Eduard Study (1862-1930) — Ein Mathematischer Mephistopheles Im Geometrischen G¨Artchen

Total Page:16

File Type:pdf, Size:1020Kb

Eduard Study (1862-1930) — Ein Mathematischer Mephistopheles Im Geometrischen G¨Artchen Eduard Study (1862-1930) | ein mathematischer Mephistopheles im geometrischen GÄartchen Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften\" am Fachbereich Mathematik der Johannes Gutenberg-UniversitÄat in Mainz Yvonne Hartwich geb. in Langen Mainz, im November 2005 Faust. Nun gut, wer bist du denn? " Mephistopheles. Ein Teil von jener Kraft Die stets das BÄose will und stets das Gute scha®t. Faust. Was ist mit diesem RÄatselwort gemeint? Mephistopheles. Ich bin der Geist, der stets verneint! \ (s. [Goethe's Faust], S. 39) Ich bin gewillt, ein BÄosewicht zu werden. \ " (s. Shakespeare's Richard III., 1 Aufzug, 1. Szene bzw. [Study 1908b], S. 125) Inhaltsverzeichnis 0 Einleitung 6 1 Prolog: Geometrie im 19. Jahrhundert als Vorgeschichte 10 1.1 Analytische vs. synthetische Geometrie . 10 1.2 Invariantentheorie . 12 1.3 Lie's Werke . 17 1.4 Grassmann und seine Werke . 20 1.5 AbzÄahlende Geometrie . 23 1.5.1 Chasles vs. de Jonqui`eres:Urheberstreit . 25 1.5.2 Halphen vs. Schubert: Debatte zweier nationaler Menta- litÄaten . 29 1.6 Liniengeometrie . 33 1.7 Axiomatik und Grundlagenkrise . 37 2 Eduard Study's Jugendzeit: Werden 41 2.1 Kindheit, Schulzeit und Studium . 41 2.2 Dissertation . 46 2.3 Preisarbeit . 48 3 Habilitation bei Klein: Gratwandern 50 3.1 Kontakte zu Klein . 50 3.2 Habilitation: Rettungsversuch der Chasles'schen Vermutung . 54 3.3 Mit Hilbert nach Paris zu Halphen . 61 4 Auf dem Weg zur Privatdozentur: Emanzipieren 65 4.1 Begegnungen mit Gordan, Engel und Lie . 65 4.2 VerÄo®entlichung der ternÄaren Formen\ als Privatdozent in Mar- " burg . 70 5 Auseinandersetzung mit Zeuthen ber die Chasles'sche Vermu- tung: Behaupten 74 5.1 Zeuthen's Briefe . 74 5.2 Study's Reaktion . 78 5.3 Abbruch durch die Redaktion der Mathematischen Annalen . 82 6 Der lange Weg zum ersten Ordinariat: Streben 90 6.1 SphÄarische Trigonometrie . 90 6.2 Amerika-Aufenthalt und Extraordinariat in Bonn . 91 6.3 Herausgabe der Grassmann'schen Werke und Artikel in der ma- thematischen EnzyklopÄadie . 95 6.4 Ordinariat in Greifswald . 100 6.5 Geometrie der Dynamen . 105 7 Die Bonner Zeit: Macht 114 7.1 Gestalten mit Personalpolitik . 114 7.2 Rezensionen der Lie'schen Werke . 122 7.3 Diskussionen mit Weyl . 130 7.4 Triumphe auf fremdem Terrain: Study's spÄate AusflugeÄ in die Philosophie . 136 7.4.1 Die realistische Weltansicht . 136 7.4.2 Mathematik und Physik . 147 7.4.3 Denken und Darstellung . 148 7.4.4 Prolegomena . 153 7.5 Emeritierung, Nachfolger und Nachrufe . 160 8 Epilog: Nachgeschichte, Vergleiche und Konsequenzen 167 8.1 Severi vs. van der Waerden: Ringen um die mathematische LÄosung der Chasles'schen Vermutung . 167 8.2 Hilbert vs. Study: Gemeinsamkeiten und GegensÄatze . 173 8.3 Polemik vs. Programmatik: Zum VerstÄandnis E. Study's . 176 9 Quellen 178 9.1 Literaturverzeichnis . 178 9.2 Archive . 201 9.3 Abbildungsnachweis . 202 4 0 Einleitung Mit Eduard Study und der Mathematikgeschichte in den Dekaden um die Jahr- hundertwende ist es wie mit dem Hase und dem Igel: Wohin man auch blickt, Study war schon da und hat etwas uberÄ das Thema geschrieben oder das bis- her dazu VerÄo®entlichte kritisiert. Trotz dieser vielseitigen PrÄasenz existierte bisher keine zusammenhÄangende mathematikhistorische Darstellung uberÄ sei- ne Person: Wurden biographische Details verÄo®entlicht, so gri® man auf den Nachruf seines besten Freundes Friedrich Engel zuruck,Ä der auch das einzige Bild enthÄalt, welches meist von Study in Umlauf ist. Thematisch bemuhenÄ sich einzelne Untersuchungen, wie z. B. [Czichowski/Fritzsche 1993] furÄ die Theo- rie der Di®erentialinvarianten oder [Wawer 1933] zum