(12) Patent Application Publication (10) Pub. No.: US 2016/0120874 A1 Pérez Simón Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2016/0120874 A1 Pérez Simón Et Al US 2016O120874A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0120874 A1 Pérez Simón et al. (43) Pub. Date: May 5, 2016 (54) AGENTS FOR TREATING MULTIPLE Publication Classification MYELOMA (51) Int. Cl. (71) Applicant: SERVICIO ANDALUZ. DE SALUD, A613 L/5383 (2006.01) Sevilla (ES) A6II 45/06 (2006.01) (72) Inventors: José Antonio Pérez Simón, Sevilla (ES); (52) U.S. Cl. Maria Victoria Barbado González, CPC ............. A6 IK3I/5383 (2013.01); A61K 45/06 Sevilla (ES) (2013.01) (21) Appl. No.: 14/897,333 (57) ABSTRACT (22) PCT Fled: Jun. 13, 2014 The present invention relates to the use of compounds of a (86) PCT NO.: PCT/ES2O14/070491 cannabinoid nature for inhibiting viability with increasing S371 (c)(1), doses of myeloma cell lines. Furthermore, said compounds (2) Date: Dec. 10, 2015 have been shown not to affect CD34+ cells (normal hemato poietic progenitors) in terms of viability and proliferation. (30) Foreign Application Priority Data For this reason, the invention paves the way for the use of compounds of a cannabinoid nature as a promising therapy Jun. 13, 2013 (ES) ................................. P2O133O884 against multiple myeloma and related diseases. Patent Application Publication May 5, 2016 Sheet 1 of 5 US 2016/O120874 A1 : : U266/WN 48 : : CNT O5 A uk Of 2O is 50 in ~. U266/WI N96h ?------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ CN NA 1ONA Fig. 2 Patent Application Publication May 5, 2016 Sheet 2 of 5 US 2016/O120874 A1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ U266/WNAFACS-48h 80 6 O CN O5u. i Cu, 2OW SON 8.----------------------------------i Fig. 3 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- : T T AAS/WIN-48 OO 68 OO -k: 4. O Patent Application Publication May 5, 2016 Sheet 3 of 5 US 2016/O120874 A1 assssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss AWS/WIN -96h 1OW 50 Fig. 5 CD34+ y WN-3h 2Ou O Fig. 6A Patent Application Publication May 5, 2016 Sheet 4 of 5 US 2016/O120874 A1 CD64. A WIN-18h §8$º CN Q5 uM uNA 10 UNA 2OuNN 5ONN *--------------------------------------------~~~~-----------------------------------------------------------------------------------------------------------------------------------------* Fig. 6B CD45+ / WIN-18h ;--~~~~~~;~~~~~~~;~~~~~~;~~~~~~;~~~~~~~;~~~~~ Fig. 6C Patent Application Publication May 5, 2016 Sheet 5 of 5 US 2016/O120874 A1 120 C38+ / WIN-8h IOO : 60 40 : CK O5uM LN 10 N. 2ON 50 W Fig. 6D US 2016/O120874 A1 May 5, 2016 AGENTS FOR TREATING MULTIPLE 0010. Therefore, in another preferred embodiment of the MYELOMA first aspect of the invention the natural cannabinoid agent is a cannabigerol (CBG) type agent, which is selected from the FIELD OF THE INVENTION list consisting of cannabigerol (E)-CBG-Cs; cannabigerol 0001. The present invention is comprised in the field of monomethyl ether (E)-CBGM-CSA; cannabinerolic acid A medicine and the pharmacy and relates to the use of cannab (2)-CBGA-CA; cannabigerovarin (E)-CBGV-C; cannabig inoid agents for preparing a medicinal product for the treat erolic acid A (E)-CBGA-CA; cannabigerolic acid A ment of monoclonal gammopathies in general, and for the monomethyl ether (E)-CBGAM-CSA; cannabigerovarinic treatment of multiple myeloma in particular. acid A(E)-CBGVA-CA, or any combinations thereof. 