Scheduling Rail Freight Node Operations Through a Slot Allocation Approach

Total Page:16

File Type:pdf, Size:1020Kb

Scheduling Rail Freight Node Operations Through a Slot Allocation Approach Scheduling rail freight node operations through a slot allocation approach vorgelegt von Dipl.-Verkehrswirtschaftler René Schönemann geb. in Halle (Saale) von der Fakultät V – Verkehrs- und Maschinensysteme der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften – Dr.-Ing. – genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Kai Nagel Gutachter: Prof. Dr.-Ing. habil. Jürgen Siegmann Gutachter: Prof. Dr.-Ing. Thomas Siefer Tag der wissenschaftlichen Aussprache: 31. Mai 2016 Berlin 2016 D 83 Abstract The present thesis examines the performance of complex freight handling nodes with a focus on the transshipment from and to rail. Complex freight nodes can be found for example in major seaports or industrial railways of large industrial plants. When investigating the railway-specific processes of freight hubs, it has been particularly noticed that they practice an improvised rather than a scheduled operations policy, also known as timetable-free scheduling. That means that the necessary cargo han- dling process steps are performed rather spontaneous and without much planning efforts. The inadequate organisation of railway operations also leads to significant inefficiencies in the cargo handling capacity. This thesis is motivated by the aspiration of increasing the productivity and thus the throughput capacity of goods, wagons and trains through complex freight nodes as an overall system. The existing shortcomings shall be resolved by means of a robust hub scheduling approach which synchronises the work processes in freight yards with the preceding and succeeding links in the transport chain. By replacing the timetable-free operations in the railway yard with a process-oriented coordina- tion mechanism based on a time windows (slot management) strategy, the railway- specific requirements shall be integrated with customer’s and logistics demands. Ini- tially, the rail-specific production processes of freight nodes are elaborated in apro- cess analysis. It examines the properties of various terminal types, the cargo han- dling techniques, and the process sequences that freight trains, which pass through the hubs, are involved in. In the process analysis it is pointed out that due to the large number of actors involved in complex hubs and due to the lack of a superior coordi- nator, it is expected that there is a significant potential for increasing the efficiency of such nodes due to new dispatching strategies. A two-step simulation and optimisation model approach is developed to investi- gate the productivity of the cargo transshipment to and from rail. In the first stage of the modelling approach, the performance of freight nodes is analysed in a combined queueing and simulation environment. The model allows to examine the efficiency of individual system components and to identify bottlenecks. It is shown how the in- I terrelationships between the various processes can have a negative influence on the terminal performance when process coordination is insufficient. In particular, it is illustrated, how the turnover rate of the hub decreases when overloaded. A central aspect of the simulation is the computation of distribution functions from observa- tion data for determining stochastic process durations in the different areas of freight hubs. They are of essential significance for the development of the slot management system in the further course of this thesis. In the second step, the optimisation phase, slot plan sequences for the processing of trains through the freight node are developed by means of a linear programming approach. These slot plans control the allocation of railway infrastructure in the for- mation tracks of the marshalling yard as well as of the loading tracks in the transship- ment terminals. By gradually populating stochastic data from real-life observations, the slot system is tested for robustness under realistic conditions. A stability analysis examines in several scenarios, how slot plans get influenced by various optimisa- tion rules and external factors. In particular, unpunctual incoming freight trains have been identified as having a significant impact on the slot stability. With the develop- ment of appropriate rescheduling mechanisms it is further shown that the stability of the slot plans can be ensured even with heavy arrival time deviations. With the rescheduling approach, the slot management has been extended to a powerful tool that keeps the hub production system in a steady state, providing the necessary trans- parency to other involved stakeholders, particularly to railway undertakings. It even allows reducing the dwell times of trains with arrival