AECL EACL AECL Research EACL Recherche
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
View Annual Report
The Future is Nuclear 2005 ANNUAL REPORT Bridging the Gene Producing affordable, clean energy while achieving a sustainable balance between increasing electricity demand and environmental stewardship – this is the promise and potential of a future powered by nuclear energy. It’s why a new generation is opting for nuclear as a reliable and secure energy choice. Cameco is poised and ready to support the new generation. We are a company with the expertise and capacity to deliver the benefits of nuclear energy – starting right now. As the world’s largest uranium producer, Cameco already provides about 20% of global uranium production from the richest mines on the planet. We are also expanding our production by developing two new mines. The company is looking ration Gap to the long-term nuclear future, seeking new reserves OUR PROFILE through a global exploration program with emphasis Cameco, with its head office in in North America and Australia. In nuclear fuel Saskatoon, Saskatchewan, is the production, Cameco has 38% of the western world’s world’s largest uranium producer UF6 conversion capacity, and provides conversion as well as a significant supplier of services and fuel fabrication for Candu reactors. conversion services. The company’s Power production rounds out Cameco’s nuclear competitive position is based on its focus, with 1,000 MW of nuclear power in Ontario. controlling ownership of the world’s largest high-grade reserves and low- A new generation, attentive to the wisdom of cost operations. Cameco’s uranium scientists, environmentalists and consumers, products are used to generate clean understands the future is nuclear. -
+ 2020 Annual Information Form
Denison Mines Corp. 2020 Annual Information Form March 26, 2021 ABOUT THIS ANNUAL INFORMATION FORM This annual information form (“AIF”) is dated March 26, Table of Contents 2021. Unless stated otherwise, all of the information in this AIF is stated as at December 31, 2020. About this AIF .................................... 1 About Denison ................................... 6 This AIF has been prepared in accordance with Canadian Developments over the Last Three securities laws and contains information regarding Years ................................................. 8 Denison’s history, business, mineral reserves and The Uranium Industry ........................ 17 resources, the regulatory environment in which Denison Mineral Resources and Reserves 24 does business, the risks that Denison faces and other Mineral Properties ............................. 27 important information for Shareholders. Athabasca Exploration: Sampling, Analysis and Data Verification ........... 102 This AIF incorporates by reference: Denison Operations ........................... 107 Manager of UPC ................................ 111 Denison’s management discussion and analysis (“MD&A”) for the year ended December 31, 2020, Denison Closed Mines Group ........... 112 Environmental, Health, Safety and Denison’s audited consolidated financial Sustainability Matters ........................ 112 statements for the year ended December 31, 2020, Government Regulation .................... 114 Risk Factors ...................................... 120 both of which -
Download the Scanned
American Mineralogist, Volume 59, pages 906-918, 1974 Domainsin Minerals Rosnnr E. NpwNnarvr Materials ResearchLaboratory, The PennsylaaniaState Uniuersity, Uniuersity Park, Pennsyluania16802 Abstract Mimetic twinning in minerals is reviewed in terms of the tensor properties of the orientation states, showing which forces are eftective in moving domain walls. Following the Aizu method, various types of ferroic species are developed frorn the free energy function. Examples of ferroelectric, ferromagnetic, ferroelastic, ferrobielectric, ferrobimagnetic, ferrobielastic, ferro- elastoelectric, ferromagnetoelastic, and ferromagnetoelectric minerals are described. Introduction and ferromagnetoelectric.As explained later, each Twinning is widely used in mineral identification type of domain reorientationarises from a particular and in elucidating the formation conditions of rocks. term in the free energy function. The distribution of transformation twins in rock- A ferroic crystal