0011. In another preferred embodiment of the first aspect BACKGROUND OF THE INVENTION of the invention, the natural cannabinoid agent is a cannab ichromene (CBC) type agent, which is selected from the list 0002 Multiple myeloma (MM) is a malignant hemopathy consisting of (+)-cannabichromene CBC-Cs; (+)-cannab characterized by clonal proliferation of plasma cells. ichromenic acid A CBCA-CA; (+)-cannabichromevarin 0003. The incidence rate of MM is of 4-5 out of 100,000 CBCV-C.; (+)-cannabichromevarinic acid A CBCVA-CA, inhabitants and year. The age of onset is around the 65 years, or any combinations thereof. and although the therapeutic arsenal has been expanded in 0012. In another preferred embodiment, the natural can recent years with the development of new molecules, such as nabinoid agent is a cannabidiol (CBD) type agent, which is proteosome inhibitors or immunomodulatory drugs (IMIDs), selected from the list consisting of: (-)-cannabidiol CBD-Cs: which have been added to conventional treatments such as cannabidiol monomethyl ether CBDM-Cs; cannabidiol melfalan and prednisone, in addition to the hematopoietic CCBD-Ca.; (-)-cannabidivarin CBDV-C; cannabidiorcol progenitor cell transplant, MM is still considered an incurable CBD-C; cannabidiolic acid CBDA-Cs; cannabidivarinic disease. acid CBDVA-C, or any combinations thereof. 0004. Therefore, with the treatments available up until 0013. In another preferred embodiment, the natural can now, a five-year survival rate for MM is still low, especially nabinoid agent is a cannabinodiol (CBND) type agent, which when compared with other types of cancer. For this reason, is selected from the list consisting of cannabinodiol CBND there is a need to provide alternative treatments with respect Cs; cannabinodivarin CBND-C, or any combinations tO Current treatmentS. thereof. 0014. In another preferred embodiment, the natural can BRIEF DESCRIPTION OF THE INVENTION nabinoid agent is a tetrahydrocannabinol (THC) type agent, 0005. A first aspect of the invention relates to the use of a which is selected from the list consisting of A-Tetrahydro cannabinoid agent in the preparation of a medicinal product cannabinol A-THC-Cs: A Tetrahydrocannabinol-CA for the prevention and/or treatment of a monoclonal gamm THC-C, A-Tetrahydrocannabivarin A-THCV-C.; A-Tet opathy. In a preferred embodiment, the monoclonal gamm rahydrocannabiorcol A-THCO-C; opathy is selected from the list consisting of multiple A-Tetrahydrocannabinolic acid A A-THCA-Cs A: A-tet myeloma, plasma cell leukemia, Waldenström macroglobu rahydrocannabinolic acid B A-THCA-CSB; A-tetrahydro linemia and amyloidosis. In an even more preferred embodi cannabinolic acid-CA and/or BA-THCA-CA and/or B; ment, the monoclonal gammopathy is multiple myeloma. A-tetrahydrocannabivarinic acid A A-THCVA-CA; A-tet 0006. In another preferred embodiment of the first aspect rahydrocannabiorcolic acid A and/or BA-THCOA-CA and/ of the invention, the cannabinoid agent is selected from natu or B: (-)--trans (6aR, 10aR)-A-Tetrahydrocannabinol ral cannabinoid agents or synthetic cannabinoid agents. In A-THC-Cs: (-)-A-trans-(6aR.10aR)-tetrahydrocannabin another preferred embodiment, the synthetic cannabinoid olic acid A A-THCA-Cs A: (-)-(6aS,10aR)-A-tetrahydro agent is selected from a CB1 receptoragonist, a CB2 receptor cannabinol (-)-cis-A-THC-Cs, or any combinations thereof. agonist, or a mixed agonist. 