Realismusproblem, etwas mehr ins Detail zu gehen, jedoch bleiben sie gezwungenerma¼en auf ihr Thema beschrÄankt. Die wesentlichen Gesichtspunkte, die Study in seinem Leben und seinem Werk bestimmt haben, umfassend darzustellen, sie in ihren Kontext ein- zuordnen und sie erst in diesem Zusammenhang zu kommentieren, soll Ziel der vorliegenden Biographie sein, sodass nicht nur ein vollstÄandigereres Bild sondern auch ein umfassendereres VerstÄandnis von Eduard Study entstehen kann. Auf Grund der Vielzahl der Themenbereiche, die Study bearbeitet hat, sowie ihres teilweise sehr zeitspezi¯schen und somit heute nicht notwendigerweise noch prÄasenten Charakters ist der eigentlichen Lebensbeschreibung ein einfuhrendesÄ erstes Kapitel uberÄ die Geometrie im 19. Jahrhundert vorangestellt. So sehr man sich daruberÄ streiten kann, ob Study als ein Kind seiner Zeit\ anzusehen " ist, so eindeutig ist er von seinen VorgÄangern und deren Methoden beeinflusst worden: Er fuhlteÄ sich der Tradition von Monge, Poncelet, PluckerÄ und Reye ver- pflichtet und arbeitete sowohl mit der synthetischen wie auch der analytischen Methode (Kap. 1.1). UberÄ Klein kam Study in Kontakt mit der Invariantentheo- rie Clebsch-Gordan'scher PrÄagung (Kap. 1.2), der abzÄahlenden Geometrie von Chasles und Halphen1 (Kap. 1.5) und beschÄaftigte sich zusÄatzlich durch Engel's Anregung mit den Werken Lie's2 (Kap. 1.3). Schon fruhÄ begeisterte er sich furÄ Grassmann und seine Werke (Kap. 1.4); erst spÄater, aber dafurÄ nicht weniger heftig lieferte er seinen Beitrag zur Liniengeometrie (Kap. 1.63) und ereiferte sich uberÄ Axiomatik und Grundlagenkrise (Kap. 1.7). Ebenso prÄagend waren die Erfahrungen in Study's Jugendzeit, der wir uns im zweiten Kapitel widmen. Schon fruhÄ Halbwaise und somit allein vom strengen Vater erzogen, entwickelte er sich als EinzelgÄanger und somit auch meistens zum Autodidakten. An vielen verschiedenen Orten (Jena, Stra¼burg, Leipzig und Munchen)Ä studierend (Kap. 2.1), promovierte er in seiner letzten Station 1Dieses Gebiet wird sich im Folgenden sowohl inhaltlich als auch von seiner Streitkultur als so entscheidend herausstellen, dass hier eine sehr genaue Untersuchung angebracht ist. 2Da Streitigkeiten einen zentralen Topos in Study's Leben darstellen, wird hier auch auf die Auseinandersetzung zwischen Klein und Lie eingegangen werden. 3Hier werden wir auch auf die italienische Schule der algebraischen Geometrie eingehen. 5 (Kap. 2.2), wo auch durch Bearbeitung einer Preisaufgabe seine ersten Lorbeeren einheimste (Kap. 2.3). Im dritten Kapitel kommen wir mit der Habilitation bei Klein zu einer der wichtigsten Personen wie auch einem der folgenreichsten Abschnitte in Study's Leben. Dazu wird zunÄachst auf das bisherige VerhÄaltnis zu Klein eingegangen, den Study schon seit seinem ersten Aufenthalt in Leipzig schÄatzen gelernt hat- te (Kap. 3.1), bevor die eigentliche Habilitation im Jahre 1885/86 zur Spra- che kommt, nicht ohne deren ursprunglichÄ geplanten Gegenstand, den Beweis des Prinzips der Erhaltung der Anzahl, zu diskutieren (Kap. 3.2). Quasi eine Zeitreise zu dem tatsÄachlichen Gegenstand seines Habilitationsschrift, der Chas- les'schen Vermutung, stellt sein anschlie¼ender Aufenthalt in Paris zusammen mit Hilbert dar, welcher auch furÄ seine kunftigeÄ Beziehung zu diesem Mathema- tiker nicht zu vernachlÄassigen ist (Kap. 3.3). Eher eine Zwischenphase, in der Study sich seine ersten eigenen Forschungs- schwerpunkte sucht und umfassenderere Kontakte knupft,Ä stellt das vierte Kapi- tel dar. Im letztgenannten Zusammenhang stehen die Begegnungen mit Gordan, Engel und Lie (Kap. 4.1), wobei erstere aus fachlichen, die beiden anderen auch aus sozialen Gesichtspunkten gewinnbringend sind. Fast seinen gerade verstor- benen Bruder ersetzend, korrespondiert Study mit Engel ein Leben lang, was dank der fast preussisch zu