contains two or more possible forming minerals enables one to establish the orientationstates or domains;under a suitably chosen thermal processes that have occurred in the rock. driving force the domain walls move, switching the Mechanical twinning is studied by petrologists in crystal from one orientation stateto another. Switch- the analysis of flow effects. In rock magnetism, it ing may be accomplishedby mechanicalstress (a), is the arrangement of ferromagnetic domains which electricfield (E), magneticfield (I/), or somecombina- determines remanent magnetization. These are but tion of the three. Ferroelectric, ferroelastic, and a few examples of twin phenomena in minerals. ferromagneticmaterials are well known examplesof In the past twinned crystals have been classified primary ferroic crystals in which the orientation according to twin-laws and morphology, or accord- statesdiffer respectivelyin spontaneouspolarization ing to their mode of origin, or on a structural basis, P,",, spontaneousstrain 6r"r and spontaneous but there is another classification scheme which magnetizatiorrMr"t. -
20170828-Jason-Cameron-Nuclear-Infrastructure-Council-Eng.Pdf
THE CANADIAN NUCLEAR SAFETY COMMISSION PRESENTATION TO THE USNIC TRADE MISSION TO CANADA Jason Cameron, Vice-President Canadian Nuclear Safety Commission nuclearsafety.gc.ca August 28, 2017 – Ottawa, Ontario Canadian Nuclear Safety Commission • Regulates the use of nuclear energy and materials to protect health, safety, security and the environment • Implements Canada's international commitments on the peaceful use of nuclear energy • Disseminates objective scientific, technical and regulatory information to the public Canada’s nuclear watchdog We will never compromise safety! Canadian Nuclear Safety Commission 2 Canadian Nuclear Safety Commission • Established in May 2000, under the Nuclear Safety and Control Act • Replaced the Atomic Energy and Control Board (AECB) under the 1946 Atomic Energy Control Act More than 70 years of ensuring nuclear safety Canadian Nuclear Safety Commission 3 CNSC Regulates All Nuclear-Related Facilities and Activities • Uranium mines and mills • Uranium fuel fabrication and processing • Nuclear power plants • Nuclear substance processing • Industrial and medical applications • Nuclear research and educational activities • Transportation of nuclear substances • Nuclear security and safeguards • Export/import control • Waste management facilities …From cradle to grave Canadian Nuclear Safety Commission 4 Independent Commission • Quasi-judicial administrative tribunal • Agent of the Government of Canada (the Crown) • Reports to Parliament through Minister of Natural Resources • Commission members are independent and part-time • Commission hearings are public and Webcast • All presentations, including staff’s, are public • Decisions can only be reviewed by Federal Court Transparent, science-based decision-making Canadian Nuclear Safety Commission 5 Our Commission Members Dr. Michael Binder President and Chief Executive Officer, CNSC (Term expires May 8, 2018) Dr. -
Nickel Minerals from Barberton, South Africa: I
American Mineralogist, Volume 58, pages 733-735, 1973 NickelMinerals from Barberton,South Africa: Vl. Liebenbergite,A NickelOlivine SvsneNoA. nn Wnar Nationnl Institute lor Metallurgy, I Yale Road.,Milner Park, I ohannesburg,South Alrica Lnwrs C. ClI.x Il. S. GeologicalSuruey, 345 Middlefield Road, Menlo Park, California 94025 Abstract Liebenbergite, a nickel olivine from the mineral assemblage trevorite-liebenbergite-nickel serpentine-nickel ludwigite-bunsenite-violarite-millerite-gaspeite-nimite, is described mineral- ogically.Ithasa-1.820,P-1.854,7-1.888,ZVa-88",specificgravity-4'60,Mohs hardness- 6 to 6.5, a - 4.727, b - 10.191,c = 5.955A, and Z - 4. X-ray powder data (48 lines) were indexed according to the space grottp Pbnm. The mean chemical composi- tion, calculated from electron microprobe analyses of eight separate liebenbergite grains, gives the mineral formula: (NL eMgoaCoo,sFeo o)Sio "nOn The name is for W. R. Liebenberg, Deputy Director-General of the National Institute for Metallurgy, South Africa. Introduction mission on New Minerals and Mineral Names (rMA). A re-investigationof the trevorite deposit at Bon Accord in the Barberton Mountain Land, South Experimental Methods Africa, led to the discovery of two peculiar but distinct nickel mineral assemblages.Minerals from The refractive indices were determined by the the assemblagewillemseite-nimite-feroan trevorite- conventional liquid immersion method using a reevesite-millerite-violarite-goethitehave been de- sodium lamp as light source.The optical and crystal scribed in earlier papers in this series (de Waal, morphologicalparameters were studiedwith the aid 1969, l97oa, 1970b;de Waal and Viljoen, I97L). of a universal stage. -
