Battery Electric Vehicles Vs. Internal Combustion Engine Vehicles

Total Page:16

File Type:pdf, Size:1020Kb

Battery Electric Vehicles Vs. Internal Combustion Engine Vehicles Battery Electric Vehicles vs. Internal Combustion Engine Vehicles A United States-Based Comprehensive Assessment Contents Executive Summary 1 Summary of Findings 4 Introduction to BEVs 5 Economic Assessment: Total Cost of Ownership 7 Total Cost of Ownership and True Vehicle Cost 8 Environmental Assessment: Global Warming Potential 11 Environmental Assessment: Secondary Environmental Impacts 14 Alternative Views 16 Technology Forecast: BEVs and ICEVs in 2025 21 Conclusion 25 References 26 Appendices 28 Authors: John W. Brennan Timothy E. Barder, Ph.D. Managing Director, Arthur D. Little, Manager, Arthur D. Little, Strategy & Organization, Boston Strategy & Organization, Boston [email protected] [email protected] The authors acknowledge Hui Zhao, Tom Parish, Brian St. Amand, and Mike Gourd for their assistance in preparing this report. Battery Electric Vehicles vs. Internal Combustion Engine Vehicles Executive Summary A United States-Based Comprehensive leveraged this information to model the 2025 TCO, GWP, and Assessment Secondary Environmental Impacts for BEVs and ICEVs. Based on our study, the ultimate environmental and economic Battery electric vehicles (BEVs) do not consume gasoline or reality of electric vehicles is far more complicated than their produce tailpipe carbon emissions, placing the promise of an promise. From an economic perspective, BEVs enjoy some distinct environmentally sustainable driving experience within reach of the advantages. First, the electricity cost associated with operating a average consumer. However, the question remains: “Do BEVs BEV over a distance of one mile is significantly lower than the truly offer an environmental advantage with respect to global gasoline cost required to operate a comparable ICEV over the same warming potential and secondary environmental impacts – and if distance. Second, BEVs cost less to maintain, owing to the relative so, at what cost?” elegance and simplicity of a battery-electric motor system To address this question, Arthur D. Little conducted a total lifecycle compared with the frequent maintenance required for operation of economic cost and environmental impact analysis of Lithium-ion an internal combustion system. Third, automotive battery battery electric vehicles (BEVs) versus internal combustion engine technology has evolved rapidly since the current generation of BEVs vehicles (ICEVs) to further understand BEVs and their transforma- came to market, with the price per kilowatt-hour (kWh) of tive potential. This study models the relative impacts of new BEVs lithium-ion battery packs declining from $1,126 in 2010 to just $300 and ICEVs in the United States for the latest full calendar year for in 2015 (see Appendix E-1). which data is available, 2015, and it projects the economic and These cost advantages, however, are entirely offset by a host of environmental impacts of BEVs and ICEVs over the entire assumed other economic factors. The TCO for a BEV is significantly greater twenty-year lifetime for a US passenger vehicle. Given that this is a than the TCO for an equivalent ICEV. BEVs in 2015 were, without rapidly evolving market, our study also forecasts the economic and exception, significantly more expensive to manufacture than environmental impacts that new BEVs and ICEVs will have in 2025, comparable ICEVs – due primarily to the cost of battery taking into account salient expected developments in battery manufacturing – and they imposed a much higher cost burden on technology, vehicle range, and fuel economy standards. vehicle owners (see Figure 1). Ultimately, this cost burden presents In order to determine the true cost and environmental impacts from BEVs, we performed a comprehensive quantitative analysis Figure 1. Total Cost of Ownership over a 20-Year Lifetime for excluding any government incentives or subsidies. Our study a 2015 ICEV versus an Equivalent BEV investigated every stage of the vehicle’s lifecycle, from R&D and In Thousands of Dollars at Present Value production, including sourcing of raw materials, through ownership and end-of-life disposal. We evaluated the impacts associated with 100 86 each component of the vehicle, from the novel technologies and 80 68 +60% chemistries involved in battery production to the In-Use energy +44% 60 54 requirements (i.e., gasoline and electricity, from well-to-wheels) 48 necessary to power a vehicle. We constructed models that 40 calculate the 2015 Total Cost of Ownership (TCO), Global Warming 20 Potential (GWP), and Secondary Environmental Impacts (e.g., 0 Human Toxicity Potential characterized as Disability Adjusted Life Compact Compact Mid-Size Mid-Size Years lost) for BEVs and ICEVs. We also forecast how BEV and ICEV BEV ICEV BEV ICEV technology will evolve over the coming decade and we Source: ADL Analysis 1 Battery Electric Vehicles vs. Internal Combustion Engine Vehicles Figure 2. Greenhouse Gas Emissions over a 20-Year Lifetime Figure 3. Days of Life Impact (Death or Disability) for a 2015 for a 2015 ICEV versus an Equivalent