delays and thus reduces the likelihood that these delays affect the train’s subsequent trips. With the current production system, transshipment nodes were identified as the weakest link in the transport chain. The thesis shows that their position can be sig- nificantly strengthened through such a slot management in combination withapow- erful rescheduling approach. The presented slot-based hub production approach op- timises not only the processes of the hub itself, but also the processes for the benefit of other stakeholders in the transport chain, such as forwarders, shippers or railway undertakings. II Zusammenfassung Die vorliegende Dissertation untersucht die Leistungsfähigkeit komplexer Güterum- schlaganlagen mit Hauptaugenmerk auf den Umschlag von und zum Schienengüter- verkehr. Komplexe Güterumschlaganlagen finden sich beispielsweise in großen See- häfen oder bei Werkbahnen großer Industrieanlagen. Bei der Untersuchung der eisenbahnspezifischen Prozesse von Güterverkehrsknoten wird deutlich, dass diese zu einem großen Teil einer improvisierten statt einer geplanten Betriebsstrategie unterliegen, auch bekannt als ablaufplanfreie Disposition. Das heißt, die für den Güterumschlag erforderlichen Prozessschritte werden ohne lange Vorplanung oper- ativ und spontan ausgeführt. Die unzulängliche Organisation des Bahnbetriebs führt auch zu wesentlichen Effizienzverlusten in der Güterumschlagsleistung. Die vorliegende Dissertation ist motiviert durch das Bestreben, die Produktivität und damit die Durchsatzleistung von Gütern, Waggons und Güterzügen durch kom- plexe Knoten als Gesamtsystem zu erhöhen. Die bestehenden Unzulänglichkeiten sollen mit Hilfe eines robusten Hub-Scheduling-Ansatzes, welcher die Arbeit- sprozesse in Güterbahnhöfen mit den vorausliegenden und den nachfolgenden Gliedern der Transportkette synchronisiert, gelöst werden. Durch das Ersetzen der planfreien Abläufe in den Eisenbahnknoten mit einem prozessorientierten Ko- ordinierungsmechanismus, basierend auf Zeitfenster-Strategien (Slot-Management), sollen die eisenbahn-spezifischen Anforderungen mit denen der Logistik vereinbar gemacht werden. In einer Prozessanalyse werden zunächst die Bahn-Produktionsprozesse von Um- schlagknoten des kombinierten Verkehrs dargestellt. Dabei wird auf die Eigen- schaften verschiedener Terminal-Typen, die Umschlagtechniken sowie die Prozess- folgen, die Güterzüge innerhalb der Hubs durchlaufen, eingegangen. In der Prozess- analyse wird herausgestellt, dass aufgrund der Vielzahl involvierter Akteure in kom- plexen Hubs und aufgrund des Fehlens eines übergeordneten Koordinators ein erhe- bliches Potential zur Erhöhung der Effizienz durch geeignete Dispositionsstrategien zu finden ist. III In einem zweistufigen Simulations- und Optimierungsmodell wird anschließend die Produktivität beim Güterumschlag von und zum Schienengüterverkehr unter- sucht. In der ersten Stufe des Modellansatzes wird die Leistungsfähigkeit von Umschlagknoten in einer kombinierten Warteschlangen- und Simulationsumgebung analysiert. Das Modell ermöglicht es, die Effizienz einzelner Anlagenteile zu un- tersuchen sowie Engpässe identifizieren zu können. Es zeigt sich, wie die Wechsel- beziehungen zwischen den verschiedenen Prozessen bei unzureichender Prozessko- ordination die Terminal-Performance negativ beeinflussen. Insbesondere kann dargestellt werden, wie die Umschlagleistung bei Überlastung abnimmt. Ein zen- traler Aspekt der Simulation ist die Entwicklung von Verteilungsfunktionen aus Beobachtungsdaten für die Bestimmung stochastischer Prozessdauern in den ver- schiedenen Anlagenteilen. Diese werden für die Entwicklung des Slot-Management- Systems im weiteren Verlauf der Arbeit von wesentlicher Bedeutung sein. Im zweiten Schritt, der Optimierungsphase, werden Slot-Pläne für die Führung von Güterzügen durch mehrere Anlagenteile mit Hilfe eines Verfahrens der linearen Optimierung entwickelt. Diese Slot-Pläne steuern die Belegung der Schieneninfras- truktur in den Vorstellgleisen wie auch in den Ladegleisen der Umschlagterminals. Durch das schrittweise Einpflegen stochastischer Daten aus Beobachtungen wird das Slot-System auf Robustheit unter realistischen Bedingungen getestet. Im Rah- men der Stabilitätsuntersuchung wird in verschiedenen Szenarien geprüft, welchen Einfluss diverse Optimierungsregeln sowie externe Faktoren auf die Slot-Pläne haben. Es zeigt sich, dass insbesondere unpünktlich ankommende Güterzüge einen wesentlichen Einfluss auf die Slot-Stabilität haben. Mit der Entwicklung geeigneter Rescheduling-Mechanismen wird das Slot-Management um ein leistungsfähiges Tool erweitert, das das Hub-Produktionssystem in einem stabilen Zustand hält. Es er- möglicht die Reduzierung der Verweilzeiten verspäteter Züge und verringert damit die Wahrscheinlichkeit, dass sich Verspätungen auf Folgefahrten auswirken.