Presentation to the Canadian Association of Nuclear Host Communities
CANADIAN NUCLEAR SAFETY COMMISSION nuclearsafety.gc.ca Michael Binder President and Chief Executive Officer Presentation to the Canadian Association of Nuclear Host Communities February 21, 2018 – Ottawa, Ontario nuclearsafety.gc.ca eDOCS: 5437640 The Canadian Nuclear Safety Commission (CNSC) Our Mandate Regulates the use of nuclear energy and materials to protect health, safety, and security and the environment Implements Canada's international commitments on the peaceful use of nuclear energy Disseminates objective scientific, technical and regulatory information to the public We will never compromise safety 2 nuclearsafety.gc.ca The CNSC Regulates All Nuclear Facilities And Activities In Canada Uranium mines and mills Nuclear research and educational activities Uranium fuel fabrication and processing Transportation of nuclear substances Nuclear power plants Nuclear security and safeguards Nuclear substance processing Import and export controls Industrial and medical applications Waste management facilities 3 nuclearsafety.gc.ca CNSC Staff Located Across Canada Fiscal year 2017–18 Human resources: 857 full-time equivalents Financial resources: $148 million (~70% cost recovery; ~30% appropriation) Licensees: 1,700 Licences: 2,500 Headquarters (HQ) in Ottawa 4 site offices at power plants Saskatoon Calgary 1 site office at Chalk River 4 regional offices Chalk River HQ Point Lepreau Laval Bruce Darlington Mississauga Pickering 4 nuclearsafety.gc.ca Independent Commission • Quasi-judicial administrative tribunal • Agent of the Crown (duty to consult) • Reports to Parliament through Minister of Natural Resources • Commission members are independent and part-time • Commission hearings are public and Webcast • Staff presentations in public • Decisions are reviewable by Federal Court Transparent, science-based decision making 5 nuclearsafety.gc.ca Commission Members Dr. -
Comparative Life Cycle Analysis of Base Load Electricity in Ontario
[Type text] Canadian Energy Research Institute Comparative Life Cycle Assessment (LCA) of Base Load Electricity Generation in Ontario Seyed Jazayeri Paul Kralovic Afshin Honarvar Abbas Naini Jon Rozhon Rami Shabaneh Thorn Walden Prepared for the Canadian Nuclear Association October 2008 Relevant • Independent • Objective COMPARATIVE LIFE CYLE ASESSMENT (LCA) OF BASE LOAD ELECTRICITY GENERATION IN ONTARIO ii Canadian Energy Research Institute v TABLE OF CONTENTS LIST OF FIGURES..........................................................................................................IX LIST OF TABLES............................................................................................................XI ACKNOWLEDGEMENTS ..............................................................................................XIII EXECUTIVE SUMMARY................................................................................................. XV ES1.1 Background .........................................................................................................xv ES1.2 Purpose of the Study ............................................................................................xv ES1.3 Methodology........................................................................................................xv ES1.4 The Process LCA ................................................................................................. xvi ES2 Power Generation in Canada ................................................................................ xvi ES3 -
Transcript of Commission Meeting of December 14, 2016