BEV Compact Passenger ICEV versus an Equivalent BEV over 20 Years of Ownership In Thousands of Pounds of CO2e Emissions 160 152 ICEV BEV 137 -19% Production and R&D 4 9 -23% 123 120 105 Replacement Battery 5 80 In-Use 2 4 40 Alternative Transport 1 End of Life 0 0 0 Compact Compact Mid-Size Mid-Size Total 6 20 ICEV BEV ICEV BEV Values do not sum to total due to rounding. Source: ADL Analysis Source: ADL Analysis a significant barrier for wider adoption of BEVs and could explain dispersed and damaging set of environmental impacts, offsetting why their market penetration has been limited to date. a significant portion of their overall advantage with respect to greenhouse gas emissions. From an environmental perspective, the picture is even more complex. BEVs in 2015 achieve the goal of reducing greenhouse In particular, the usage of heavy metals in the manufacture of gas emissions relative to comparable ICEVs when considered lithium-ion battery packs for BEVs combined with pollution over a vehicle’s lifetime, but this masks an increased human generated by the US power grid (e.g. tailings from coal power health impact relative to ICEVs and a host of other collateral plants) for the In-Use portion of a BEVs lifecycle generate approxi- impacts to the environment (see Figures 2 and 3). While most of mately three times the amount of human toxicity compared to the environmental impacts generated by ICEVs are localized to ICEVs (see Figure 3). Given the divergence in where environmental the combustion of gasoline in the vehicle engine, the impacts are allocated, it is safe to say that a consumer who manufacturing process for BEVs generates a much more widely- chooses to drive a BEV over an ICEV shifts the environmental Figure 4. Comparison of ADL’s Study with Union of Concerned Scientists’ and National Bureau of Economic Research’s Findings Impact Area ADL UCS NBER Total Cost of Ownership BEV is 44% more expensive Not covered Not covered than ICEV Global Warming Potential BEV has 23% less GWP BEV has 51% less GWP BEV has 40% less GWP impact impact than ICEV impact than ICEV than ICEV Secondary Environmental BEV has 3 times greater Not covered BEV has 3 times greater damages Impacts Human Toxicity Potential from local pollutants Source: ADL Analysis, UCS, and NBER 2 Battery Electric Vehicles vs. Internal Combustion Engine Vehicles impact of car ownership. As detailed in a recent series of investiga- tive reports by the Washington Post, much of the cobalt and Glossary of Acronyms graphite entering the supply chain for lithium-ion batteries is sourced from poorly regulated and heavily polluting mines in Congo1 BEV Battery Electric Vehicle and China.2 While the BEV driver reduces their local contribution to CAFE Corporate Average Fuel Economy greenhouse gas emissions, they create a more diffuse set of environmental impacts spread across the globe, the consequences CO2e Carbon Dioxide Equivalents of which are largely borne by rural and often disadvantaged DALY Disability Adjusted Life Year communities near the mines from which BEV suppliers source raw Environmental Protection Agency materials for battery pack manufacturing. EPA ESS Energy Storage System As part of our study, Arthur D. Little also presents the findings of two other widely-cited reports on the environmental impact of FFDP Fossil Fuel Depletion Potential BEVs versus ICEVs – “Cleaner Cars from Cradle to Grave: How FTP Freshwater Toxicity Potential Electric Cars Beat Gasoline Cars on Global Warming Emissions,”3 from the Union of Concerned Scientists (UCS), and “Environmental GWP Global Warming Potential Benefits from Driving Electric Vehicles?”4 from the National Bureau HEV Hybrid Electric Vehicle of Economic Research (NBER). Both of these reports examine the HTP Human Toxicity Potential environmental impact of BEVs and ICEVs, and both reports describe the policy implications that arise from their findings. ICEV Internal Combustion Engine Vehicle However, UCS and NBER reach drastically different conclusions. kWh Kilo-Watt Hour We present their divergent findings to frame the broader discussion and situate our study within the larger debate on the true LCOE Levelized Cost of Electricity environmental impact of BEVs and ICEVs in the US (see Figure 4). MDP Mineral Depletion Potential Forecasting the technological trends for new BEVs and ICEVs in MWh Mega-Watt Hour 2025, Arthur. D. Little’s modeling demonstrates that while the TCO NERC North American Electric Reliability differential between BEVs and ICEVs will decline significantly Corporation relative to 2015, ICEVs will continue to have an economic advan- tage ranging from $5,800 to $11,100 (Present Value) relative to NHTSA National Highway Traffic Safety BEVs. From an environmental perspective, the differentials in global Administration warming potential and human toxicity potential will both widen in OEM Original Equipment Manufacturer 2025 vis-a-vis 2015: BEVs will produce even lower levels of greenhouse gases relative to ICEVs, but they will generate approxi- p-DCB para-Dichlorobenzene mately five times as much human toxicity potential compared to PHEV Plug-in Hybrid Vehicle ICEVs due to the utilization of larger battery packs.