nennenden akribischen Archivierung Engel's eine der wenigen und somit auch sehr wichtigen, fast tagebuchartigen Quellen darstellt. Lie hingegen entwickelte sich ein wenig als alternativer Mentor und Gegenpol zu Klein. Durch eine Privatdozentur in Marburg sich auch von Letztgenann- tem lÄosen wollend, gab Study im Jahre 1889 seine erstes dunnesÄ BuchleinÄ zu ternÄaren Formen\ heraus, vor allem in der Motivation verfasst, sich zu pro¯- " lieren und zu positionieren (Kap. 4.2). Wieder auf sein Habilitationsthema zuruckgeworfenÄ wird Study durch seine Auseinandersetzung mit Zeuthen uberÄ die Chasles'sche Vermutung zu Beginn der 1890iger Jahre, sodass diesem funftenÄ Kapitel zusammen mit dem dritten eine geradezu weichenstellende Bedeutung zukommt (und dies nicht nur, weil es sich hier um eine der bedeutendsten Debatten in den Mathematischen Annalen handelt, sondern auch in Bezug auf Study's weitere Entwicklung). Somit lohnt es sich, zunÄachst die Rolle Zeuthen's an Hand seiner Briefe an Klein genauer zu untersuchen (Kap. 5.1), vor allem auch, da sich dabei ein anderes Bild zeigt als das den Lesern der Mathematischen Annalen dargestellte. Die HintergrundeÄ sind auch bei Study's Reaktion einzubeziehen (Kap. 5.2), in der wir ein ab- solutes Paradebeispiel des Triumvirates seiner Streitkultur beobachten kÄonnen (nur diesmal in umgekehrter Reihenfolge): eigene Alternativtheorie, sachliche Kritik der vorliegenden Meinung und polemische Bemerkungen zu derselben. Die UmstÄande, die zum Abbruch durch die Redaktion der Mathematischen An- nalen (Kap. 5.3) gefuhrtÄ haben, erhellen gleichzeitig die Rolle Kleins in einer Debatte, in der mathematische oder sogar mathematikhistorische Argumente die persÄonlich-gesellschaftlichen zu verschleiern suchten. 6 Mit der Hypothek dieser Auseinandersetzung geht es in den nÄachsten Zwi- schenabschnitt (dem sechsten Kapitel), in welchem Study verzweifelt versuchte, sich zu etablieren: Sein zweites Buch uberÄ sphÄarische Trigonometrie ist wieder ein Misserfolg. Alles andere (auch seine seit 1889 bestehende kleine Familie) hinter sich
Recommended publications
  • An Historical Review of the Theoretical Development of Rigid Body Displacements from Rodrigues Parameters to the finite Twist
    Mechanism and Machine Theory Mechanism and Machine Theory 41 (2006) 41–52 www.elsevier.com/locate/mechmt An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist Jian S. Dai * Department of Mechanical Engineering, School of Physical Sciences and Engineering, King’s College London, University of London, Strand, London WC2R2LS, UK Received 5 November 2004; received in revised form 30 March 2005; accepted 28 April 2005 Available online 1 July 2005 Abstract The development of the finite twist or the finite screw displacement has attracted much attention in the field of theoretical kinematics and the proposed q-pitch with the tangent of half the rotation angle has dem- onstrated an elegant use in the study of rigid body displacements. This development can be dated back to RodriguesÕ formulae derived in 1840 with Rodrigues parameters resulting from the tangent of half the rota- tion angle being integrated with the components of the rotation axis. This paper traces the work back to the time when Rodrigues parameters were discovered and follows the theoretical development of rigid body displacements from the early 19th century to the late 20th century. The paper reviews the work from Chasles motion to CayleyÕs formula and then to HamiltonÕs quaternions and Rodrigues parameterization and relates the work to Clifford biquaternions and to StudyÕs dual angle proposed in the late 19th century. The review of the work from these mathematicians concentrates on the description and the representation of the displacement and transformation of a rigid body, and on the mathematical formulation and its progress.