0015. In another preferred embodiment, the natural can 0007. In another more preferred embodiment, the syn nabinoid agent is an agent of the cannabinol (CBN) type, thetic cannabinoid agent is selected from the list consisting which is selected from the list consisting of cannabinol of: HU-308; JWH-133; L-759,633; PRS 211,375; AM-1241: CBN-Cs; cannabinol-C CBN-C cannabivarin CBN-C: JWH-015; L-759, 656; GW-842, 166X; GP-1a: THC (tet cannabinol-C2 CBN-C; cannabiorcol CBN-C; cannabin rahydrocannabinol); HU-210; L-759, 656: WIN 55,212-2: olic acid ACBNA-CA; cannabinol methyl ether CBNM-Cs. CP 55940; CRA-13; SAB-378; JWH-018 (AM-678); CP or any combinations thereof. 50,556-1 (levonantradiol); cannabidiol--THC, or any combi 0016. In another preferred embodiment, the natural can nations thereof. nabinoid agent is a cannabitriol (CBT) type agent, which is 0008 More preferably, the cannabinoid agent is WIN selected from the list consisting of: (-)-(9R,1OR)-trans-can 55,212-2. nabitriol (-)-trans-CBTC; (+)(9S,10S)-Cannabitriol (+)- 0009. In another preferred embodiment of the first aspect trans-CBTC; (+)-(9R,10S/9S. 10R)-Cannabitriol (+)-cis of the invention, the cannabinoid agent is natural and is CBT-Cs: (-)-(9R,10R)-trans-10-O-Ethyl-cannabitriol (-)- selected from the list consisting of cannabigerol (CBG) type trans-CBT-CEt-Cs; (+)-(9R,10R/9S,10S)-Cannabitriol-C, agents, cannabichromene (CBC) type agents, cannabidiol (+)-trans-CBTC; 8.9-Dihydroxy-A'-tetrahydrocan (CBD) type agents, cannabinodiol (CBND) type agents, tet nabinol 8.9-Di-OH-CBT-Cs; cannabidiolic acid A can rahydrocannabinol (THC) type agents, cannabinol (CBN) nabitriol ester CBDA-C9-OH-CBT-C ester: (-)-(6aR.9S, type agents, cannabitriol (CBT) agents, cannabielsoin (CBE) 10S, 10aR)-9,10-Dihydroxy-hexahydrocannabinol, agents, isocannabinoid agents, cannabicyclol (CBL) type Cannabiripsol Cannabiripsol-Cs: (-)-6a, 7,10"Trihydroxy agents, cannabicitran (CBT) type agents, cannabichro A-tetrahydrocannabinol (-)-Cannabitetrol; 10-Oxo-A' manone (CBCN) type agents, or any combinations thereof. tetrahydrocannabinol OTHC, or any combinations thereof. In US 2016/O120874 A1 May 5, 2016 another preferred embodiment, the natural
Recommended publications
  • PDF of the Full Text
    Clinical Pharmacokinetics of Cannabinoids Franjo Grotenhermen ABSTRACT. Absorption and metabolism of tetrahydrocannabinol (THC) vary as a function of route of administration. Pulmonary assimilation of in- haled THC causes a maximum plasma concentration within minutes, while psychotropic effects start within seconds to a few minutes, reach a maxi- mum after 15 to 30 minutes, and taper off within 2 to 3 hours. Following oral ingestion, psychotropic effects set in with a delay of 30 to 90 minutes, reach their maximum after 2 to 3 hours, and last for about 4 to 12 hours, de- pending on dose and specific effect. The initial volume of distribution of THC is small for a lipophilic drug, equivalent to the plasma volume of about 2.5-3 L, reflecting high protein binding of 95-99%. The steady state volume of distribution has been esti- mated to be about 100 times larger, in the range of about 3.5 L per kg of body weight. The lipophility of THC with high binding to tissue and in par- ticular to fat, the major long-term storage site, causes a change of distribu- tion pattern over time. Only about 1% of THC administered IV is found in the brain at the time of peak psychoactivity. THC crosses the placenta and small amounts penetrate into the breast milk. Metabolism of THC occurs mainly in the liver by microsomal hydroxylation and oxidation catalyzed by enzymes of the cytochrome P-450 complex. In man, the C-11 carbon is the major site attacked. Hydroxylation results in 11-hydroxy-THC (11-OH-THC) and further oxi- dation to 11-nor-9-carboxy-THC (THC-COOH), which may be glucuronated to THC-COOH beta-glucuronide.