Recommended publications
  • C) Rail Transport
    EUROPEAN PARLIAMENT WORKING DOCUMENT LOGISTICS SYSTEMS IN COMBINED TRANSPORT 3743 EN 1-1998 This publication is available in the following languages: FR EN PUBLISHER: European Parliament Directorate-General for Research L-2929 Luxembourg AUTHOR: Ineco - Madrid SUPERVISOR: Franco Piodi Economic Affairs Division Tel.: (00352) 4300-24457 Fax : (00352) 434071 The views expressed in this document are those of the author.and do not necessarily reflect the official position of the European Parliament. Reproduction and translation are authorized, except for commercial purposes, provided the source is acknowledged and the publisher is informed in advance and forwarded a copy. Manuscript completed in November 1997. Logistics systems in combined transport CONTENTS Page Chapter I INTRODUCTION ........................................... 1 Chapter I1 INFRASTRUCTURES FOR COMBINED TRANSPORT ........... 6 1. The European transport networks .............................. 6 2 . European Agreement on Important International Combined Transport Lines and related installations (AGTC) ................ 14 3 . Nodal infrastructures ....................................... 25 a) Freight villages ......................................... 25 b) Ports and port terminals ................................... 33 c) Rail/port and roadrail terminals ............................ 37 Chapter I11 COMBINED TRANSPORT TECHNIQUES AND PROBLEMS ARISING FROM THE DIMENSIONS OF INTERMODAL UNITS . 56 1. Definitions and characteristics of combined transport techniques .... 56 2 . Technical
    [Show full text]
  • The Role for Rail in Port-Based Container Freight Flows in Britain
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by WestminsterResearch The role for rail in port-based container freight flows in Britain ALLAN WOODBURN Bionote Dr Allan Woodburn is a Senior Lecturer in the Transport Studies Group at the University of Westminster, London, NW1 5LS. He specialises in freight transport research and teaching, mainly related to operations, planning and policy and with a particular interest in rail freight. 1 The role for rail in port-based container freight flows in Britain ALLAN WOODBURN Email: [email protected] Tel: +44 20 7911 5000 Fax: +44 20 7911 5057 Abstract As supply chains become increasingly global and companies seek greater efficiencies, the importance of good, reliable land-based transport linkages to/from ports increases. This poses particular problems for the UK, with its high dependency on imported goods and congested ports and inland routes. It is conservatively estimated that container volumes through British ports will double over the next 20 years, adding to the existing problems. This paper investigates the potential for rail to become better integrated into port-based container flows, so as to increase its share of this market and contribute to a more sustainable mode split. The paper identifies the trends in container traffic through UK ports, establishes the role of rail within this market, and assesses the opportunities and threats facing rail in the future. The analysis combines published statistics and other information relating to container traffic and original research on the nature of the rail freight market, examining recent trends and future prospects.