    [Show full text]
  • Geometric Algebras for Euclidean Geometry
    Geometric algebras for euclidean geometry Charles Gunn Keywords. metric geometry, euclidean geometry, Cayley-Klein construc- tion, dual exterior algebra, projective geometry, degenerate metric, pro- jective geometric algebra, conformal geometric algebra, duality, homo- geneous model, biquaternions, dual quaternions, kinematics, rigid body motion. Abstract. The discussion of how to apply geometric algebra to euclidean n-space has been clouded by a number of conceptual misunderstandings which we first identify and resolve, based on a thorough review of cru- cial but largely forgotten themes from 19th century mathematics. We ∗ then introduce the dual projectivized Clifford algebra P(Rn;0;1) (eu- clidean PGA) as the most promising homogeneous (1-up) candidate for euclidean geometry. We compare euclidean PGA and the popular 2-up model CGA (conformal geometric algebra), restricting attention to flat geometric primitives, and show that on this domain they exhibit the same formal feature set. We thereby establish that euclidean PGA is the smallest structure-preserving euclidean GA. We compare the two algebras in more detail, with respect to a number of practical criteria, including implementation of kinematics and rigid body mechanics. We then extend the comparison to include euclidean sphere primitives. We arXiv:1411.6502v4 [math.GM] 23 May 2016 conclude that euclidean PGA provides a natural transition, both scien- tifically and pedagogically, between vector space models and the more complex and powerful CGA. 1. Introduction Although noneuclidean geometry of various sorts plays a fundamental role in theoretical physics and cosmology, the overwhelming volume of practical science and engineering takes place within classical euclidean space En. For this reason it is of no small interest to establish the best computational model for this space.
    [Show full text]
  • A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
    Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge­ bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe­ maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe­ matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members.
    [Show full text]
  • Intro to Line Geom and Kinematics
    TEUBNER’S MATHEMATICAL GUIDES VOLUME 41 INTRODUCTION TO LINE GEOMETRY AND KINEMATICS BY ERNST AUGUST WEISS ASSOC. PROFESSOR AT THE RHENISH FRIEDRICH-WILHELM-UNIVERSITY IN BONN Translated by D. H. Delphenich 1935 LEIPZIG AND BERLIN PUBLISHED AND PRINTED BY B. G. TEUBNER Foreword According to Felix Klein , line geometry is the geometry of a quadratic manifold in a five-dimensional space. According to Eduard Study , kinematics – viz., the geometry whose spatial element is a motion – is the geometry of a quadratic manifold in a seven- dimensional space, and as such, a natural generalization of line geometry. The geometry of multidimensional spaces is then connected most closely with the geometry of three- dimensional spaces in two different ways. The present guide gives an introduction to line geometry and kinematics on the basis of that coupling. 2 In the treatment of linear complexes in R3, the line continuum is mapped to an M 4 in R5. In that subject, the linear manifolds of complexes are examined, along with the loci of points and planes that are linked to them that lead to their analytic representation, with the help of Weitzenböck’s complex symbolism. One application of the map gives Lie ’s line-sphere transformation. Metric (Euclidian and non-Euclidian) line geometry will be treated, up to the axis surfaces that will appear once more in ray geometry as chains. The conversion principle of ray geometry admits the derivation of a parametric representation of motions from Euler ’s rotation formulas, and thus exhibits the connection between line geometry and kinematics. The main theorem on motions and transfers will be derived by means of the elegant algebra of biquaternions.
