Physical Motions and Quaternions

Total Page:16

File Type:pdf, Size:1020Kb

Physical Motions and Quaternions The representation of physical motions by various types of quaternions D. H. Delphenich † Abstract: It is shown that the groups of Euclidian rotations, rigid motions, proper, orthochronous Lorentz transformations, and the complex rigid motions can be represented by the groups of unit-norm elements in the algebras of real, dual, complex, and complex dual quaternions, respectively. It is shown how someof the physically-useful tensors and spinors can be represented by the various kinds of quaternions. The basic notions of kinematical states are described in each case, except complex dual quaternions, where their possible role in describing the symmetries of the Maxwell equations is discussed. † E-mail: [email protected] , Website: neo-classical-physics.info. CONTENTS Page INTRODUCTION……………………………………………………............. 1 References………………………………………………………………… 6 I. ALGEBRAS 1. General notions……………………………………………………………. 10 2. Ideals in algebras…………………………………………………………... 15 3. Automorphisms of algebras………………………………………..……… 17 4. Representations of algebras……………………………………………….. 18 5. Tensor products of algebras……………………………………………….. 21 References………………………………………………………………… 23 II. REAL QUATERNIONS 1. The group of Euclidian rotations………………………………………… 24 2. The algebra of real quaternions………………………………………….. 30 3. The action of rotations on quaternions…………………………………… 35 4. The kinematics of fixed-point rigid bodies………………………………. 41 References……………………………………………………………….. 47 III. DUAL QUATERNIONS 1. The group of Euclidian rigid motions…………………………………… 48 2. The algebra of dual numbers……………………………………………. 54 3. Functions of dual numbers………………………………………………. 56 4. Dual linear algebra………………………………………………………. 56 5. The algebra of dual quaternions…………………………………………. 64 6. The action of rigid motions on dual quaternions………………………… 69 7. Some line geometry……………………………………………………… 71 8. The kinematics of translating rigid bodies………………………………. 72 References……………………………………………………..………… 75 IV. COMPLEX QUATERNIONS 1. Functions of complex variables………………………………………….. 76 2. The group of complex rotations…………………………………………. 77 3. The algebra of complex quaternions…………………………………….. 81 4. The action of the Lorentz group on complex quaternions………………. 88 5. Some complex line geometry……………………………………………. 98 6. The kinematics of Lorentzian frames……………………………………. 101 References…………………………………………………..…………… 105 Table of Contents ii V. COMPLEX DUAL QUATERNIONS 1. The group of complex rigid motions…………………………………… 107 2. The algebra of complex dual numbers…………………………………. 109 3. Functions of complex dual numbers……………………………………. 111 4. Complex dual linear algebra……………………………………………. 112 5. The algebra of the complex dual quaternions………………………….. 115 6. The action of the group of complex rigid motions on complex dual quaternions……………………………………………………………... 121 7. The role of complex rigid frames in physics…………………………… 122 INTRODUCTION According to Wilhelm Blaschke [ 1], the first vestiges of the concept of a quaternion went to back to the work of Leonhard Euler on rigid-body rotations in 1776 [ 2]. Olinde Rodrigues seems to have developed much of the basics of the subject in 1840, without actually introducing the term “quaternion.” However, the first major attempt to develop the concept in its own right, along with its applications to physics, seems to have the posthumously-published book of Sir William Rowan Hamilton that he called Elements of Quaternions [ 3] that came almost a century after Euler in 1866, although the work was done starting in 1843. Hamilton envisioned quaternions as a geometric algebra that would extend the three- dimensional algebra of the vector cross product to a four-dimensional algebra in which the Euclidian scalar product also played a role in defining the product of its elements. Thus, the algebra would be closely related to rotations by the fact that the vector cross product defines a Lie algebra on R3 that is isomorphic to so (3; R), which consists of infinitesimal generators of Euclidian rotations, as well as the fact that rotations preserve the Euclidian scalar product. In that monumental treatise, the coefficients of quaternions were treated as if they could be either