentially covalent bond between the cobalt atom and the S'.. carbon üom of the additional 5'-deoxyadenosine group. The molecule Me CH 2• CO· NH2 In the vitamin 8 12 coenzyme R =5' - deoxyadenosyl = Me Me 539 D.
    [Show full text]
  • The Potential Protective Role of Vitamin K in Diabetic Neuropathy
    VITAMINS The potential protective role of vitamin K in diabetic neuropathy DILIP MEHTA Viridis Biopharma 6/10 Jogani Industrial Complex ew cases of diabetes are symptomatic pain relief (3-5). V. N. Purav Marg, Chunabhatti increasing worldwide at a rapid Mumbai 400022, India The etiopathology of peripheral pace, with the total number of neuropathy is poorly understood and many [email protected] people with diabetes was projected factors, including dietary deficiencies, may www.viridisbiopharma.com Nto rise from 171 million in 2000 to 366 million contribute to the clinical manifestation of the in 2030 – an increase of nearly 200 million in condition. Deficiency of vitamin B12 (also only three decades. There are more cases of known as cobalamin), which results in a lack diabetes in women and urban populations, of a related compound, methylcobalamin, is with diabetes in developing countries projected manifested by megaloblastic anemia, and to double in the coming years (1). has been associated with significant Based on reports from the Centers for neurological pathology, especially peripheral Disease Control and Prevention, type 2 neuropathy (6-8). Vitamin B12 is also diabetes dult onset diabetes affects associated with the onset of diabetic approximately 9.3% of the general neuropathy. In patients with diabetic population in the United States in contrast to neuropathy, vitamin B12 deficiency may be 25.9% among those 65 years or older (2). aggravated by the use of antidiabetic agents Diabetes mellitus accounts for 90% of the such as metformin (9-11). Even short-term cases of diabetes patients (3,4). treatment with metformin causes a decrease The prevalence of type 2 diabetes in serum cobalamin, folic acid and an increases with age, higher then 25 body increase in homocysteine, which leads to mass index and the presence of the disease peripheral neuropathy in patients with in family history.
    [Show full text]
  • Potential Benefits of Methylcobalamin: a Review
    Open Access Austin Journal of Pharmacology and Therapeutics Review Article Potential Benefits of Methylcobalamin: A Review Gupta JK* and Qureshi Shaiba Sana Department of Pharmacology, GLA University Mathura, Abstract India Methylcobalamin is an active form of vitamin B12 that helps in synthesis *Corresponding author: Jeetendra Kumar Gupta, of methionine and S-adenosylmethionine. It is required for integrity of myelin, Department of Pharmacology, Institute of Pharmaceutical neuronal function, proper red blood cell formation and DNA synthesis. The largest Research, GLA University Mathura, India group of vitamin B12 deficiency is found in typical vegetarians all over the world, which can be alleviated with its analogue Methylcobalamin. It is a beneficial Received: August 17, 2015; Accepted: September 30, drug to most of the common disorders like cardiovascular disorders, diabetes, 2015; Published: October 08, 2015 anemia, hyperhomocysteinemia and degenerative disorders. Methylcobalamin helps in the synthesis of neuronal lipids, regeneration of axonal nerves and has neuroprotective activity, which promote neurons to function in proper way and thus improves Alzheimer disease, Parkinsonism, Dementia and neuropathic syndromes. It is an approved treatment for peripheral neuropathy. Keywords: Mecobalamin; Neuropathy; Anemia; Nootropic; Dietary supplement Abbreviations essential for cell growth and replication. Sometimes the liver cannot convert cyanocobalamin into adequate amount of methylcobalamin SAMe: S-Adenosyl Methionine; ERK: Extracellular Signal- needed for proper neuronal functioning. Through enhanced Regulated Kinases; PKB: Protein Kinase B; B-globulin: Beta Globulin; methylation, it exerts its nerve cell protective effect and accelerates ENFD: Epidermal Nerve Fiber Density; DPN: Diabetic Peripheral its growth. A lot of energy is required for cyanocobalamin to remove Neuropathy; NSAIDs: Non Steroidal Anti Inflammatory Drugs; THF: its cyanide and replaces it with methyl group [3].