    [Show full text]
  • Potential Health Benefits of Cannabis Extracts: a Review Maria Rosana Ramirez
    International Journal of Chemical and Biomedical Science 2016; 2(1): 1-8 Published online March 1, 2016 (http://www.aascit.org/journal/ijcbs) Potential Health Benefits of Cannabis Extracts: A Review Maria Rosana Ramirez CITER-The National Scientific and Technical Research Council (CONICET), Argentine Government, Agency, Argentina Email address [email protected] Citation Maria Rosana Ramirez. Potential Health Benefits of Cannabis Extracts: A Review. International Journal of Chemical and Biomedical Science . Vol. 2, No. 1, 2016, pp. 1-8. Keywords Abstract Non-cannabinoids Compounds, A central tenet underlying the use of plant preparations is that herbs contain many Cannabis Extracts, bioactive compounds. Cannabis contains tetrahydrocannabinols (THC) a primary Bioactivity metabolite with reported psychotropic effects. Therefore, the presence of THC makes controversial the use of Cannabis to treat diseases by which their uses and applications were limited. The question then is: is it possible to use the extracts from Cannabis to treat the diseases related with it use in folk medicine? More recently, the synergistic Received: January 24, 2016 contributions of bioactive constituents have been scientifically demonstrated. We Revised: February 10, 2016 reviewed the literature concerning medical cannabis and its secondary metabolites, Accepted: February 12, 2016 including fraction and total extracts. Scientific evidence shows that secondary metabolites in cannabis may enhance the positive effects of THC a primary metabolite. Other chemical components (cannabinoid and non-cannabinoid) in cannabis or its extracts may reduce THC-induced anxiety, cholinergic deficits, and immunosuppression; which could increase its therapeutic potential. Particular attention will be placed on non- cannabinoid compounds interactions that could produce synergy with respect to treatment of pain, inflammation, epilepsy, fungal and bacterial infections.
    [Show full text]
  • What Is Delta-8 THC?? Cannabinoid Chemistry 101
    What is Delta-8 THC?? Cannabinoid Chemistry 101 National Conference on Weights and Measures Annual Meeting - Rochester, NY Matthew D. Curran, Ph.D. July 21, 2021 Disclaimer Just to be clear… • I am a chemist and not a lawyer so: • This presentation will not discuss the legal aspects of Δ8-THC or DEA’s current position. • This presentation will not discuss whether Δ8-THC is considered “synthetic” or “naturally occurring.” • This is not a position statement on any issues before the NCWM. • Lastly, this should only be considered a scientific sharing exercise. Florida Department of Agriculture and Consumer Services 2 Cannabis in Florida Cannabis Syllabus • What is Cannabis? • “Mother” Cannabinoid • Decarboxylation • Relationship between CBD and THC • What does “Total” mean? • Dry Weight vs. Wet Weight • What does “Delta-9” mean? • Relationship between “Delta-8” and “Delta-9” • CBD to Delta-8 THC • Cannabinoid Chemistry 202… Florida Department of Agriculture and Consumer Services 3 Cannabis Cannabis • Cannabis sativa is the taxonomic name for the plant. • The concentration of Total Δ9-Tetrahydrocannabinol (Total Δ9-THC) is critical when considering the varieties of Cannabis sativa. • Hemp – (Total Δ9-THC) 0.3% or less • Not really a controversial term, “hemp” • Marijuana/cannabis – (Total Δ9-THC) Greater than 0.3% • Controversial term, “marijuana” • Some states prohibit the use of this term whereas some states have it in their laws. • Some states use the term “cannabis.” • Not italicized • Lower case “c” Florida Department of Agriculture and
    [Show full text]
  • In Silico Assessment of Drug-Like Properties of Phytocannabinoids in Cannabis Sativa
