Application of the HPLC Method in Parenteral Nutrition Assessment: Stability Studies of Ondansetron

Total Page:16

File Type:pdf, Size:1020Kb

Application of the HPLC Method in Parenteral Nutrition Assessment: Stability Studies of Ondansetron processes Article Application of the HPLC Method in Parenteral Nutrition Assessment: Stability Studies of Ondansetron Szymon Tomczak * , Vera Radwan , Anna Jeli ´nskaand Maciej Stawny Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60-780 Pozna´n,Poland; [email protected] (V.R.); [email protected] (A.J.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +48-618-546-617 Abstract: Ondansetron (OND) is a serotonin type 3 receptor antagonist that exhibits antiemetic activity. From the clinical point of view, vomiting and nausea prevention is an important task. Anticancer treatment and recovery impact the patient’s overall state by affecting appetite, well-being, and physical activity, and consequently, nutrition quality. Depending on the patient’s indication and condition, parenteral nutrition is administered to meet full nutritional requirements. In addition, antiemetic drugs can be added to the parenteral nutrition (PN) admixture to treat chemo- or radio-therapy-induced nausea and vomiting. However, adding any medication to the PN admixture can result in the instability of the composition in the overall admixture. This study aimed to develop the HPLC method of determination of OND in Lipoflex special, one of the most popular, ready-to-use PN admixtures. The proposed HPLC method and the sample preparation procedure were suitable for analyzing OND in PN admixture stored under various conditions, such as exposure to sunlight and temperature. It was found that the decomposition of OND during the seven-day storage did not exceed 5% and did not depend on external factors. Based on the conducted research, it is recommended to add OND to Lipoflex special, and it is Citation: Tomczak, S.; Radwan, V.; possible to store such an admixture for seven days. Jeli´nska,A.; Stawny, M. Application of the HPLC Method in Parenteral Keywords: drug determination; parenteral nutrition; stability study; ondansetron; HPLC Nutrition Assessment: Stability Studies of Ondansetron. Processes 2021, 9, 453. https://doi.org/ 10.3390/pr9030453 1. Introduction Ondansetron (OND) is a serotonin (5-hydroxytryptamine) type 3 receptor antagonist Academic Editors: Malgorzata Starek that exhibits antiemetic activity. The drug belongs to a carbazole derivative containing and Monika D ˛abrowska nitrogen and carbon rings [1]. The chemical structure is presented in Figure1. It is struc- turally similar to serotonin, which allows it to bind selectively to the 5-HT receptors. OND Received: 31 January 2021 3 is indicated as an effective antiemetic agent and is used for the prevention of nausea and Accepted: 25 February 2021 Published: 3 March 2021 vomiting in a variety of situations, including chemo- and radiotherapy, postoperative and pregnancy-induced nausea and vomiting [2,3]. From the clinical point of view, vomiting Publisher’s Note: MDPI stays neutral and nausea prevention is an important task. Anticancer treatment and recovery impact the with regard to jurisdictional claims in patient’s overall state by affecting appetite, well-being, physical activity, and consequently, published maps and institutional affil- nutrition quality. There are situations when malnutrition negates recovery prospects, iations. because therapy has to be postponed due to the patient’s condition. Therefore, proper nutrition is key to successful treatment. As far as signs of malnutrition or body mass loss are concerned, each may indicate the onset of cancer and concern healthcare profession- als, since a lack of nutritional intervention may compromise the patient’s condition and negatively influence prognosis. When malnutrition occurs, clinical nutrition remains neces- Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. sary to support the recovery process. Depending on the state of the patient’s health and This article is an open access article resulting nutritional needs, it is necessary to administer either oral (regular or therapeutic distributed under the terms and diet), enteral, or parenteral nutrition (EN or