    [Show full text]
  • The Rail Freight Challenge for Emerging Economies How to Regain Modal Share
    The Rail Freight Challenge for Emerging Economies How to Regain Modal Share Bernard Aritua INTERNATIONAL DEVELOPMENT IN FOCUS INTERNATIONAL INTERNATIONAL DEVELOPMENT IN FOCUS The Rail Freight Challenge for Emerging Economies How to Regain Modal Share Bernard Aritua © 2019 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW, Washington, DC 20433 Telephone: 202-473-1000; Internet: www.worldbank.org Some rights reserved 1 2 3 4 22 21 20 19 Books in this series are published to communicate the results of Bank research, analysis, and operational experience with the least possible delay. The extent of language editing varies from book to book. This work is a product of the staff of The World Bank with external contributions. The findings, interpre- tations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Nothing herein shall constitute or be considered to be a limitation upon or waiver of the privileges and immunities of The World Bank, all of which are specifically reserved. Rights and Permissions This work is available under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) http:// creativecommons.org/licenses/by/3.0/igo.
    [Show full text]
  • New Vehicles by Rail Every Year. Focus on DB Schenker Rail Automotive Page 08
    THE DB SCHENKER RAIL CUSTOMER MAGAZINE NO. 03 | 11 3.000.000 new vehicles by rail every year. Focus on DB Schenker Rail Automotive Page 08 AXEL MARSCHALL SCA PAPER FROM SWEDEN HALFWAY AROUND THE WORLD “Potential among Asian and Fodder for Italy’s Trains from China major component suppliers” printing presses pick up speed Page 16 Page 32 Page 40 SuPer heroeS 6A DB Schenker Rail’s locomotives Class4D 261 –Dieselhydraulik GraVita 10BB Lok D DB Baureihe V90 AG DB , Clean performanCe: DB Schenker Rail’s new heavy shunting locomotive boasts a soot particle filter which intercepts 97 per cent of all particles. Müller/DB AG; DB AG kW/PS: 800/1100 Anzugskraft: 201 kN A new generation Christoph Launch:Motoren: 2010–2013 Total Fleet (DB): 99 4 Dienstmasse: 80,0 t Power:km/h: 1000 kW Manufacturer: Voith 80 Tankinhalt: 3000 l The new Gravita 10BB, which is built by Photos: / Speed:Länge: 100 km/h14 m Tractive effort: 246 kN Achsformel: B’B’ Voith in Kiel, has, since the end of 2010, Weight:Bauzeit: 1970-9280 t Length: 15.7 m been replacing the diesel shunting loco- Radsatzmasse: 20,0 t Anzahl: motives that have been in service with DB Special features: Radio remote control, Automatic shunting Liankevich 408 Zugheizung: coupling, First DB diesel locomotive with soot particle filter– for up to four decades. The Class 261 fea- Hersteller: MaK, Jung-Jungenthal, Krupp, 15,7 m tures state-of-the-art exhaust gas treat Andrei CountriesHenschel, of Operation Klöckner-Humboldt-Deutz: Germany (KHD) - DB Schenker Rail is investing €240 million ment, it is more efficient and it requires in 130 of these locomotives, which are to less maintenance than its predecessors.