    EDUCATUM JSMT Vol. 4 No. 2 (2017) ISSN 2289-7070 / eISSN 2462-2451 (1-7) https://ejournal.upsi.edu.my/journal/EDSC In Silico Assessment of Drug-Like Properties of Phytocannabinoids in Cannabis Sativa Shakinaz Desa1*, Asiah Osman2, and Richard Hyslop3 1Department of Biology, Universiti Pendidikan Sultan Idris, Malaysia, 2Natural Product Division, Forest Research Institute Malaysia, 3Department of Chemistry and Biochemistry, University of Northern Colorado, USA *Corresponding author: [email protected] Abstract This study investigated drug-like properties of phytocannabinoids in Cannabis sativa using an in silico study. We report sixteen phytocannabinoids: cannabidiol (CBD), cannabidiolic acid (CBDA), cannabinol (CBN), cannabichromene (CBC), cannabigerol (CBG), cannabicyclol (CBL), cannabivarin (CBV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabinodiol (CBDL), cannabielsoin (CBE), cannabitriol (CBT), Δ9-tetrahydrocannabinol (Δ9-THC), Δ9-tetrahydrocannabivarin (Δ9-THCV), and Δ8-tetrahydrocannabinol (Δ8-THC). All chemical structures and properties were obtained from PubChem Compound, National Center for Biotechnology Information, U.S. National Library of Medicine. Molinspiration was used for the calculation of molecular properties and bioactivity score. The parameters were molecular weight (MW), number of hydrogen acceptor (HBA), number of hydrogen donor (HBD), partition coefficient (cLogP), polar surface area (PSA) and number of rotatable bonds (NROTB). We predicted bioactivity scores for G Protein-Coupled Receptors (GPCR) ligand, ion channel modulator, kinase inhibitor, nuclear receptor ligand, protease inhibitor and enzyme inhibitor. Lipinski’s rule was used as reference to determine the drug-like properties of the phytocannabinoids. All compounds have MW<500, HBA<10, HBD<5, TPSA<140Å2 and NRTOB<10. Bioactivity score showed an active or moderately active in all compounds.
    [Show full text]
  • The Handbook of Cannabis Therapeutics: from Bench to Bedside
    Handbook of Cannabis Therapeutics From Bench to Bedside 9780789030979 Handbook of Cannabis Therapeutics From Bench to Bedside Size: 212 x 152mm Spine size: 26 mm Color pages: Binding: Paperback THE HAWORTH PRESS® Haworth Series in Integrative Healing Ethan Russo Editor The Last Sorcerer: Echoes of the Rainforest by Ethan Russo Professionalism and Ethics in Complementary and Alternative Medicine by John Crellin and Fernando Ania Cannabis and Cannabinoids: Pharmacology, Toxicology, and Therapeutic Potential by Franjo Grotenhermen and Ethan Russo Modern Psychology and Ancient Wisdom: Psychological Healing Practices from the World’s Religious Traditions edited by Sharon G. Mijares Complementary and Alternative Medicine: Clinic Design by Robert A. Roush Herbal Voices: American Herbalism Through the Words of American Herbalists by Anne K. Dougherty The Healing Power of Chinese Herbs and Medicinal Recipes by Joseph P. Hou and Youyu Jin Alternative Therapies in the Treatment of Brain Injury and Neurobehavioral Disorders: A Practical Guide edited by Gregory J. Murrey Handbook of Cannabis Therapeutics: From Bench to Bedside edited by Ethan B. Russo and Franjo Grotenhermen Handbook of Cannabis Therapeutics From Bench to Bedside Ethan B. Russo, MD Franjo Grotenhermen, MD Editors Routledge Taylor &. Francis Croup NEW YORK AND LONDON First Published by The Haworth Press, Inc., 10 Alice Street, Binghamton, NY 13904-1580. Transferred to Digital Printing 2010 by Routledge 270 Madison Ave, New York NY 10016 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN For more information on this book or to order, visit http://www.haworthpress.com/store/product.asp?sku=5741 or call 1-800-HAWORTH (800-429-6784) in the United States and Canada or (607) 722-5857 outside the United States and Canada or contact [email protected] © 2006 by The Haworth Press, Inc.