PN) [4,5]. Nutritional treatment of severely conditions of the Creative Commons malnourished patients has become routine in most modern-day hospitals. Depending on Attribution (CC BY) license (https:// th e patient’s indication and condition, parenteral nutrition is administered to meet full creativecommons.org/licenses/by/ nutritional requirements. For instance, cancer patients receiving anticancer therapy such 4.0/). as chemotherapy or radiotherapy cannot eat food enterally due to consistent nausea and Processes 2021, 9, 453. https://doi.org/10.3390/pr9030453 https://www.mdpi.com/journal/processes Processes 2021, 9, x FOR PEER REVIEW 2 of 12 Processes 2021, 9, 453 2 of 12 meet full nutritional requirements. For instance, cancer patients receiving anticancer ther- apy such as chemotherapy or radiotherapy cannot eat food enterally due to consistent nausea and vomiting from the anticancer drugs. Therefore, parenteral nutrition can be administeredvomiting from to the provide anticancer nutritional drugs. support Therefore, in these parenteral types nutritionof patients. can Antiemetic be administered drugs, suchto provide as OND nutritional, can also support be added in theseto the types PN admixture of patients. to Antiemetic treat chemo drugs,- or radiotherapy such as OND,- inducedcan also nausea be added and to vomiting. the PN admixture The addition to treat of OND chemo- to the or parenteral radiotherapy-induced nutrition admixture nausea canand reduce vomiting. the Therisk additionof catheter of- ONDrelated to infections. the parenteral However, nutrition adding admixture any drug can to reduce the par- the enteralrisk of catheter-relatednutrition admixture infections. can result However, in the instability adding any of drugthe admixture to the parenteral’s overall nutrition compo- sitionadmixture. can result in the instability of the admixture’s overall composition. Figure 1. OndansetronOndansetron hydrochloride di dihydrate—chemicalhydrate—chemical structure structure.. PN admixture admixture consists consists of of various various ingredients ingredients of high of high chemical chemical reactivity reactivity (water, (water, glu- cose,glucose, amino amino acids, acids, lipids, lipids, trace elements, trace elements, electrolytes, electrolytes, and vitamins) and vitamins) co-existing co-existing in one con- in tainer.one container. It is important It is important to note tothat note the that PN theadmixture PN admixture is an oil is-in an-water oil-in-water emulsion, emulsion, which explainswhich explains its thermodynamic its thermodynamic sensitivity. sensitivity. The physicochemical The physicochemical compatibility compatibility of PN admix- of PN turesadmixtures is another is another vital feature vital featurein the clinical in the clinicalpoint of pointview. ofHospitalized view. Hospitalized patients often patients re- ceioftenve receivedrugs via drugs an intravenous via an intravenous route alongside route alongside nutritional nutritional supplementation. supplementation. An addi- An tionaladditional challenge challenge then then results results from from the the need need to toensure ensure an an appropriate appropriate therapy therapy,, especially especially when several drugs are administered simultaneously [[6]6].. The method of high high-performance-performance liquid chromatography (HPLC) (HPLC) has has been been success- success- fullyfully used used in in the analysis of of a aminomino acids and vitamins added added to to the the PN PN admixtures. admixtures. Vazquez et al. [[7]7] developeddeveloped thethe simultaneoussimultaneous determination of thirteen vitamins using thethe HPLC HPLC-UV-MS-MS-UV-MS-MS method. The The need need for for tandem mass spectrometry was due to the UV dete detector’sctor’s low low selectivity selectivity and and the the lack lack of of a suitable chromophore for some vitamins, such as as pantothenic pantothenic acid. acid. Ribeiro Ribeiro et et al. al. [8] [8 ]examined examined vitamin vitaminss B1 B1 and and B6 B6 by by HPLC HPLC using using a photodiodea photodiode array array detector. detector. These These researchers researchers used used fluorimetry fluorimetry to determine to determine vitamin vitamin B2, andB2, andthe vitamin the vitamin C