real or complex, as it suited the purpose, although Hamilton suggested that the complex kind might be referred to as “biquaternions.” However, since the work predated the theory of relativity, no mention was made of the role that the complex quaternions might play in regard to relativistic motions. Apparently, the subsequent history of the theory of quaternions was somewhat marginal to the mainstream of both mathematics and physics for quite some time. However, from 1899 to 1913 there was an international Quaternion Society that formed around Alexander MacFarlane that was dedicated to keeping the concept alive. For the most part, their main acceptance in the early years seems to have been with the algebraists (cf., e.g., Shaw [ 4]), who saw them as a useful example of an algebra. However, later researchers in physics and mechanical engineering continued to expand upon the usefulness of quaternions in applications that involved the representation of three-dimensional Euclidian rotations. For instance, to this day, the inertial navigation community regards the representation of kinematics by real quaternions as being their most computationally efficient algorithm for the propagation of rotating frames. Although the method of Euler angles requires one less coordinate to describe a rotation, nevertheless, the differential equations that one must integrate involve products of trigonometric functions, which tends to slow down the computational speed considerably. Although the method of direction cosine matrices only involves basic arithmetic operations on the components of the matrices, nonetheless, they are matrices with nine components, which also tends to slow things down. Thus, the four components of a unit quaternion seem to provide an ideal compromise. In a different part of geometry and mechanics, geometers such as Louis Poinsot [ 5] and Michel Chasles [ 6] were exploring the geometry of the larger group of rigid motions, which also includes translations, in addition to the rotations; both two and three dimensional rigid motions were dealt with in detail. The geometry that they were Introduction 2 considering was actually projective geometry, not affine Euclidian geometry. Chasles found that the concept of an infinitesimal center of rotation for a planar rigid motion could be extended to a “central axis” for any three-dimensional rigid motion, which allowed one to decompose the motion into a rotation about the axis and a translation along it. Previously, in the context of statics, Poinsot found that a finite set of spatially- distributed force vectors that acted on a rigid body could be replaced with an equivalent force-moment about a central axis and a force along it. The German geometers Julius Plücker [ 7] and his illustrious student Felix Klein [ 8] expanded upon the projective- geometric nature of these constructions, and introduced the term “Dyname” for a finite spatial distribution of force vectors. (The French were using the term “torseur,” which eventually became the more modern term “torsor.”) In the meantime, Sir Robert Ball [ 9] had introduced the term “screw” to describe the canonical form of the rigid motion and “wrench” to describe the canonical form of a force distribution. To some extent, the German school of geometrical kinematics culminated in the 1903 treatise [ 10 ] of another student of Plücker named Eduard Study that was entitled Die Geometrie der Dynamen . One of the innovations that Study introduced in that work was the algebra of “dual numbers,” which he applied to study of quaternions to produce “dual quaternions.” Actually, William Kingdon Clifford had previously sketched out a theory [ 11] of what he was calling “biquaternions,” although his usage of that word was inconsistent with that of Hamilton, since Clifford’s biquaternions were quaternions whose components were dual numbers, while Hamilton’s biquaternions had complex components. However, the treatise of Study developed the concepts in much more detail than that of Clifford. Since dual quaternions represent an algebra over R8, some authors (e.g., MacAulay [ 12 ]) referred to them as “octonions.” Unfortunately, that usage is inconsistent with the modern usage of that term to refer to Cayley numbers, which defines a division