    [Show full text]
  • Improved Freight Modeling of Containerized Cargo Shipments Between Ocean Port, Handling Facility, and Final Market for Regional Policy and Planning
    Final Technical Report TNW2008-08 Research Project Agreement No. 61-5907 Improved Freight Modeling of Containerized Cargo Shipments between Ocean Port, Handling Facility, and Final Market for Regional Policy and Planning Kaori Fugisawa Anne Goodchild Research Associate Assistant Professor University of Washington University of Washington Eric Jessup Assistant Professor Washington State University A report prepared for Transportation Northwest (TransNow) University of Washington 135 More Hall, Box 352700 Seattle, Washington 98195-2700 July 2008 TECHNICAL REPORT STANDARD TITLE PAGE 1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT’S CATALOG NO. TNW2008-08 4. TITLE AND SUBTITLE 5.REPORT DATE Improved Freight Modeling of Containerized Cargo Shipments between Ocean Port, July 2008 Handling Facility, and Final Market for Regional Policy and Planning 6. PERFORMING ORGANIZATION CODE 7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT NO. Anne Goodchild, Eric Jessup, Kaori Fugisawa TNW2008-08 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. Transportation Northwest Regional Center X (TransNow) Box 352700, 129 More Hall University of Washington 11. CONTRACT OR GRANT NO. Seattle, WA 98195-2700 DTRS99-G-0010 12. SPONSORING AGENCY NAME AND ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED United States Department of Transportation Office of the Secretary of Transportation Final Research Report 400 Seventh St. S.W. 14. SPONSORING AGENCY CODE Washington, D.C. 20590 15. SUPPLEMENTARY NOTES This study was conducted in cooperation with the University of Washington and the US Department of Transportation. ABSTRACT The proposed research will address an emerging need by local, state and regional transportation planners and policymakers to better understand the transportation characteristics, functions and dynamics of ocean port-to-handling facility and handling facility-to-final market freight movements.
    [Show full text]
  • A Systems Study Principal Report Summary and Chapter 1-3
    33 Railway Group KTH Transportation and Logistic Efficient train systems for freight transport A systems study Principal Report Summary and Chapter 1-3 Editor: Prof. Bo-Lennart Nelldal; PhD Royal Institute of Technology Stockholm 2005 Report 0505 34 35 Table of contents Foreword 4 Summary 7 1 INTRODUCTION 46 1.1 Background 46 1.2 Purpose and delimitation 46 1.3 Method description 48 2 THE RAILWAYS' MARKET AND COMPETITIVENESS 50 2.1 The transport market and the development of the railways 50 2.2 An brief international survey 57 2.3 The railways' competitive situation measured in different ways 63 3 CUSTOMER REQUIREMENTS AND TRAFFIC PRODUCTS 66 3.1 Customer requirements regarding freight transportation and logistics 66 3.2 Traffic products for different markets 69 36 Foreword Efficient train systems for freight transport is an interdisciplinary that was conducted by ”Railway group KTH” at the Royal Institute of Technology, and financed by the Swedish National Rail Administration, the Swedish Transport and Communication Board, the Swedish Agency for Innovation Systems, the Swedish State Railways, and Green Cargo. The major part of the study was conducted from 2002-2004. One of the points of departure in the present project is the report ”Järnvägens utvecklingsmöjligheter på den framtida godstransportmarknaden” (The Railways’ Development Prospects in a uture Freight Transportation Market) that was published in 2000. The project was conducted as an interdisciplinary project, principally involving senior researchers from different departments at the Royal Institute and also a number of outside experts. The project manager was Associate Professor Bo-Lennart Nelldal at the Division of Transportation and Logistics, who also wrote this principal report.
    [Show full text]
  • Container Transshipment and Logistics in the Context of Urban Economic Development
    Growth and Change DOI:DOI: 10.1111/grow.12132 10.1111/grow.12132 Vol. ••47 No. No. •• 3 (•• (September 2015), pp. 2016), ••–•• pp. 406–415 Container Transshipment and Logistics in the Context of Urban Economic Development BRIAN SLACK AND ELISABETH GOUVERNAL ABSTRACT It is widely recognised that there are strong relationships between containerisation and supply chains that are giving rise to significant clusters of logistics firms around the large gateway ports, which helps reinforce the status of many as global cities. Recent research, policy documents and regional development strategies suggest that transshipment hubs should be able to develop logistics businesses as well. In this paper, it is argued that the differences between gateway ports and transshipment hubs are very great, and that while the shipping lines have been eager to establish transshipment in many locations, logistics firms are reluctant to follow. A number of reasons for this to be the case are examined, including the long-term uncertainty of shipping services to transshipment hubs, the costs of stripping containers in hub ports with no scale advantages, the distance from major markets, and the limited volume of actual goods available in most hubs. Empirical evidence is presented to demonstrate the weakness of hubs as logistics centres, the major exception being Singapore. The evidence presented suggests that the economic development potential for cities developing as transship- ment hubs is much more limited than suggested in the literature. Introduction n this paper, the relationships between container ports and their positioning in logistics supply I chains are examined. This is a field that has already received a great deal of research and from which has emerged the concept of port-centric logistics and port regionalisation (Heaver 2002; Mangan and Lalwani 2008; Notteboom and Rodrigue 2005; Panayides and Song 2008).