content C content was wasdetermined determined by iodometric by iodometric titration. titration. HPLC HPLC was also was used also toused determine to determine cocarboxylase cocarboxylase [9], vitamins [9], vitamins A and A E and [10] E, and [10], dehydroascorbic and dehydroascorbic acid [11] acid. [The11]. methodsThe methods of chromatographic of chromatographic separation separation and and determin determinationation of vitamin of vitaminss B1 B1[12,13] [12,13 and] and C [14]C[14 and] and drugs drugs,, such such as ranitidine as ranitidine [13] [,13 linezolid], linezolid [15], [ 15cefepime], cefepime [16], [ceftazidime16], ceftazidime [17], [am-17], picillinampicillin [18] [,18 and], and ciprofloxacin ciprofloxacin [19] [ 19in] PN in PN admixtures admixtures were were also also described. described. Several bioanalytical bioanalytical methods methods have have been been reported reported in the in theliterature literature for the for quantifica- the quan- tiontification of OND of OND,, for example for example,, spectrophotometric spectrophotometric [20] and [20 more] and popular more popular liquid liquidchromatog- chro- matography with UV [21–24] or MS [25–29] detection. Raza et al. [20]
Recommended publications
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • A Randomized Double-Blind, Double-Dummy
    pISSN 1598-2998, eISSN 2005-9256 Cancer Res Treat. 2014;46(1):19-26 http://dx.doi.org/10.4143/crt.2014.46.1.19 Original Article Open Access A Randomized Double-Blind, Double-Dummy, Multicenter Trial of Azasetron versus Ondansetron to Evaluate Efficacy and Safety in the Prevention of Delayed Nausea and Vomiting Induced by Chemotherapy Hee Yeon Lee, MD 1 Purpose Hoon-Kyo Kim, MD 1 This study was conducted to evaluate the efficacy and safety of azasetron compared Kyung Hee Lee, MD 2 to ondansetron in the prevention of delayed chemotherapy-induced nausea and Bong-Seog Kim, MD 3 vomiting. MD 4 Hong Suk Song, Materials and Methods MD 5 Sung Hyun Yang, This study was a multi-center, prospective, randomized, double-dummy, double-blind MD 6 Joon Hee Kim, and parallel-group trial involving 12 institutions in Korea between May 2005 and MD 7 Yeul Hong Kim, December 2005. A total of 265 patients with moderately and highly emetogenic MD 8 Jong Gwang Kim, chemotherapy were included and randomly assigned to either the azasetron or MD 9 Sang-We Kim, ondansetron group. All patients received azasetron (10 mg intravenously) and MD 10 Dong-Wan Kim, dexamethasone (20 mg intravenously) on day 1 and dexamethasone (4 mg orally every MD 11 Si-Young Kim, 12 hours) on days 2-4. The azasetron group received azasetron (10 mg orally) with MD 12 Hee Sook Park, placebo of ondansetron (orally every 12 hours), and the ondansetron group received Department of Internal Medicine, ondansetron (8 mg orally every 12 hours) with placebo of azasetron (orally) on days 1St.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Azasetron (hydrochloride) Item No. 28383 CAS Registry No.: 123040-16-4 Formal Name: N-1-azabicyclo[2.2.2]oct-3-yl-6-chloro-3,4- dihydro-4-methyl-3-oxo-2H-1,4-benzoxazine- Cl N 8-carboxamide, monohydrochloride O Synonym: Y-25130 MF: C H ClN O • HCl N 17 20 3 3 O FW: 386.3 Purity: ≥98% • HCl N O UV/Vis.: λmax: 221, 307 nm Supplied as: A crystalline solid H Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Description Azasetron is an orally bioavailable antagonist of the serotonin (5-HT) receptor subtype 5-HT3 1,2 (Ki = 2.9 nM). It is selective for 5-HT3 over 5-HT1A and 5-HT2 (IC50 = >10 μM for both), as well as dopamine D1 and D2 and α1- and α2-adrenergic receptors (IC50s = >10 μM), but it does bind to histamine H1 receptors (IC50 = 4.4 μM). Azasetron inhibits contractions induced by 5-HT (Item No. 14332) in isolated guinea pig ileum (pA2 = 7.04) and isolated rabbit heart (pA2 = 10.06). It inhibits emesis induced by cisplatin (Item No. 13119) in dogs and induced by doxorubicin (Item No. 15007) combined with cyclophosphamide (Item No. 13849) in ferrets when administered at a dose of 1 mg/kg.1 References 1. Haga, K., Inaba, K., Shoji, H., et al. The effects of orally administered Y-25130, a selective serotonin3-receptor antagonist, on chemotherapeutic agent-induced emesis. Jpn. J. Pharmacol. 63(3), 377-383 (1993).