    [Show full text]
  • Vitamin B12 Vitamin D Iodine and Selenium
    Frequently Asked Questions for VEG 1 General 1. Why has VEG 1 been developed? VEG 1 was developed to provide a convenient way of avoiding the most common weak points in a varied vegan diet: vitamin B12, iodine, vitamin D and selenium. Vitamin B12 Vitamin B12 is almost entirely absent from modern plant foods which are not contaminated by bacteria and insects. Even unwashed, organically grown plants do not contain a significant amount of B12. Vegans often have intakes of vitamin B12 well below recommended intakes. Low vitamin B12 intake by vegans routinely leads to reduced activity of some important enzymes and increased levels of homocysteine and methylmalonic acid (MMA). Even moderately elevated homocysteine is associated with increased risk of death, depression, stroke, dementia and birth defects, though it remains unclear how many of these associations reflect true cause and effect. Vegans who do not get vitamin B12 from fortified food or supplements are at increased risk of clinical deficiency symptoms such as anaemia and nervous system damage. The most common early symptoms of vitamin B12 deficiency are tiredness (from anaemia), numbness and tingling (from nervous system damage) and sore tongue. VEG 1 is designed to provide sufficient absorbed vitamin B12 to match national and international recommended intakes. It is designed to be chewed as this increases the reliability of vitamin B12 absorption by dispersing and dissolving the tablet. Vitamin D In the winter – whenever our shadows at midday are more than twice as long as we are – our skin cannot produce vitamin D effectively and even small dietary intakes may become important to avoid deficiency.
    [Show full text]
  • Vitamin and Mineral Requirements in Human Nutrition
    P000i-00xx 3/12/05 8:54 PM Page i Vitamin and mineral requirements in human nutrition Second edition VITPR 3/12/05 16:50 Page ii WHO Library Cataloguing-in-Publication Data Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements (1998 : Bangkok, Thailand). Vitamin and mineral requirements in human nutrition : report of a joint FAO/WHO expert consultation, Bangkok, Thailand, 21–30 September 1998. 1.Vitamins — standards 2.Micronutrients — standards 3.Trace elements — standards 4.Deficiency diseases — diet therapy 5.Nutritional requirements I.Title. ISBN 92 4 154612 3 (LC/NLM Classification: QU 145) © World Health Organization and Food and Agriculture Organization of the United Nations 2004 All rights reserved. Publications of the World Health Organization can be obtained from Market- ing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permis- sion to reproduce or translate WHO publications — whether for sale or for noncommercial distri- bution — should be addressed to Publications, at the above address (fax: +41 22 791 4806; e-mail: [email protected]), or to Chief, Publishing and Multimedia Service, Information Division, Food and Agriculture Organization of the United Nations, 00100 Rome, Italy. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization and the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • The Efficacy and Safety of Intramuscular Injections Of
    Original Article Singapore Med J 2011; 52(12) : 868 The efficacy and safety of intramuscular injections of methylcobalamin in patients with chronic nonspecific low back pain: a randomised controlled trial Chiu C K, Low T H, Tey Y S, Singh V A, Shong H K ABSTRACT both singly or in combination with other forms Introduction:Chronic, nonspecific low back of treatment. pain is a difficult ailment to treat and poses an economic burden in terms of medical Keywords: methylcobalamin, nonspecific low expenses and productivity loss. The aim of back pain, vitamin B12 this study was to determine the efficacy and Singapore Med J 2011; 52(12): 868-873 safety of intramuscular metylcobalamin in the treatment of chronic nonspecific low back INTRODUCTION pain. Low back pain (LBP) affects a substantial proportion of the population. Almost every person will encounter an Methods: This was a double-blinded, episode of back pain at some point in one’s life. Back randomised, controlled experimental study. pain does not discriminate based on gender, age, race or 60 patients were assigned to either the culture. It disables the working adult from performing his methylcobalamin group or the placebo group. duties and paralyses the society due to the cost incurred The former received intramuscular injections in terms of treatment and productivity loss. In 1988, a of 500 mcg parenteral methylcobalamin in 1 survey was conducted in a semirural area in Malaysia. Department of ml solution three times a week for two weeks, Orthopaedic A total of 2,594 individuals from a multi-racial (Malay, Surgery, and the placebo group received 1 ml normal Chinese, Indian) community were interviewed.
    [Show full text]
  • Cyanocobalamin-A Case for Withdrawal
    686 Journal of the Royal Society of Medicine Volume 85 November 1992 Cyanocobalamin- a case for withdrawal: discussion paper A G Freeman MD FRCP Meadow Rise, 3 Lakeside, Swindon SN3 IQE Keywords: anaemia, pernicious; optic neuropathies; chronic cyanide intoxication; hydroxocobalamin; cyanocobalamin It seems evident that controversy still surrounds the reduced ability to detoxify the cyanide in the tobacco- treatment of pernicious anaemia and other vitamin smoke to which they are exposed'0. B12 deficiency disorders. The long quest for the 'anti- Patients with tobacco amblyopia who have normal pernicious anaemia factor' in the liver seemed to serum vitamin B12 levels need not continue therapy have ended in 1948 when pure cyanocobalamin was with intramuscular hydroxocobalamin once their isolated. This was found to be very active thera- visual acuity and visual fields have returned to peutically when given by intramuscular injection and normal providing they abstain from further smoking. was non-toxic in extremely high doses'. However, those patients who have low serum vitamin Lederle, in a recent commentary2, advocates that B12 levels or evidence of -defective vitamin B12 patients with pernicious anaemia should now be absorption will need to continue-indefinitely with treated with oral cyanocobalamin. He is not without hydroxocobalamin irrespective of their smoking support in that 40% of patients with pernicious habits as will all patients with pernicious anaemia anaemia in Sweden are being similarly treated3. and other vitamin B12 deficiency disorders who are He further states that such!- treatment is cheap at risk of developing- optic neuropathy if they and effective, produces clinical and haematological are smokers.