algebra over R8, unlike dual quaternions, which have divisors of zero, and therefore cannot be a division algebra. The dual numbers represent an algebra over R2, just as the complex numbers do, but the difference is that the basic object of the dual number algebra is a symbol ε that is nilpotent – viz., ε2 = 0 – while the basic object of the complex algebra is a symbol i with the property that i2 = −1. The effect of introducing ε is to produce an algebra that is not a division algebra – in particular, it has divisors of zero – with the property that the product of two dual numbers a + εb and c + εd is ac + ε(ad + bc ), which then combines the usual multiplication of real numbers with their addition. Although it is not obvious at this stage of the discussion, when one uses such numbers for the components of quaternions, it allows on to represent three-dimensional rigid motions by means of the group of unit dual quaternions, just as the unit quaternions carry a representation of the group of three- dimensional Euclidian rotations; in fact, it is the spin representation that is isomorphic to SU (2). Apparently,
Recommended publications
  • Math 651 Homework 1 - Algebras and Groups Due 2/22/2013
    Math 651 Homework 1 - Algebras and Groups Due 2/22/2013 1) Consider the Lie Group SU(2), the group of 2 × 2 complex matrices A T with A A = I and det(A) = 1. The underlying set is z −w jzj2 + jwj2 = 1 (1) w z with the standard S3 topology. The usual basis for su(2) is 0 i 0 −1 i 0 X = Y = Z = (2) i 0 1 0 0 −i (which are each i times the Pauli matrices: X = iσx, etc.). a) Show this is the algebra of purely imaginary quaternions, under the commutator bracket. b) Extend X to a left-invariant field and Y to a right-invariant field, and show by computation that the Lie bracket between them is zero. c) Extending X, Y , Z to global left-invariant vector fields, give SU(2) the metric g(X; X) = g(Y; Y ) = g(Z; Z) = 1 and all other inner products zero. Show this is a bi-invariant metric. d) Pick > 0 and set g(X; X) = 2, leaving g(Y; Y ) = g(Z; Z) = 1. Show this is left-invariant but not bi-invariant. p 2) The realification of an n × n complex matrix A + −1B is its assignment it to the 2n × 2n matrix A −B (3) BA Any n × n quaternionic matrix can be written A + Bk where A and B are complex matrices. Its complexification is the 2n × 2n complex matrix A −B (4) B A a) Show that the realification of complex matrices and complexifica- tion of quaternionic matrices are algebra homomorphisms.
    [Show full text]
  • An Historical Review of the Theoretical Development of Rigid Body Displacements from Rodrigues Parameters to the finite Twist
    Mechanism and Machine Theory Mechanism and Machine Theory 41 (2006) 41–52 www.elsevier.com/locate/mechmt An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist Jian S. Dai * Department of Mechanical Engineering, School of Physical Sciences and Engineering, King’s College London, University of London, Strand, London WC2R2LS, UK Received 5 November 2004; received in revised form 30 March 2005; accepted 28 April 2005 Available online 1 July 2005 Abstract The development of the finite twist or the finite screw displacement has attracted much attention in the field of theoretical kinematics and the proposed q-pitch with the tangent of half the rotation angle has dem- onstrated an elegant use in the study of rigid body displacements. This development can be dated back to RodriguesÕ formulae derived in 1840 with Rodrigues parameters resulting from the tangent of half the rota- tion angle being integrated with the components of the rotation axis. This paper traces the work back to the time when Rodrigues parameters were discovered and follows the theoretical development of rigid body displacements from the early 19th century to the late 20th century. The paper reviews the work from Chasles motion to CayleyÕs formula and then to HamiltonÕs quaternions and Rodrigues parameterization and relates the work to Clifford biquaternions and to StudyÕs dual angle proposed in the late 19th century. The review of the work from these mathematicians concentrates on the description and the representation of the displacement and transformation of a rigid body, and on the mathematical formulation and its progress.