    [Show full text]
  • Simultaneous Determination of Dexamethasone, Ondansetron, Granisetron, Tropisetron, and Azasetron in Infusion Samples by HPLC with DAD Detection
    Hindawi Publishing Corporation Journal of Analytical Methods in Chemistry Volume 2017, Article ID 6749087, 7 pages http://dx.doi.org/10.1155/2017/6749087 Research Article Simultaneous Determination of Dexamethasone, Ondansetron, Granisetron, Tropisetron, and Azasetron in Infusion Samples by HPLC with DAD Detection Fu-chao Chen,1 Lin-hai Wang,2 Jun Guo,3 Xiao-ya Shi,1 and Bao-xia Fang1 1 Department of Pharmacy, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, China 2Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China 3Department of Oncology, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, China Correspondence should be addressed to Bao-xia Fang; [email protected] Received 21 October 2016; Accepted 19 December 2016; Published 11 January 2017 Academic Editor: Chih-Ching Huang Copyright © 2017 Fu-chao Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A simple and rapid high-performance liquid chromatography with diode array detector (HPLC-DAD) method has been developed and validated for simultaneous quantification of five antiemetic agents in infusion samples: dexamethasone, ondansetron, granisetron, tropisetron, and azasetron. The chromatographic separation was achieved on a Phenomenex18 C column (4.6 mm × 150 mm, 5 m) using acetonitrile-50 mM KH2PO4 buffer-triethylamine (25 : 74 : 1; v/v; pH 4.0). Flow rate was 1.0 mL/min witha ∘ column temperature of 30 C. Validation of the method was made in terms of specificity, linearity, accuracy, and intra- and interday precision, as well as quantification and detection limits.
    [Show full text]
  • Journal of Addiction and Dependence
    Journal of Addiction and Dependence www.ommegaonline.org Review Article Molecular Mechanisms of Drug Abuse, Dependency and Craving Richard E. Wilcox1*, Joseph D. Miller2 1Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin TX 78712, USA 2Department of Pharmacology, American University of the Caribbean School of Medicine, Cupecoy, St. Maarten *Corresponding author: Richard E. Wilcox, Ph.D, Professor of Neuropharmacology, University of Texas, College of Pharmacy 2409, University Avenue STOP A1900 Austin, TX 78712-1113; Tel: +(512) 471-5199; E-mail: [email protected] Abstract Received Date: November 4, 2015 Drug abuse and dependence are major medical, social, and economic prob- Accepted Date: December 30, 2015 lems for the world. Whereas the means to reduce abuse are well known, drug de- Published Date: January 5, 2016 pendency is a complex medical disease and current treatments attempt to reduce or prevent drug craving in dependent people as part of therapy. With the increased under- Citation: Wilcox, R.E., et al. Molecular standing of the neural mechanisms of drug dependence and the availability of several Mechanisms of Drug Abuse, Dependen- drugs that can treat craving in certain drug dependent populations it is important to cy and Craving. (2016) J Addict Depend summarize development of anti-craving therapeutics world-wide. The present paper 2(1): 40- 51. briefly outlines the problems of drug abuse and dependence, key aspects of the drug dependence process, the nature and mechanisms of drug craving in dependent people, current drug dependence theories, and finally mechanisms of action of anti-craving agents.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,156,822 B2 Jin Et Al
    US009 156822B2 (12) United States Patent (10) Patent No.: US 9,156,822 B2 Jin et al. (45) Date of Patent: Oct. 13, 2015 (54) FUNCTIONALLY SELECTIVE LIGANDS OF (2013.01); A61K 45/00 (2013.01); C07D DOPAMINED, RECEPTORS 215/20 (2013.01); C07D 217/24 (2013.01); (75) Inventors: Jian Jin, Chapel Hill, NC (US); Bryan C07D 231/56 (2013.01); C07D 235/26 Roth. Durham, NC (US); Stephen Frye, (2013.01); C07D 24I/04 (2013.01); C07D Chapel Hill, NC (US) 277/62 (2013.01); C07D 295/088 (2013.01); (73) Assignee: The University of North Carolina at of 6. 4. ES E. Chapel Hill, Chapel Hill, NC (US) ( .01); ( .01): s s 413/12 (2013.01); C07D 413/14 (2013.01); (*) Notice: Subject to any disclaimer, the term of this C07D 417/12 (2013.01); C07D 471/04 patent is extended or adjusted under 35 (2013.01) U.S.C. 154(b) by 150 days. (58) Field of Classification Search (21) Appl. No.: 13/807,347 CPC. A61 K31/551; C07D 401/02: C07D401/14: C07D 417/14: CO7D 471/04 (86). PCT No.: PCT/US2O11?042734 USPC ........................................... 514/218; 540/575 S371 (c)(1), See application file for complete search history. (2), (4) Date: Feb. 15, 2013 (87) PCT Pub. No.: WO2012/003418 (56) References Cited PCT Pub. Date: Jan. 5, 2012 U.S. PATENT DOCUMENTS (65) Prior Publication Data 5,006,528 A 4, 1991 Oshiro et al. 6,352,981 B1* 3/2002 Treiber et al. ................. 514, 183 US 2013/0137679 A1 May 30, 2013 7,160,888 B2 1/2007 Johnson et al.