Canadian Nuclear Commission canadienne de Safety Commission sûreté nucléaire Public meeting Réunion publique December 14th, 2016 Le 14 décembre 2016 Public Hearing Room Salle des audiences publiques 14th floor 14e étage 280 Slater Street 280, rue Slater Ottawa, Ontario Ottawa (Ontario) Commission Members present Commissaires présents Dr. Michael Binder M. Michael Binder Dr. Sandy McEwan Dr Sandy McEwan Ms Rumina Velshi Mme Rumina Velshi Secretary: Secrétaire: Mr. Marc Leblanc M. Marc Leblanc General Counsel: Avocate générale : Ms Lisa Thiele Me Lisa Thiele 613-521-0703 StenoTran www.stenotran.com ii TABLE OF CONTENTS PAGE Opening Remarks 1 CMD 16-M66.C 3 Approval of Agenda CMD 16-M68 3 Status Report on Power Reactors CMD 16-M64 13 Written submission from CNSC staff CMD 16-M50/16-M50.A 18 Oral presentation by CNSC staff CMD 16-M50.1 46 Written submission by Canadian Nuclear Workers' Council CMD 16-M50.2 48 Written submission from Northwatch CMD 16-M70/16-M70.A 155 Oral presentation by CNSC staff CMD 16-M70.1 179 Submission from Énergie NB Power CMD 16-M70.2 180 Submission from Canadian Nuclear Laboratories CMD 16-M49/16-M49.A 245 Oral presentation by CNSC staff CMD 16-M49.5/16-M49.5A 270 Presentation by Cameco Corporation CMD 16-M49.3 298 Submission from the Canadian Nuclear Workers' Council iii TABLE OF CONTENTS PAGE CMD 16-M49.4/16-M49.4A/16-M49.4B 348 Presentation by AREVA Resources Canada Inc. CMD 16 M49.1 363 Submission from the Saskatchewan Environmental Society and the Athabasca Chipewyan First Nation CMD 16-M69 397 Submission from CNSC staff CMD 16-M72 411 Written submission from CNSC staff 1 Ottawa, Ontario / Ottawa (Ontario) --- Upon commencing on Wednesday, December 14, 2016 at 8:34 a.m. -
ACCIDENTS, LEAKS, FAILURES and OTHER INCIDENTS in the NUCLEAR INDUSTRIAL and MILITARY 1. 1947, October
ACCIDENTS, LEAKS, FAILURES AND OTHER INCIDENTS IN THE NUCLEAR INDUSTRIAL AND MILITARY 1. 1947, October - U.S.A., ATLANTIC OCEAN A retired navy pilot Lieutenant-Commander George Earl IV has claimed that he dumped radioactive Waste off the Atlantic seaboard on three flights in 1947. Lt-Commander Earl said he disclosed the radioactive dumping because of the U.S. Government's apparent lack of concern over the possibility of the cannisters leaking. ("The West Australian" - 3rd January 1981) 2. 1950, 13th February - U.S.A., PACIFIC OCEAN A B-36 which developed serious mechanical difficulties on a simulated combat mission, dropped a nuclear weapon from 8,000 ft. over the Pacific Ocean before crashing. Luckily only the weapon's explosive material detonated. Nothing is known of attempts to recover the nuclear weapon and presumably it is still in the ocean. (The Defence Monitor Vol.X No.5 1981 Washington D.C. "The National Times" 15th March 1981) 3. 1950, 11th April - NEW MEXICO, U.S.A. A B-29 crashed into a mountain on Manzano Base approximately three minutes after take-off. The bomb case was demolished and some high explosive material burned. The nuclear components of the weapon were recovered and returned to the Atomic Energy Commission. (The Defence Monitor - Vol.X No.5 19981 Washington D.C. "The National Times" 15th March 1981) 4. 1950, 13th Jul. - OHIO, U.S.A. A B-50 on training mission crashed killing 16 crewmen. The high explosive portion of the weapon aboard detonated on impact. No nuclear capsule aboard the aircraft. -
Graham Simpson 2007
Presentation to the Nunavut Planning Commission Discussion on Uranium Mining Graham Simpson, Saskatoon (June 5th 2007) A. I wish to thank the Commission for inviting me to bring some experiences of the Inter-Church Uranium Committee Educational Co-operative (ICUCEC) of Saskatoon. B. I am a retired Prof. of Plant Sciences at the University of Saskatchewan where I taught and did research for 40 years in the field of plant physiology. I am particularly concerned about the deterioration in the environment and biosphere by radioactive pollution that can have long-term genetic effects in all living things. I have been a member of ICUCEC since it began. C. I will give you a brief history of ICUCEC that has been in existence now for 27 years. Following the Cluff Lake Enquiry in Saskatchewan in 1978 the Provincial Government decided to permit new uranium mines in the Wollaston Lake basin in the far north of the Province. The nuclear industry decided to quietly buy up land owned by Mennonite dairy farmers close to Saskatoon, with the object of building a uranium refinery to avoid sending yellowcake all the way to Port Hope in Ontario. The farmers were angry at the deceit and called on local churches