    [Show full text]
  • Geometric Algebras for Euclidean Geometry
    Geometric algebras for euclidean geometry Charles Gunn Keywords. metric geometry, euclidean geometry, Cayley-Klein construc- tion, dual exterior algebra, projective geometry, degenerate metric, pro- jective geometric algebra, conformal geometric algebra, duality, homo- geneous model, biquaternions, dual quaternions, kinematics, rigid body motion. Abstract. The discussion of how to apply geometric algebra to euclidean n-space has been clouded by a number of conceptual misunderstandings which we first identify and resolve, based on a thorough review of cru- cial but largely forgotten themes from 19th century mathematics. We ∗ then introduce the dual projectivized Clifford algebra P(Rn;0;1) (eu- clidean PGA) as the most promising homogeneous (1-up) candidate for euclidean geometry. We compare euclidean PGA and the popular 2-up model CGA (conformal geometric algebra), restricting attention to flat geometric primitives, and show that on this domain they exhibit the same formal feature set. We thereby establish that euclidean PGA is the smallest structure-preserving euclidean GA. We compare the two algebras in more detail, with respect to a number of practical criteria, including implementation of kinematics and rigid body mechanics. We then extend the comparison to include euclidean sphere primitives. We arXiv:1411.6502v4 [math.GM] 23 May 2016 conclude that euclidean PGA provides a natural transition, both scien- tifically and pedagogically, between vector space models and the more complex and powerful CGA. 1. Introduction Although noneuclidean geometry of various sorts plays a fundamental role in theoretical physics and cosmology, the overwhelming volume of practical science and engineering takes place within classical euclidean space En. For this reason it is of no small interest to establish the best computational model for this space.
    [Show full text]
  • CLIFFORD ALGEBRAS and THEIR REPRESENTATIONS Introduction
    CLIFFORD ALGEBRAS AND THEIR REPRESENTATIONS Andrzej Trautman, Uniwersytet Warszawski, Warszawa, Poland Article accepted for publication in the Encyclopedia of Mathematical Physics c 2005 Elsevier Science Ltd ! Introduction Introductory and historical remarks Clifford (1878) introduced his ‘geometric algebras’ as a generalization of Grassmann alge- bras, complex numbers and quaternions. Lipschitz (1886) was the first to define groups constructed from ‘Clifford numbers’ and use them to represent rotations in a Euclidean ´ space. E. Cartan discovered representations of the Lie algebras son(C) and son(R), n > 2, that do not lift to representations of the orthogonal groups. In physics, Clifford algebras and spinors appear for the first time in Pauli’s nonrelativistic theory of the ‘magnetic elec- tron’. Dirac (1928), in his work on the relativistic wave equation of the electron, introduced matrices that provide a representation of the Clifford algebra of Minkowski space. Brauer and Weyl (1935) connected the Clifford and Dirac ideas with Cartan’s spinorial represen- tations of Lie algebras; they found, in any number of dimensions, the spinorial, projective representations of the orthogonal groups. Clifford algebras and spinors are implicit in Euclid’s solution of the Pythagorean equation x2 y2 + z2 = 0 which is equivalent to − y x z p = 2 p q (1) −z y + x q ! " ! " # $ so that x = q2 p2, y = p2 + q2, z = 2pq. If the numbers appearing in (1) are real, then − this equation can be interpreted as providing a representation of a vector (x, y, z) R3, null ∈ with respect to a quadratic form of signature (1, 2), as the ‘square’ of a spinor (p, q) R2.
    [Show full text]
  • Relativistic Dynamics
    Chapter 4 Relativistic dynamics We have seen in the previous lectures that our relativity postulates suggest that the most efficient (lazy but smart) approach to relativistic physics is in terms of 4-vectors, and that velocities never exceed c in magnitude. In this chapter we will see how this 4-vector approach works for dynamics, i.e., for the interplay between motion and forces. A particle subject to forces will undergo non-inertial motion. According to Newton, there is a simple (3-vector) relation between force and acceleration, f~ = m~a; (4.0.1) where acceleration is the second time derivative of position, d~v d2~x ~a = = : (4.0.2) dt dt2 There is just one problem with these relations | they are wrong! Newtonian dynamics is a good approximation when velocities are very small compared to c, but outside of this regime the relation (4.0.1) is simply incorrect. In particular, these relations are inconsistent with our relativity postu- lates. To see this, it is sufficient to note that Newton's equations (4.0.1) and (4.0.2) predict that a particle subject to a constant force (and initially at rest) will acquire a velocity which can become arbitrarily large, Z t ~ d~v 0 f ~v(t) = 0 dt = t ! 1 as t ! 1 . (4.0.3) 0 dt m This flatly contradicts the prediction of special relativity (and causality) that no signal can propagate faster than c. Our task is to understand how to formulate the dynamics of non-inertial particles in a manner which is consistent with our relativity postulates (and then verify that it matches observation, including in the non-relativistic regime).