    [Show full text]
  • Marrakesh Agreement Establishing the World Trade Organization
    No. 31874 Multilateral Marrakesh Agreement establishing the World Trade Organ ization (with final act, annexes and protocol). Concluded at Marrakesh on 15 April 1994 Authentic texts: English, French and Spanish. Registered by the Director-General of the World Trade Organization, acting on behalf of the Parties, on 1 June 1995. Multilat ral Accord de Marrakech instituant l©Organisation mondiale du commerce (avec acte final, annexes et protocole). Conclu Marrakech le 15 avril 1994 Textes authentiques : anglais, français et espagnol. Enregistré par le Directeur général de l'Organisation mondiale du com merce, agissant au nom des Parties, le 1er juin 1995. Vol. 1867, 1-31874 4_________United Nations — Treaty Series • Nations Unies — Recueil des Traités 1995 Table of contents Table des matières Indice [Volume 1867] FINAL ACT EMBODYING THE RESULTS OF THE URUGUAY ROUND OF MULTILATERAL TRADE NEGOTIATIONS ACTE FINAL REPRENANT LES RESULTATS DES NEGOCIATIONS COMMERCIALES MULTILATERALES DU CYCLE D©URUGUAY ACTA FINAL EN QUE SE INCORPOR N LOS RESULTADOS DE LA RONDA URUGUAY DE NEGOCIACIONES COMERCIALES MULTILATERALES SIGNATURES - SIGNATURES - FIRMAS MINISTERIAL DECISIONS, DECLARATIONS AND UNDERSTANDING DECISIONS, DECLARATIONS ET MEMORANDUM D©ACCORD MINISTERIELS DECISIONES, DECLARACIONES Y ENTEND MIENTO MINISTERIALES MARRAKESH AGREEMENT ESTABLISHING THE WORLD TRADE ORGANIZATION ACCORD DE MARRAKECH INSTITUANT L©ORGANISATION MONDIALE DU COMMERCE ACUERDO DE MARRAKECH POR EL QUE SE ESTABLECE LA ORGANIZACI N MUND1AL DEL COMERCIO ANNEX 1 ANNEXE 1 ANEXO 1 ANNEX
    [Show full text]
  • Pharmaceutical Appendix to the Harmonized Tariff Schedule
    Harmonized Tariff Schedule of the United States Basic Revision 3 (2021) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States Basic Revision 3 (2021) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • Project of Japan Drug Information Institute in Pregnancy
    Pharmaceuticals and Medical Devices Safety Information No. 268 April 2010 Table of Contents 1. Manuals for Management of Individual Serious Adverse Drug Reactions ....................................................................................................... 4 2. Project of Japan Drug Information Institute in Pregnancy ........... 9 3. Important Safety Information ................................................................. 11 .1. Atorvastatin Calcium Hydrate, Simbastatin, Pitavastatin Calcium, Pravastatin Sodium, Fluvastatin Sodium, Rosuvastatin Calcium, Amlodipine Besilate/Atorvastatin Calcium Hydrate ·································································································· 11 .2. Cetuximab (Genetical Recombination) ·························································· 16 4. Revision of PRECAUTIONS (No. 215) Aripiprazole (and 6 others)........................................................................................22 5. List of products subject to Early Post-marketing Phase Vigilance ............................................... 25 This Pharmaceuticals and Medical Devices Safety Information (PMDSI) is issued based on safety information collected by the Ministry of Health, Labour and Welfare. It is intended to facilitate safer use of pharmaceuticals and medical devices by healthcare providers. PMDSI is available on the Pharmaceuticals and Medical Devices Agency website (http://www.pmda.go.jp/english/index.html) and on the MHLW website (http://www.mhlw.go.jp/, only available in Japanese
    [Show full text]
  • Review Intestinal Absorption of Drugs Mediated by Drug Transporters: Mechanisms and Regulation