of different denominations to oppose a refinery when hearings were held by the Saskatchewan Government. The United Church, Catholic, Anglican, Lutheran and Mennonite churches banded together in an organisation initially called the Inter-Church Uranium Committee (ICUC) that made a convincing case to the hearings against having a refinery(1). The committee then focussed on the expanding uranium mines and for ethical reasons opposed them on the grounds that uranium was going from Saskatchewan to atom bombs (The Cold War was on) also to nuclear reactors that created huge amounts of radioactive waste posing a threat to the environment and humans for ages to come. -
Bibliography on Saskatchewan Uranium Inquiries and the Northern and Global Impact of the Uranium Industry
University of Regina iNis-mf—13125 __ CA9200098 Prairie Justice Research Bibliography on Saskatchewan Uranium Inquiries and The Northern and Global Impact of the Uranium Industry :• IN THF PimhlC INTEREST BIBLIOGRAPHY ON SASKATCHEWAN URANIUM INQUIRIES AND THE NORTHERN AND GLOBAL IMPACT OF THE URANIUM INDUSTRY Jim Harding, B.A. (Hons.), M.A., Ph.D. Director, Prairie Justice Research Beryl Forgay, B.Ed., B.HE., M.A. Research Officer, Prairie Justice Research Mary Gianoli, B.Ed. Research Co-ordinator, Prairie Justice Research Cover Design: Rick Coffin Published by PRAIRIE JUSTICE RESEARCH 1988 SERIES: IN THE PUBLIC INTEREST (Research Report No. 1) Published by: Prairie Justice Research Room 515 Library Building University of Regina Regina, Saskatchewan Canada S4S OA2 Cataloguing in Publication Data Harding, Jim, 1941- Bibliography on Saskatchewan uranium inquiries and the northern and global impact of the uranium industry ISBN 0-7731-0052-0 I. Uranium mines and mining - Environmental aspects - Saskatchewan - Bibliography. 2. Uranium industry - Environmental aspects - Saskatchewan - Bibliography. 3. Uranium industry - Government policy - Saskatchewan - Bibliography. I. Forgay. Beryl, 1926- II. University of Regina. Prairie Justice Research. III. Title. Z6738.U7H37 1986 016.3637'384 C86-091166-: ISBN 0-7731-0135 (Set) This is a publication of Prairie Justice Research at the University of Regina. Prairie Justice Research is funded by an operating contract with the Ministry of the Solicitor General and has the capacity to conduct socio-legal research for a diverse range of constituencies. For further informaiton contact: Dr. Jim Harding Director Prairie Justice Research Library Building University of Regina Regina, Saskatchewan Canada S4S 0A2 (306) 584-4064 NOTE: This research project was funded through "Human Context of Science and Technology" strategic grants of the Social Sciences and Humanities Research Council of Canada. -
History of Mining in Saskatchewan
History of Mining In Saskatchewan Early Mining in Saskatchewan The earliest mining occurred when earth’s inhabitants started using various stones for tools or certain clays for cooking vessels. The earliest recorded occupation in Saskatchewan was around 9000 B.C. at the Niska site in the southern part of the province. Ample evidence of the use of stone tools, arrow heads, and spear heads, etc. has been found in the area. Much of the material used by these early inhabitants was imported or traded from other regions of North America. The study of the stone tools provides us with information about the people’s work, their history, their religion, their travels and their relationships with other groups or nations. Stone is readily available throughout most of Saskatchewan. This was especially important for Saskatchewan’s First Nations people who moved their camps frequently in search for food. The stones available were not all suitable for tools and they needed a constant supply of stone material that broke cleanly or was hard enough for pounding. Consequently, they made regular trips to the source areas or traded with people who lived near the sources. For these early residents of our province, the exchange of goods was more than just a means of acquiring things. Bartering and gift exchange was a means of creating and reinforcing relationships between individuals, families and nations. For thousands of years, goods have been exchanged through networks that extended across North America. Although perishable goods were also traded, our records are in the form of shell or stone artefacts.