    [Show full text]
  • The Waves of Containerization: Shifts in Global Maritime Transportation David Guerrero, Jean Paul Rodrigue
    The waves of containerization: shifts in global maritime transportation David Guerrero, Jean Paul Rodrigue To cite this version: David Guerrero, Jean Paul Rodrigue. The waves of containerization: shifts in global maritime trans- portation. International Association of Maritime Economists Conference, Jul 2013, France. 26 p. hal-00877538 HAL Id: hal-00877538 https://hal.archives-ouvertes.fr/hal-00877538 Submitted on 13 Nov 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Waves of Containerization: Shifts in Global Maritime Transportation David Guerrero SPLOTT-AME-IFSTTAR, Université Paris-Est, France. Jean-Paul Rodrigue Dept. of Global Studies & Geography, Hofstra University, Hempstead, New York, United States. Abstract This paper provides evidence of the cyclic behavior of containerization through an analysis of the phases of a Kondratieff wave (K-wave) of global container ports development. The container, like any technical innovation, has a functional (within transport chains) and geographical diffusion potential where a phase of maturity is eventually reached. Evidence from the global container port system suggests five main successive waves of containerization with a shift of the momentum from advanced economies to developing economies, but also within specific regions.
    [Show full text]
  • Investing in Mobility
    Investing in Mobility FREIGHT TRANSPORT IN THE HUDSON REGION THE EAST OF HUDSON RAIL FREIGHT OPERATIONS TASK FORCE Investing in Mobility FREIGHT TRANSPORT IN THE HUDSON REGION Environmental Defense and the East of Hudson Rail Freight Operations Task Force On the cover Left:Trucks exacerbate crippling congestion on the Cross-Bronx Expressway (photo by Adam Gitlin). Top right: A CSX Q116-23 intermodal train hauls double-stack containers in western New York. (photo by J. Henry Priebe Jr.). Bottom right: A New York Cross Harbor Railroad “piggypacker” transfers a low-profile container from rail to a trailer (photo by Adam Gitlin). Environmental Defense is dedicated to protecting the environmental rights of all people, including the right to clean air, clean water, healthy food and flourishing ecosystems. Guided by science, we work to create practical solutions that win lasting political, economic and social support because they are nonpartisan, cost-effective and fair. The East of Hudson Rail Freight Operations Task Force is committed to the restoration of price- and service-competitive freight rail service in the areas of the New York metropolitan region east of the Hudson River. The Task Force seeks to accomplish this objective through bringing together elected officials, carriers and public agencies at regularly scheduled meetings where any issue that hinders or can assist in the restoration of competitive rail service is discussed openly. It is expected that all participants will work toward the common goal of restoring competitive rail freight service East of the Hudson. ©2004 Environmental Defense Printed on 100% (50% post-consumer) recycled paper, 100% chlorine free.