    Drug Metab. Pharmacokin. 18 (1): 1–15 (2003). Review Intestinal Absorption of Drugs Mediated by Drug Transporters: Mechanisms and Regulation Toshiya KATSURA and Ken-ichi INUI Department of Pharmacy, Kyoto University Hospital, Faculty of Medicine, Kyoto University, Kyoto, Japan Summary: The absorption of drugs from the gastrointestinal tract is one of the important determinants for oral bioavailability. Development of in vitro experimental techniques such as isolated membrane vesi- cles and cell culture systems has allowed us to elucidate the transport mechanisms of various drugs across the plasma membrane. Recent introduction of molecular biological techniques resulted in the suc- cessful identiˆcation of drug transporters responsible for the intestinal absorption of a wide variety of drugs. Each transporter exhibits its own substrate speciˆcity, though it usually shows broad substrate speciˆcity. In this review, we ˆrst summarize the recent advances in the characterization of drug trans- porters in the small intestine, classiˆed into peptide transporters, organic cation transporters and organic anion transporters. In particular, peptide transporter (PEPT1) is the best-characterized drug transporter in the small intestine, and therefore its utilization to improve the oral absorption of poorly absorbed drugs is brie‰y described. In addition, regulation of the activity and expression levels of drug transporters seems to be an important aspect, because alterations in the functional characteristics andWor expression levels of drug transporters in the small intestine could be responsible for the intra- and interindividual variability of oral bioavailability of drugs. As an example, regulation of the activity and expression of PEPT1 is summarized. Key words: intestinal absorption; transporter; brush-border membrane; basolateral membrane; Caco-2 transepithelial transport properties of various com- Introduction pounds.
    [Show full text]
  • Simultaneous Determination of Dexamethasone, Ondansetron, Granisetron, Tropisetron, and Azasetron in Infusion Samples by HPLC with DAD Detection
    Hindawi Journal of Analytical Methods in Chemistry Volume 2017, Article ID 6749087, 7 pages https://doi.org/10.1155/2017/6749087 Research Article Simultaneous Determination of Dexamethasone, Ondansetron, Granisetron, Tropisetron, and Azasetron in Infusion Samples by HPLC with DAD Detection Fu-chao Chen,1 Lin-hai Wang,2 Jun Guo,3 Xiao-ya Shi,1 and Bao-xia Fang1 1 Department of Pharmacy, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, China 2Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China 3Department of Oncology, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, China Correspondence should be addressed to Bao-xia Fang; [email protected] Received 21 October 2016; Accepted 19 December 2016; Published 11 January 2017 Academic Editor: Chih-Ching Huang Copyright © 2017 Fu-chao Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A simple and rapid high-performance liquid chromatography with diode array detector (HPLC-DAD) method has been developed and validated for simultaneous quantification of five antiemetic agents in infusion samples: dexamethasone, ondansetron, granisetron, tropisetron, and azasetron. The chromatographic separation was achieved on a Phenomenex18 C column (4.6 mm × 150 mm, 5 m) using acetonitrile-50 mM KH2PO4 buffer-triethylamine (25 : 74 : 1; v/v; pH 4.0). Flow rate was 1.0 mL/min witha ∘ column temperature of 30 C. Validation of the method was made in terms of specificity, linearity, accuracy, and intra- and interday precision, as well as quantification and detection limits.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]