    [Show full text]
  • Algebras in Which Every Subalgebra Is Noetherian
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 142, Number 9, September 2014, Pages 2983–2990 S 0002-9939(2014)12052-1 Article electronically published on May 21, 2014 ALGEBRAS IN WHICH EVERY SUBALGEBRA IS NOETHERIAN D. ROGALSKI, S. J. SIERRA, AND J. T. STAFFORD (Communicated by Birge Huisgen-Zimmermann) Abstract. We show that the twisted homogeneous coordinate rings of elliptic curves by infinite order automorphisms have the curious property that every subalgebra is both finitely generated and noetherian. As a consequence, we show that a localisation of a generic Skylanin algebra has the same property. 1. Introduction Throughout this paper k will denote an algebraically closed field and all algebras will be k-algebras. It is not hard to show that if C is a commutative k-algebra with the property that every subalgebra is finitely generated (or noetherian), then C must be of Krull dimension at most one. (See Section 3 for one possible proof.) The aim of this paper is to show that this property holds more generally in the noncommutative universe. Before stating the result we need some notation. Let X be a projective variety ∗ with invertible sheaf M and automorphism σ and write Mn = M⊗σ (M) ···⊗ n−1 ∗ (σ ) (M). Then the twisted homogeneous coordinate ring of X with respect to k M 0 M this data is the -algebra B = B(X, ,σ)= n≥0 H (X, n), under a natu- ral multiplication. This algebra is fundamental to the theory of noncommutative algebraic geometry; see for example [ATV1, St, SV]. In particular, if S is the 3- dimensional Sklyanin algebra, as defined for example in [SV, Example 8.3], then B(E,L,σ)=S/gS for a central element g ∈ S and some invertible sheaf L over an elliptic curve E.WenotethatS is a graded ring that can be regarded as the “co- P2 P2 ordinate ring of a noncommutative ” or as the “coordinate ring of nc”.
    [Show full text]
  • On the Complexification of the Classical Geometries And
    On the complexication of the classical geometries and exceptional numb ers April Intro duction The classical groups On R Spn R and GLn C app ear as the isometry groups of sp ecial geome tries on a real vector space In fact the orthogonal group On R represents the linear isomorphisms of arealvector space V of dimension nleaving invariant a p ositive denite and symmetric bilinear form g on V The symplectic group Spn R represents the isometry group of a real vector space of dimension n leaving invariant a nondegenerate skewsymmetric bilinear form on V Finally GLn C represents the linear isomorphisms of a real vector space V of dimension nleaving invariant a complex structure on V ie an endomorphism J V V satisfying J These three geometries On R Spn R and GLn C in GLn Rintersect even pairwise in the unitary group Un C Considering now the relativeversions of these geometries on a real manifold of dimension n leads to the notions of a Riemannian manifold an almostsymplectic manifold and an almostcomplex manifold A symplectic manifold however is an almostsymplectic manifold X ie X is a manifold and is a nondegenerate form on X so that the form is closed Similarly an almostcomplex manifold X J is called complex if the torsion tensor N J vanishes These three geometries intersect in the notion of a Kahler manifold In view of the imp ortance of the complexication of the real Lie groupsfor instance in the structure theory and representation theory of semisimple real Lie groupswe consider here the question on the underlying geometrical