Recommended publications
  • Design and Fabrication of Self Charging Electric Vehicle M.Sathya Prakash International Journal of Power Control Signal and Computation(IJPCSC) Vol 8
    Design And Fabrication Of Self Charging Electric Vehicle M.Sathya Prakash International Journal of Power Control Signal and Computation(IJPCSC) Vol 8. No.1 – Jan-March 2016 Pp. 51-55 ©gopalax Journals, Singapore available at : www.ijcns.com ISSN: 0976-268X DESIGN AND FABRICATION OF SELF CHARGING ELECTRIC VEHICLE M.Sathya Prakash Department of Thermal Engineering Pannai College of Engineering & Technology Sivagangai, India Abstract—Now days the automobile industry batteries, relays, battery chargers and provided to become more competitive the vehicles can get the you. Components including chassis, energy from petrol or diesel engine for its transmissions, wheels and brakes are presented. drive .the recent years e-bike became more Information will be basics for design of the attractive and less maintenance cost. But only drawback of e-bike is requires frequent charging conversion .electrical hazards of batteries, and form EB supply. In this paper is based charging high ampere and high voltage wiring will be arrangement on the e-bike. The motor is use the presented. These e-bikes are differing from type electric energy from battery and battery can of battery used and these e -bikes are designed receive electric energy from dynamo .this energy based on the power of the motor and weight is stored in battery. Market available e-bike motor power rating. E-bikes use 3-4 no’ s of 12V batteries are designed to spent 6-8 hours/charge battery for different power of motors. These by using EB supply. This e-bikes running cost is very low, when compare to other sources of batteries are connected in series, so voltage built energy.
    [Show full text]
  • Signature Redacted,.--- Michael A
    A Global Analysis and Market Strategy in the Electric Vehicle Battery Industry By MASSACHUSETTS INSToT1JE. OFTECHNOLOGY Young Hee Kim 8 2014 B. A. Mass Communications and B.B.A. Business Administration, Sogang University, 2005 MBA, Sungkyunkwan University, 2014 LIBRARIES SUBMITTED TO THE MIT SLOAN SCHOOL OF MANAGEMENT IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MANAGEMENT STUDIES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2014 ( 2014 Young Hee Kim. All Rights Reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: Signature redacted MIT Sloan School of Management May 9, 2014 redacted, Certified By: Signature Michael A. Cusumano LI SMR Distinguished Professor of Management Thesis supervisor Accepted By: Signature redacted,.--- Michael A. Cusumano SMR Distinguished Professor of Management Faculty Director, M.S. in Management Studies Program MIT Sloan School of Management [Page intentionallyleft blank] 2 A Global Analysis and Market Strategy in the Electric Vehicle Battery Industry By Young Hee Kim Submitted to the MIT Sloan School of Management on May 9, 2014 in partial fulfillment of the requirements for the degree of Master of Science in Management Studies Abstract As use of electric vehicles has been expected to grow, the batteries for the electric vehicles have become critical because the batteries are a key part of the paradigm shift in the automotive industry. However, the demand for electric vehicles has been growing slowly and the electric vehicle battery industry still has internal and external competitions to become a standardized energy source for electric vehicles.