    [Show full text]
  • LONG-TERM HISTORY and EPHEMERAL CONFIGURATIONS Catherine Goldstein
    LONG-TERM HISTORY AND EPHEMERAL CONFIGURATIONS Catherine Goldstein To cite this version: Catherine Goldstein. LONG-TERM HISTORY AND EPHEMERAL CONFIGURATIONS. Interna- tional Congress of Mathematicians, Aug 2018, Rio de Janeiro, Brazil. pp.487-522. hal-02334505 HAL Id: hal-02334505 https://hal.archives-ouvertes.fr/hal-02334505 Submitted on 29 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LONG-TERM HISTORY AND EPHEMERAL CONFIGURATIONS CATHERINE GOLDSTEIN Abstract. Mathematical concepts and results have often been given a long history, stretching far back in time. Yet recent work in the history of mathe- matics has tended to focus on local topics, over a short term-scale, and on the study of ephemeral configurations of mathematicians, theorems or practices. The first part of the paper explains why this change has taken place: a renewed interest in the connections between mathematics and society, an increased at- tention to the variety of components and aspects of mathematical work, and a critical outlook on historiography itself. The problems of a long-term history are illustrated and tested using a number of episodes in the nineteenth-century history of Hermitian forms, and finally, some open questions are proposed.
    [Show full text]
  • Projective Geometric Algebra: a New Framework for Doing Euclidean Geometry
    Projective geometric algebra: A new framework for doing euclidean geometry Charles G. Gunn Raum+Gegenraum Falkensee, Germany [email protected] Abstract both conceptually and practically. We introduce projective geometric algebra (PGA), a mod- ern, coordinate-free framework for doing euclidean geom- 2 Feature list for doing euclidean etry featuring: uniform representation of points, lines, and planes; robust, \parallel-safe" join and meet oper- geometry ations; compact, polymorphic syntax for euclidean for- The standard approach (VLAAG) has proved itself to mulas and constructions; a single intuitive \sandwich" be a robust and resilient toolkit. Countless engineers form for isometries; native support for automatic differ- and developers use it to do their jobs. Why should entiation; and tight integration of kinematics and rigid they look elsewhere for their needs? On the other hand, body mechanics. Inclusion of vector, quaternion, dual long-time acquaintance and habit can blind craftsmen to quaternion, and exterior algebras as sub-algebras simpli- limitations in their tools, and subtly restrict the solutions fies the learning curve and transition path for experienced that they look for and find. Many programmers have practitioners. On the practical side, it can be efficiently had an \aha" moment when learning how to use the implemented, while its rich syntax enhances program- quaternion product to represent rotations without the ming productivity. The basic ideas are introduced in the use of matrices, a representation in which the axis and 2D context; the 3D treatment focus on selected topics. strength of the rotation can be directly read off of the four Advantages to traditional approaches are collected in a quaternion coordinates rather than laboriously extracted table at the end.
    [Show full text]
  • Historical Contributions to Screw Theory
    Sir Robert Stawell Ball (1840-1913) • A Treatise on the Theory of Historical Contributions to Screws (1900, 1998), (1876) – most comprehensive text on screw Screw Theory theory Harvey Lipkin • Chief proponent of screw geometry Summer Screws 2009 August 22-30 • Screw theory was his avocation University of Genoa, Italy not his principal research Sir Robert Stawell Ball (1840-1913) Sir Robert Stawell Ball (1840-1913) • Royal Astronomer of Ireland • Screw kinematics and dynamics. – Also held by W.R. Hamilton • Dynamics of rigid bodies at rest (linear geometry of dynamics) • Lowndean of Astronomy and • Uniquely employed screw coordinates Geometry at Cambridge – not currently used University • No known successor to further screw • Wrote many books on theory astronomy for the