    [Show full text]
  • The Use of Cannabinoids in Animals and Therapeutic Implications for Veterinary Medicine: a Review
    Veterinarni Medicina, 61, 2016 (3): 111–122 Review Article doi: 10.17221/8762-VETMED The use of cannabinoids in animals and therapeutic implications for veterinary medicine: a review L. Landa1, A. Sulcova2, P. Gbelec3 1Faculty of Medicine, Masaryk University, Brno, Czech Republic 2Central European Institute of Technology, Masaryk University, Brno, Czech Republic 3Veterinary Hospital and Ambulance AA Vet, Prague, Czech Republic ABSTRACT: Cannabinoids/medical marijuana and their possible therapeutic use have received increased atten- tion in human medicine during the last years. This increased attention is also an issue for veterinarians because particularly companion animal owners now show an increased interest in the use of these compounds in veteri- nary medicine. This review sets out to comprehensively summarise well known facts concerning properties of cannabinoids, their mechanisms of action, role of cannabinoid receptors and their classification. It outlines the main pharmacological effects of cannabinoids in laboratory rodents and it also discusses examples of possible beneficial use in other animal species (ferrets, cats, dogs, monkeys) that have been reported in the scientific lit- erature. Finally, the article deals with the prospective use of cannabinoids in veterinary medicine. We have not intended to review the topic of cannabinoids in an exhaustive manner; rather, our aim was to provide both the scientific community and clinical veterinarians with a brief, concise and understandable overview of the use of cannabinoids in veterinary
    [Show full text]
  • Hemp-Sourced CBD
    CLEARING UP CANNABIS: Hemp-Sourced CBD Brooke Weingarden DO Michigan Osteopathic Association Fall Conference 2019 November 10, 2019 1 WHAT DO YOU NEED TO KNOW? What is Hemp-Derived CBD? How is it different than marijuana? Why the political controversy? How is it used? Is it legal in Michigan? What are the known risks/benefits? Research?? Would my patient benefit from it? 2 CBD Cannabinodiol o One of the active ingredients in cannabis, different than THC o No psychoactive effects o Low affinity to the CB1 and CB2 receptors o Enhances 5-HT, Glycine receptors, G couple receptors, effects intracellular calcium, antioxidant effects, anti- inflammatory effects, analgesic o “Charlotte's Web” o Orphan Drug status for treatment resistant childhood seizures (Epidiolex, GW Pharmaceuticals) 3 HEMP VS MARIJUANA: ALL CBD & THC IS NOT THE SAME! THC up to 30%! https://cbdorigin.com/hemp-vs-marijuana/ CBD PHARMACOKINETICS Overall, not well known Majority of data on animals First pass metabolism (Extensive!) Absorption depends on route (IV, oral, inhaled) Half Life: 9-32 hours Low toxicity profile in studies (short term use) Inhibitor of CYP450 (drug-drug interactions) 6 Watch for Drug Interactions! CBD causes potent CYP2C19 inhibition! https://www.ncbi.nlm.nih.gov/pubmed/2331870 8 CYP3A4 Genetics affects the sensitivity to CBD http://profofpot.com/cyp3a4-genetics- cannabinoid-metabolism/ Pharmacytimes.com PROPOSED USES (5) 8 POSSIBLE ADVERSE EFFECTS o Sedative o Psychological o Perception o Motor function o Dependence (9%) o Withdrawals o Stroke o Cerebral blood flow changes o Tachycardia, arrhythmia, MI o Carcinogens I DO NOT RECOMMEND o Slowing of GI system ANY CANNABINOID or o Reproduction CBD PRODUCTS FOR PREGNANT MOTHERS.
    [Show full text]
  • Storozhuk and Zholos-MS CN
    Send Orders for Reprints to [email protected] Current Neuropharmacology, 2018, 16, 137-150 137 REVIEW ARTICLE TRP Channels as Novel Targets for Endogenous Ligands: Focus on Endo- cannabinoids and Nociceptive Signalling Maksim V. Storozhuk1,* and Alexander V. Zholos1,2,* 1A.A. Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, 4 Bogomoletz Street, Kiev 01024, Ukraine; 2Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko Kiev National University, 2 Academician Glushkov Avenue, Kiev 03022, Ukraine Abstract: Background: Chronic pain is a significant clinical problem and a very complex patho- physiological phenomenon. There is growing evidence that targeting the endocannabinoid system may be a useful approach to pain alleviation. Classically, the system includes G protein-coupled receptors of the CB1 and CB2 subtypes and their endogenous ligands. More recently, several sub- types of the large superfamily of cation TRP channels have been coined as "ionotropic cannabinoid receptors", thus highlighting their role in cannabinoid signalling. Thus, the aim of this review was to explore the intimate connection between several “painful” TRP channels, endocannabinoids and nociceptive signalling. Methods: Research literature on this topic was critically reviewed allowing us not only summarize A R T I C L E H I S T O R Y the existing evidence in this area of research, but also propose several possible cellular mechanisms Received: January 06, 2017 linking nociceptive and cannabinoid signaling with TRP channels. Revised: April 04, 2017 Accepted: April 14, 2017 Results: We begin with an overview of physiology of the endocannabinoid system and its major DOI: components, namely CB1 and CB2 G protein-coupled receptors, their two most studied endogenous 10.2174/1570159X15666170424120802 ligands, anandamide and 2-AG, and several enzymes involved in endocannabinoid biosynthesis and degradation.