    [Show full text]
  • Increasing Capacity Utilization of Shuttle Trains in Intermodal Transport by Investing in Transshipment Technologies for Non- Cranable Semi-Trailers
    Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds. INCREASING CAPACITY UTILIZATION OF SHUTTLE TRAINS IN INTERMODAL TRANSPORT BY INVESTING IN TRANSSHIPMENT TECHNOLOGIES FOR NON- CRANABLE SEMI-TRAILERS Ralf Elbert Daniel Reinhardt Chair of Management and Logistics Technische Universität Darmstadt Hochschulstraße 1 Darmstadt, D-64289 Darmstadt, GERMANY ABSTRACT For shuttle trains with a fixed transport capacity which are the dominant operating form in intermodal transport, increasing capacity utilization is of crucial importance due to the low marginal costs of transporting an additional loading unit. Hence, offering rail-based transport services for non-cranable semi-trailers can result in additional earnings for railway companies. However, these earnings have to compensate for the investment costs of the technology. Based on a dynamic investment calculation, this paper presents a simulation model to evaluate the economic profitability of transshipment technologies for non-cranable semi-trailers from the railway company’s perspective. The results depend on the capacity utilization risk faced by the railway company. In particular, if the railway company does not sell all the train capacity to freight forwarders or intermodal operators on a long-term basis, investing in technology for the transshipment of non-cranable semi-trailers can be economically profitable. 1 INTRODUCTION Freight volume is predicted to increase in the years to come and the majority of this growth is expected to even increase the road freight transport volume. According to forecasts the total road freight transport volume in the European Union will grow to 2442 billion ton kilometers (tkm) in 2030 which is an increase of 43% compared to 2005 (Rich and Hansen 2009).
    [Show full text]
  • Port-Rail Integration: Between Port Facilities and the Rail Network to Ensure Port Competitiveness
    www.cepal.org/transporte Issue No. 310 - Number 7 / 2012 BULLETIN FACILITATION OF TRANSPORT AND TRADE IN LATIN AMERICA AND THE CARIBBEAN This issue of FAL Bulletin analyses the role of good modal integration Port-rail integration: between port facilities and the rail network to ensure port competitiveness. challenges and It is one of the activities carried out by the ECLAC Infrastructure Services Unit under a project on sustainable opportunities transport in Ibero-America, funded by Puertos del Estado de España. for Latin America The authors are Erick Leal Matamala, Introduction Professor at the Faculty of Economics and Administrative Sciences of Chile’s At a time when connectivity to the hinterland is becoming ever more Universidad Católica de la Santísima important, many Latin American ports are upgrading their rail connections Concepción, and Gabriel Pérez Salas, to turn them into a competitive differentiator. This issue reviews the cases of Associate Economic Affairs Officer, North America, Asia-Pacific and Europe, identifying the main issues that have ECLAC Infrastructure Services Unit. For driven port-rail integration as a source of port competitiveness. It goes on to further information please contact: examine the case of Latin America in order to pinpoint the main challenges [email protected] facing its industry and the potential benefits of greater modal integration for the competitiveness of ports and the entire regional economy. Introduction Port-rail connectivity is a strategic element of port development, both in economic and competitive terms and to reduce negative externalities on people and the environment. Not only does proper rail connectivity expand I.
    [Show full text]
  • I Pb 280 781.1 Report No
    I PB 280 781.1 I REPORT NO. FRA-OPPD-77-12 OVERVIEW OF COMPUTER-BASED MODELS APPLICABLE TO FREIGHT CAR UTI LJZATION Laura Baker U.S. Department of Transportation Transportation Systems Center Kendall Square Cambridge MA 02142 OCTOBER 1977 FINAL REPORT DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161 Prepared for U.S, DEPARTMENT OF TRANSPORTATION FEDERAL RAILROAD ADMINISTRATION Policy and Program Development Washington DC 20590 REPRODUCED BY NATIONAL TECHNICAL iNFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161 NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Govern­ ment assumes no liability for its contents or use thereof. NOTICE The United States Government does not endorse pro­ ducts or manufacturers. Trade or manufacturers' names appear herein solely because they are con­ sidered essential to the object of this report. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FRA-OPPD-77-12 4. Title and Subtitle 5. Report Date OVERVIEW OF COMPUTER-BASED MODELS October 1977 APPLICABLE TO FREIGHT CAR 6. Performing Organization Code UTILIZATION 8. Performing Organization Report No. 7. Author's) Laura Baker DOT-TSC-FRA-77-4 9, Performing Orgoni zation Nome and Address 10. Work Unit No. (TRAIS) u.s. Department of Transportation RR727/R8302 Transportation Systems Center 11. Contract or Grant No. Kendall Square Cambridge MA 02142 13. Type of Report and Period Covered 12. Sponsoring Agency Nome and Address Final Report u.s.
    [Show full text]