public – Dynamicist E.T. Whittaker was a student • Well-known public speaker Sir Robert Stawell Ball (1840-1913) Louis Poinsot (1777 – 1859) • Ecole Polytechnique • Died before finishing • Introduced geometric autobiography/biography – screw mechanics related materials not finished • (1806) • Ball 2000 Symposium at – concept of a couple Cambridge University – concept of a wrench: any system • Treatise republished (1998) of forces can be reduced to a single force and a couple in a • Extensive annotated bibliography plane normal to the force “of principal works known to me” f o no() – Ball: a wrench on a screw Michel Chasles (1793 – 1880) Sir William Rowan Hamilton (1805 – 1865) • Royal Astronomer of Ireland • Ecole Polytechnique (predates Ball) • Projective geometry • Famous
    [Show full text]
  • Sophus Lie: a Real Giant in Mathematics by Lizhen Ji*
    Sophus Lie: A Real Giant in Mathematics by Lizhen Ji* Abstract. This article presents a brief introduction other. If we treat discrete or finite groups as spe- to the life and work of Sophus Lie, in particular cial (or degenerate, zero-dimensional) Lie groups, his early fruitful interaction and later conflict with then almost every subject in mathematics uses Lie Felix Klein in connection with the Erlangen program, groups. As H. Poincaré told Lie [25] in October 1882, his productive writing collaboration with Friedrich “all of mathematics is a matter of groups.” It is Engel, and the publication and editing of his collected clear that the importance of groups comes from works. their actions. For a list of topics of group actions, see [17]. Lie theory was the creation of Sophus Lie, and Lie Contents is most famous for it. But Lie’s work is broader than this. What else did Lie achieve besides his work in the 1 Introduction ..................... 66 Lie theory? This might not be so well known. The dif- 2 Some General Comments on Lie and His Impact 67 ferential geometer S. S. Chern wrote in 1992 that “Lie 3 A Glimpse of Lie’s Early Academic Life .... 68 was a great mathematician even without Lie groups” 4 A Mature Lie and His Collaboration with Engel 69 [7]. What did and can Chern mean? We will attempt 5 Lie’s Breakdown and a Final Major Result . 71 to give a summary of some major contributions of 6 An Overview of Lie’s Major Works ....... 72 Lie in §6.
    [Show full text]
  • 18Th International Geometry Symposium in Honour of Prof.Dr
    18th International Geometry Symposium in Honour of Prof.Dr. Sadık KELEŞ July 12-13, 2021 İnönü University, Malatya-TURKEY 18TH INTERNATIONAL GEOMETRY SYMPOSIUM ABSTRACTS BOOK i 18th International Geometry Symposium in Honour of Prof.Dr. Sadık KELEŞ July 12-13, 2021 İnönü University, Malatya-TURKEY Proceedings of the 18th International Geometry Symposium Edited By: Prof.Dr. Rıfat GÜNEŞ Prof.Dr. Erol KILIÇ Prof.Dr. H. Bayram KARADAĞ Prof.Dr. M. Kemal ÖZDEMÌR E-published by: İnönü University All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means or whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder. Authors of papers in these proceedings are authorized to use their own material freely. Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to: Prof.Dr. Rıfat GÜNEŞ İnönü University [email protected] ii 18th International Geometry Symposium in Honour of Prof.Dr. Sadık KELEŞ July 12-13, 2021 İnönü University, Malatya-TURKEY Proceedings of the 18th International Geometry Symposium July 12-13, 2021 Malatya, Turkey Jointly Organized by İnönü University iii 18th International Geometry Symposium in Honour of Prof.Dr. Sadık KELEŞ July 12-13, 2021 İnönü University, Malatya-TURKEY TABLE OF CONTENTS Foreword ....................................... 1 Committees ..................................... 3 Online Symposium Programme ...................... 10 Invited Speakers ................................. 31 Recent Developments on Conformal Submersions in Riemannian Geometry Bayram Şahin ................................. 31 Curvature invariants, optimal inequalities and ideal submanifolds in space forms Gabriel Eduard Vilcu ............................