    [Show full text]
  • Cannabis Sativa: a Systematic Review of Plant Analysis
    Drug Analytical Research Drug Anal Res, 2017; 01, 1-23 Cannabis sativa: A systematic review of plant analysis Bruna Tassi Borillea*; Marina Gonzáleza; Luiza Steffensa; Rafael Scorsatto Ortizb; Renata Pereira Limbergera a Laboratório de Análises e Pesquisa em Toxicologia, Universidade Federal do Rio Grande do Sul, Departamento de Farmácia, Porto Alegre, 90610-000, RS, Brazil. b Divisão Técnico-Científica do Rio Grande do Sul, Polícia Federal Brasileira, Porto Alegre, 90160-092, RS, Brazil. *Corresponding author e-mail: [email protected] Background: Cannabis has been the most widely used illicit drug worldwide throughout many years. Reports from different countries indicate that the potency of cannabis preparation has been increasing, as well as the ratio of tetrahydrocannabinol/cannabidiol has been changing. The high consumption couple with the variable chemical profile of the drug is increasing gradually the interest in researching the cannabis plant. Methods: This article reviews available literature on the analytical methods currently used for the detection and quantification of cannabinoids in cannabis plant. The papers were screened by two independently researchers and following a pre-specified protocol. Results and Discussion: The systematic review of the literature allowed to include 42 citations on cannabis plant analysis and botanical aspects of cannabis. Conclusions: The analytical methods for cannabis material published in the included articles of this systematic review showed lack of relevant information of the development of methods on GC and LC analysis and the limits of detection and quantification of mass detectors. These information, on the methods of analysis, are essential and extremely important, since in the current scenario the analytical approach should consider the action of modulation CBD with THC, which alters the disruptive effects of the drug and also presents important pharmacological activity.
    [Show full text]
  • The Phytocannabinoides from Cannabis Sativa L. an Overview
    Hop and Medicinal Plants, Year XXVIII, No. 1-2, 2020 ISSN 2360–0179 print, ISSN 2360–0187 electronic THE PHYTOCANNABINOIDES FROM CANNABIS SATIVA L. AN OVERVIEW ONA Andreea Daniela, Sorin MUNTEAN, Leon MUNTEAN* University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, Crop Science Department 3-5 Mănăstur Street, 400372, Cluj-Napoca, Romania *Corresponding author e-mail: [email protected] Abstract: Cannabis sativa is among the first cultivated plants for producing fibres from the stalks and consumption of the seeds. Later, the medicinal properties were discovered. The oldest written record of using cannabis for the medicinal and recreational purposes is from China. Over the time many experimental researches were carried out that emphasize the importance of cannabinoids for human health. The present paper focused to present an overview of the main cannabinoids synthetized in cannabis plant and their medicinal and therapeutic effects. Cannabis has a complex chemical composition including besides cannabinoids (over 100), also terpenoids, sugars, alkaloids, quinones and stilbenoids. Of major importance are two compounds tetrahydrocannabinol (THC) and cannabidiol (CBD). Over the time different researches pointed out the beneficial effect of cannabinoids on a wide range of diseases such as epilepsy, neurological diseases, mental conditions like anxiety and depression, chronic pains and certain forms of cancer. In addition to the important advantages it must be also paid attention to the psychoactive action of the certain cannabinoids that may produce cognitive disturbances, attention disorders, sever panic, can affect the short-term memory, and slow the reaction time. This deficits induced usually by THC can be moderate by using CBD which reduce the psychoactive effect.