    [Show full text]
  • Lie Group Homomorphism Φ: → Corresponds to a Linear Map Φ: →
    More on Lie algebras Wednesday, February 14, 2018 8:27 AM Simple Lie algebra: dim 2 and the only ideals are 0 and itself. Have classification by Dynkin diagram. For instance, , is simple: take the basis 01 00 10 , , . 00 10 01 , 2,, 2,, . Suppose is in the ideal. , 2. , , 2. If 0, then X is in the ideal. Then ,,, 2imply that H and Y are also in the ideal which has to be 2, . The case 0: do the same argument for , , , then the ideal is 2, unless 0. The case 0: , 2,, 2implies the ideal is 2, unless 0. The ideal is {0} if 0. Commutator ideal: , Span,: , ∈. An ideal is in particular a Lie subalgebra. Keep on taking commutator ideals, get , , ⊂, … called derived series. Solvable: 0 for some j. If is simple, for all j. Levi decomposition: any Lie algebra is the semi‐direct product of a solvable ideal and a semisimple subalgebra. Similar concept: , , , , …, ⊂. Sequence of ideals called lower central series. Nilpotent: 0 for some j. ⊂ . Hence nilpotent implies solvable. For instance, the Lie algebra of nilpotent upper triangular matrices is nilpotent and hence solvable. Can take the basis ,, . Then ,,, 0if and , if . is spanned by , for and hence 0. The Lie algebra of upper triangular matrices is solvable but not nilpotent. Can take the basis ,,,, ,,…,,. Similar as above and ,,,0. . So 0. But for all 1. Recall that any Lie group homomorphism Φ: → corresponds to a linear map ϕ: → . In the proof that a continuous homomorphism is smooth. Lie group Page 1 Since Φ ΦΦΦ , ∘ Ad AdΦ ∘.
    [Show full text]
  • Patterns of Maximally Entangled States Within the Algebra of Biquaternions
    J. Phys. Commun. 4 (2020) 055018 https://doi.org/10.1088/2399-6528/ab9506 PAPER Patterns of maximally entangled states within the algebra of OPEN ACCESS biquaternions RECEIVED 21 March 2020 Lidia Obojska REVISED 16 May 2020 Siedlce University of Natural Sciences and Humanities, ul. 3 Maja 54, 08-110 Siedlce, Poland ACCEPTED FOR PUBLICATION E-mail: [email protected] 20 May 2020 Keywords: bipartite entanglement, biquaternions, density matrix, mereology PUBLISHED 28 May 2020 Original content from this Abstract work may be used under This paper proposes a description of maximally entangled bipartite states within the algebra of the terms of the Creative Commons Attribution 4.0 biquaternions–Ä . We assume that a bipartite entanglement is created in a process of splitting licence. one particle into a pair of two indiscernible, yet not identical particles. As a result, we describe an Any further distribution of this work must maintain entangled correlation by the use of a division relation and obtain twelve forms of biquaternions, attribution to the author(s) and the title of representing pure maximally entangled states. Additionally, we obtain other patterns, describing the work, journal citation mixed entangled states. Finally, we show that there are no other maximally entangled states in Ä and DOI. than those presented in this work. 1. Introduction In 1935, Einstein, Podolski and Rosen described a strange phenomenon, in which in its pure state, one particle behaves like a pair of two indistinguishable, yet not identical, particles [1]. This phenomenon, called by Einstein ’a spooky action at a distance’, has been investigated by many authors, who tried to explain this strange correlation [2–9].