    [Show full text]
  • Lucjan Emil Böttcher (1872‒1937) ‒ the Polish Pioneer of Holomorphic Dynamics
    TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE FUNDAMENTAL SCIENCES NAUKI PODSTAWOWE 1-NP/2014 MAŁGORZATA STAWISKA* LUCJAN EMIL BÖTTCHER (1872‒1937) ‒ THE POLISH PIONEER OF HOLOMORPHIC DYNAMICS LUCJAN EMIL BÖTTCHER (1872‒1937) ‒ POLSKI PIONIER DYNAMIKI HOLOMORFICZNEJ Abstract In this article I present Lucjan Emil Böttcher (1872‒1937), a little-known Polish mathematician active in Lwów. I outline his scholarly path and describe briefly his mathematical achievements. In view of later developments in holomorphic dynamics, I argue that, despite some flaws in his work, Böttcher should be regarded not only as a contributor to the area but in fact as one of its founders. Keywords: mathematics of the 19th and 20th century, holomorphic dynamics, iterations of rational functions Streszczenie W artykule tym przedstawiam Lucjana Emila Böttchera (1872‒1937), mało znanego matema- tyka polskiego działającego we Lwowie. Szkicuję jego drogę naukową oraz opisuję pokrótce jego osiągnięcia matematyczne. W świetle późniejszego rozwoju dynamiki holomorficznej do- wodzę, że mimo pewnych wad jego prac należy nie tylko docenić wkład Böttchera w tę dzie- dzinę, ale w istocie zaliczyć go do jej twórców. Słowa kluczowe: matematyka XIX i XX wieku, dynamika holomorficzna, iteracje funkcji wymiernych * Małgorzata Stawiska, Mathematical Reviews, 416 Fourth St., Ann Arbor, MI 48103, USA, email: [email protected]. 234 1. Introduction Holomorphic dynamics – in particular the study of iteration of rational maps on the Riemann sphere – is an active area of current mathematical
    [Show full text]
  • On the E. Study Maps for the Dual Quaternions∗
    Applied Mathematics E-Notes, 21(2021), 365-374 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ On The E. Study Maps For The Dual Quaternions Salim Yücey Received 18 May 2020 Abstract In this study, the generalization of the well-known E. Study map for unit dual quaternion vectors in 3 HD is obtained, where D and HD are sets of dual numbers and dual quaternions, respectively. 1 Introduction Dual numbers introduced by W. K. Clifford are tools for geometrical investigations. Eduard Study (1903) defined directed lines in R3 by using dual unit numbers and introduced the mapping using his name: E. Study mapping. In this paper, firstly the properties of dual numbers and dual quaternions will be examined. After that dual quaternion functions and their properties will be introduced. Then by considering unit dual quaternions in H3, the generalization of E. Study map will be given, where and H are sets of dual numbers and dual D D D quaternions, respectively. 1.1 Dual Numbers A dual number is defined by z = a + "b, where a, b R and " = 0 with the property that "2 = 0. The real numbers a and b are called the real part and dual2 part of z and6 denoted by Re (z) = a and Du (z) = b, respectively. The set of dual numbers is denoted by 2 3 D = z = a + "b a, b R," = " = ... = 0," = 0 . j 2 6 Let z1 = a1 +"b1 and z2 = a2 +"b2 D. Then, the following properties of the dual numbers are summarized: 2 The addition of two dual numbers z1 and z2 is given by • z1 + z2 = (a1 + "b1) + (a2 + "b2) = (a1 + a2) + " (b1 + b2) .
    [Show full text]
  • Felix Kkin and His "Erlanger Programm"
    ----- Garrett Birkhoff and M. K. Bennett ----- Felix Kkin and His "Erlanger Programm" 1. Introduction Felix Klein's "Erlanger Programm" (E.P .), listed in our references as (Klein 1872), is generally accepted as a major landmark in the mathematics of the nineteenth century. In his obituary biography Courant (1925) termed it "perhaps the most influential and widely read paper in the second half of the nineteenth century." Coolidge (1940, 293) said that it "probably influenced geometrical thinking more than any other work since the time of Euclid, with the exception of Gauss and Riemann." In a thoughtful recent article, Thomas Hawkins (1984) has challenged these assessments, pointing out that from 1872 to 1890 the E.P. had a very limited circulation; that it was "Lie, not Klein" who developed the theory of continuous groups; that ''there is no evidence ... that Poincare ever studied the Programm;" that Killing's classification of Lie algebras (later "perfected by Cartan") bears little relation to the E.P.; and that Study, "the foremost contributor to ... geometry in the sense of the Erlanger Programm, ... had a strained and distant relationship with Klein." Our paper should be viewed as a companion piece to the study by Hawkins. In our view, Klein's E.P. did have a major influence on later research, including especially his own. Moreover, Klein was the chief heir of five outstanding Germanic geometers, all of whom died within the decade preceding the E.P .: Mobius (1790-1868), Steiner (1796-1869), van Staudt (1798-1867), Plucker (1801-68), and Clebsch (1833-72). Klein's close friendship with Lie at the time of the E.P.
    [Show full text]