    [Show full text]
  • These Highlights Do Not Include All the Information Needed to Use M.V.I. Pediatric® Safely and Effectively
    M.V.I. PEDIATRIC- ascorbic acid, retinol, ergocalciferol, thiamine hydrochloride, riboflavin 5- phosphate sodium, pyridoxine hydrochloride, niacinamide, dexpanthenol, .alpha.-tocopherol acetate, dl-, biotin, folic acid, cyanocobalamin, and phytonadione injection, powder, lyophilized, for solution Hospira, Inc. ---------- HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use M.V.I. Pediatric® safely and effectively. See full prescribing information for M.V.I. Pediatric. M.V.I. Pediatric (multiple vitamins for injection), for intravenous use Initial U.S. Approval: 1983 RECENT MAJOR CHANGES Dosage And Administration, Dosage Information (2.2) 2/2019 INDICATIONS AND USAGE M.V.I. Pediatric is a combination of vitamins indicated for the prevention of vitamin deficiency in pediatric patients up to 11 years of age receiving parenteral nutrition (1) DOSAGE AND ADMINISTRATION M.V.I. Pediatric is a combination product that contains the following vitamins: ascorbic acid, vitamin A, vitamin D, thiamine, riboflavin, pyridoxine, niacinamide, dexpanthenol, vitamin E, vitamin K, folic acid, biotin, and vitamin B12 (2.1) Supplied as a single-dose vial of lyophilized powder for reconstitution intended for administration by intravenous infusion after dilution. (2.1) Recommended daily dosage is based on patient's actual weight (2.2) Less than 1 kg: The daily dose is 1.5 mL 1 kg to 3 kg: The daily dose is 3.25 mL 3 kg or more: The daily dose is 5 mL One daily dose of the reconstituted solution (1.5 mL, 3.25 mL or 5 mL) is then added directly to the intravenous fluid (2.2,2.3) See Full Prescribing Information for reconstitution instructions (2.3) Monitor blood vitamin concentrations (2.4) See Full Prescribing Information for drug incompatibilities (2.5) DOSAGE FORMS AND STRENGTHS M.V.I.
    [Show full text]
  • A Clinical Update on Vitamin D Deficiency and Secondary
    References 1. Mehrotra R, Kermah D, Budoff M, et al. Hypovitaminosis D in chronic 17. Ennis JL, Worcester EM, Coe FL, Sprague SM. Current recommended 32. Thimachai P, Supasyndh O, Chaiprasert A, Satirapoj B. Efficacy of High 38. Kramer H, Berns JS, Choi MJ, et al. 25-Hydroxyvitamin D testing and kidney disease. Clin J Am Soc Nephrol. 2008;3:1144-1151. 25-hydroxyvitamin D targets for chronic kidney disease management vs. Conventional Ergocalciferol Dose for Increasing 25-Hydroxyvitamin supplementation in CKD: an NKF-KDOQI controversies report. Am J may be too low. J Nephrol. 2016;29:63-70. D and Suppressing Parathyroid Hormone Levels in Stage III-IV CKD Kidney Dis. 2014;64:499-509. 2. Hollick MF. Vitamin D: importance in the prevention of cancers, type 1 with Vitamin D Deficiency/Insufficiency: A Randomized Controlled Trial. diabetes, heart disease, and osteoporosis. Am J Clin Nutr 18. OPKO. OPKO diagnostics point-of-care system. Available at: http:// J Med Assoc Thai. 2015;98:643-648. 39. Jetter A, Egli A, Dawson-Hughes B, et al. Pharmacokinetics of oral 2004;79:362-371. www.opko.com/products/point-of-care-diagnostics/. Accessed vitamin D(3) and calcifediol. Bone. 2014;59:14-19. September 2 2015. 33. Kovesdy CP, Lu JL, Malakauskas SM, et al. Paricalcitol versus 3. Giovannucci E, Liu Y, Rimm EB, et al. Prospective study of predictors ergocalciferol for secondary hyperparathyroidism in CKD stages 3 and 40. Petkovich M, Melnick J, White J, et al. Modified-release oral calcifediol of vitamin D status and cancer incidence and mortality in men.
    [Show full text]