    [Show full text]
  • Gauging the Octonion Algebra
    UM-P-92/60_» Gauging the octonion algebra A.K. Waldron and G.C. Joshi Research Centre for High Energy Physics, University of Melbourne, Parkville, Victoria 8052, Australia By considering representation theory for non-associative algebras we construct the fundamental and adjoint representations of the octonion algebra. We then show how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. We find that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. PACS numbers: 11.30.Ly, 12.10.Dm, 12.40.-y. Typeset Using REVTEX 1 L INTRODUCTION The aim of this work is to genuinely gauge the octonion algebra as opposed to relating properties of this algebra back to the well known theory of Lie Groups and fibre bundles. Typically most attempts to utilise the octonion symmetry in physics have revolved around considerations of the automorphism group G2 of the octonions and Jordan matrix representations of the octonions [1]. Our approach is more simple since we provide a spinorial approach to the octonion symmetry. Previous to this work there were already several indications that this should be possible. To begin with the statement of the gauge principle itself uno theory shall depend on the labelling of the internal symmetry space coordinates" seems to be independent of the exact nature of the gauge algebra and so should apply equally to non-associative algebras. The octonion algebra is an alternative algebra (the associator {x-1,y,i} = 0 always) X -1 so that the transformation law for a gauge field TM —• T^, = UY^U~ — ^(c^C/)(/ is well defined for octonionic transformations U.
    [Show full text]
  • Application of Dual Quaternions on Selected Problems
    APPLICATION OF DUAL QUATERNIONS ON SELECTED PROBLEMS Jitka Prošková Dissertation thesis Supervisor: Doc. RNDr. Miroslav Láviˇcka, Ph.D. Plze ˇn, 2017 APLIKACE DUÁLNÍCH KVATERNIONU˚ NA VYBRANÉ PROBLÉMY Jitka Prošková Dizertaˇcní práce Školitel: Doc. RNDr. Miroslav Láviˇcka, Ph.D. Plze ˇn, 2017 Acknowledgement I would like to thank all the people who have supported me during my studies. Especially many thanks belong to my family for their moral and material support and my advisor doc. RNDr. Miroslav Láviˇcka, Ph.D. for his guidance. I hereby declare that this Ph.D. thesis is completely my own work and that I used only the cited sources. Plzeˇn, July 20, 2017, ........................... i Annotation In recent years, the study of quaternions has become an active research area of applied geometry, mainly due to an elegant and efficient possibility to represent using them ro- tations in three dimensional space. Thanks to their distinguished properties, quaternions are often used in computer graphics, inverse kinematics robotics or physics. Furthermore, dual quaternions are ordered pairs of quaternions. They are especially suitable for de- scribing rigid transformations, i.e., compositions of rotations and translations. It means that this structure can be considered as a very efficient tool for solving mathematical problems originated for instance in kinematics, bioinformatics or geodesy, i.e., whenever the motion of a rigid body defined as a continuous set of displacements is investigated. The main goal of this thesis is to provide a theoretical analysis and practical applications of the dual quaternions on the selected problems originated in geometric modelling and other sciences or various branches of technical practise.
    [Show full text]
  • More on Vectors Math 122 Calculus III D Joyce, Fall 2012
    More on Vectors Math 122 Calculus III D Joyce, Fall 2012 Unit vectors. A unit vector is a vector whose length is 1. If a unit vector u in the plane R2 is placed in standard position with its tail at the origin, then it's head will land on the unit circle x2 + y2 = 1. Every point on the unit circle (x; y) is of the form (cos θ; sin θ) where θ is the angle measured from the positive x-axis in the counterclockwise direction. u=(x;y)=(cos θ; sin θ) 7 '$θ q &% Thus, every unit vector in the plane is of the form u = (cos θ; sin θ). We can interpret unit vectors as being directions, and we can use them in place of angles since they carry the same information as an angle. In three dimensions, we also use unit vectors and they will still signify directions. Unit 3 vectors in R correspond to points on the sphere because if u = (u1; u2; u3) is a unit vector, 2 2 2 3 then u1 + u2 + u3 = 1. Each unit vector in R carries more information than just one angle since, if you want to name a point on a sphere, you need to give two angles, longitude and latitude. Now that we have unit vectors, we can treat every vector v as a length and a direction. The length of v is kvk, of course. And its direction is the unit vector u in the same direction which can be found by v u = : kvk The vector v can be reconstituted from its length and direction by multiplying v = kvk u.
    [Show full text]