    [Show full text]
  • Table of Natural Cannabinoids
    Table of Natural Cannabinoids Scientific research continues to develop and further identify individual cannabinoids in cannabis strains and how they affect symptoms of illnesses suffered by patients. The table below identifies the chemical properties of the natural cannabinoids found in the average strains of cannabis. Levels of each of these chemicals will vary with varietal strain, growing method, and plant age. Individual cannabinoids can be enhanced or eliminated depending on need. Cannabigerol- type (CBG) Cannabigerol Cannabigerol Cannabigerovarin (E)-CBG-C monomethyl (E)-CBGV-C 5 Cannabinerolic 3 ether acid A (E)-CBGM-C 5 (Z)-CBGA-C A A 5 Cannabigerolic Cannabigerolic Cannabigerovarinic acid acid A acid A A (E)-CBGA-C5 A monomethyl (E)-CBGVA-C3 A ether (E)-CBGAM- C5 A Cannabichrom ene-type (CBC) (±)- (±)- Cannabichromen (±)- Cannabivarichromene, (±)- e Cannabichrome (±)- Cannabichrome CBC-C5 nic acid A Cannabichromevarin varinic CBCA-C5 A CBCV-C3 acid A CBCVA-C3 A Cannabidiol- type (CBD) 1 | Page (−)-Cannabidiol Cannabidiol Cannabidiol-C4 (−)- Cannabidiorc CBD-C5 momomethyl CBD-C4 Cannabidivarin ol ether CBDV-C3 CBD-C1 CBDM-C5 Cannabidiolic Cannabidivarini acid c acid CBDA-C5 CBDVA-C3 Cannabinodiol- type (CBND) Cannabinodiol Cannabinodivar CBND-C5 in CBND-C3 Tetrahydrocan nabinol-type (THC) 9 9 9 Δ - Δ - Δ - Δ9- Tetrahydrocanna Tetrahydrocan Tetrahydrocannabivarin 9 Tetrahydrocan binol nabinol-C4 Δ -THCV-C3 9 9 nabiorcol Δ -THC-C5 Δ -THC-C4 9 Δ -THCO-C1 9 9 Δ -Tetrahydro- Δ9-Tetrahydro- Δ -Tetrahydro- Δ9-Tetrahydro- cannabinolic
    [Show full text]
  • Cannabinoids and Zebrafish Issue Date: 2013-05-22
    Cover Page The handle http://hdl.handle.net/1887/20899 holds various files of this Leiden University dissertation. Author: Akhtar, Muhammad Tayyab Title: Cannabinoids and zebrafish Issue Date: 2013-05-22 Cannabinoids and zebrafish Muhammad Tayyab Akhtar Muhammad Tayyab Akhtar Cannabinoids and zebrafish ISBN: 978-94-6203-345-0 Printed by: Wöhrmann Print Service Cover art and designed by M khurshid and MT Akhtar Cannabinoids and zebrafish PROEFSCHRIFT ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op woensdag 22 mei 2013 klokke 10:00 uur door Muhammad Tayyab Akhtar geboren te Rahim Yar Khan (Pakistan) in 1984 Promotiecommissie Promotor: Prof. Dr. R. Verpoorte Co-promotores: Dr. F. van der Kooy Dr. Y.H. Choi Overige leden: Prof. Dr. S. Gibbons (The School of Pharmacy, London) Dr. F. Hollmann (TU Delft) Prof. Dr. M.K. Richardson Prof. Dr. P.G.L. Klinkhamer Prof. Dr. C.J. ten Cate To My Father and Family! CONTENTS Chapter 1 General introduction 9 Chapter 2 Biotransformation of cannabinoids 21 Chapter 3 Hydroxylation and further oxidation of Δ9-tetrahydrocannabinol by alkane-degrading bacteria. 53 Chapter 4 Hydroxylation and glycosylation of Δ9-THC by Catharanthus roseus cell suspension culture analyzed by HPLC-PDA and mass spectrometry 73 Chapter 5 Developmental effects of cannabinoids on zebrafish larvae 89 Chapter 6 Metabolic effects of cannabinoids in zebrafish (Danio rerio) embryo determined by 1H NMR metabolomics. 117 Chapter 7 Metabolic effects of carrier solvents and culture buffers in zebrafish embryos determined by 1H NMR metabolomics.
    [Show full text]