    [Show full text]
  • Automotive Battery Range
    Automotive Battery Range POWERING HIGH PERFORMANCE Designed to meet the demanding needs of modern ASIA’S LEADING vehicles, the new GS automotive range provides AUTOMOTIVE superior performance & excellent value. BATTERY, NOW GS is the leading automotive battery brand in Asia & many other parts of the world. European customers AVAILABLE IN can now enjoy outstanding reliability & power, EUROPE perfected over a century of GS battery development. A GS YUASA GROUP COMPANY The GS Yuasa Group consists of 65 subsidiaries and 33 affiliates in countries throughout the world. For over 100 years, the GS Yuasa Group has continually contributed to economic development and the improvement of living standards through the development and manufacture of batteries, power supply systems and lighting equipment. We are a major force in the market as the world’s leading manufacturers of automotive and motorcycle batteries. Responding to today’s increasingly sophisticated needs, our extensive range of next generation energy system lithium-ion batteries encompasses not only vehicle use but also products in a wide range of fields, from deep sea to aerospace, to meet the ever more sophisticated needs of the times. GS YUASA BATTERY EUROPE For over 30 years, GS Yuasa Battery Europe Ltd have been Europe’s leading battery supplier. From sales and distribution centres in Swindon, Milan, Lyon, Madrid and Düsseldorf, GS Yuasa supply European markets with an extensive range of high-quality energy storage and network stabilisation solutions. Supported by experienced Quality
    [Show full text]
  • Automotive Battery Technology Trends Review Study Commissioners
    Automotive Battery Technology Trends Review Study commissioners: European Automobile Manufacturers Association – ACEA Japan Automobile Manufacturers Association Inc. – JAMA Korea Automobile Manufacturers Association – KAMA Association of European Automotive and Industrial Battery Manufacturers – EUROBAT International Lead Association – ILA Authors: Charlie Allen / Ricardo Strategic Consulting (RSC) Carl Telford / Ricardo Strategic Consulting (RSC) June 2020 AUTOMOTIVE BATTERY TECHNOLOGY TRENDS REVIEW 1 Disclaimer: This publication contains the current state of knowledge about the topics addressed in it. Based on expertise provide by Ricardo Strategic Consulting, it was prepared by EUROBAT, ILA, ACEA, JAMA and KAMA in collaboration with members of the different associations. Neither association staff nor any other member can accept any responsibility for loss occasioned to any person acting or refraining from action as a result of any material in this publication. 2 AUTOMOTIVE BATTERY TECHNOLOGY TRENDS REVIEW EXECUTIVE SUMMARY Automotive Battery Technology Trends Review The independent consulting firm Ricardo Strategic Consulting (RSC) was requested to assess the short- and medium-term technical requirements for low-voltage batteries utilised in vehicles. The review concluded that 12V batteries will remain a critical technology during the transition to a lower carbon mobility model and that: “Lead batteries are the only technology capable of fulfilling all the major 12V requirements, from stop-start functions, to reliable auxiliary batteries. No other alternative technology can achieve this functionality at this time” Introduction The automotive industry not only faces accelerating pressure to reduce vehicles’ environmental impact, but is also experiencing rapid technological change, in the shape of electrification, connectivity, autonomy, and new business models. As we enter the 2020s, effective deployment of a suite of suitable battery technologies to support these changes, is paramount.
    [Show full text]
  • Automotive Batteries 101
    AUTOMOTIVE BATTERIES 101 JULY 2018 WMG, University of Warwick Professor David Greenwood, Advanced Propulsion Systems The battery is the defining component of an electrified vehicle Cost Power Range Package Life Ride and Handling © 2018 2 Primary functions of the battery across vehicle types ENGINE MOTOR ‘BATTERY’ BATTERY FUNCTION CONVENTIONAL 100kW Starter motor 12V Engine starting (ICE) Full transient Stop/start 3kW, 1kWh (3kW, 2-5Wh) Ancillary loads (400W average, 4kW peak, ~1kWh) MILD HYBRID 90-100kW 3-13kW 12-48V Absorb regenerated (MHEV) Full transient Torque boost/re-gen 5-15kW, 1kWh braking energy FULL HYBRID 60-80kW 20-40kW 100-300V Support acceleration (HEV) Less transient Limited EV mode 20-40kW, 2kWh PLUG-IN HYBRID 40-60kW 40-60kW 300-600V Provide primary power (PHEV) Less transient Stronger EV mode 40-60kW, 5-20kWh and energy Increasing power to energy ratio power to energy Increasing RANGE-EXTENDED 30-50kW 100kW 300-600V Provide primary power (REEV) No transient Full EV mode 100kW, 10-30kWh and energy ELECTRIC VEHICLE No Engine 100kW 300-600V Provide sole power (EV) Full EV mode 100kW, 30-80kWh and energy source © 2018 3 Biggest challenge for mass market uptake is cost COMPONENT COSTS FOR ELECTRIFICATION OF POWERTRAIN BATTERY Conventional COST IS THE SINGLE MHEV BIGGEST FACTOR HEV Engine/Transmission Battery Power Electronics Motor PHEV Charger E-ancillaries EV 0 2000 4000 6000 8000 10000 12000 Bill-of-Materials Component Cost € © 2018 4 Lithium-ion batteries are improving rapidly 18650 CELL CAPACITY (MAH) • Costs have fallen
    [Show full text]
  • A Comprehensive Thermal Management System Model for Hybrid Electric Vehicles
    A Comprehensive Thermal Management System Model for Hybrid Electric Vehicles by Sungjin Park A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) in The University of Michigan 2011 Doctoral Committee: Professor Dionissios N. Assanis, Co-Chair Assistant Professor Dohoy Jung, Co-Chair Professor Huei Peng Professor Levi T. Thompson, Jr. Table of Contents Table of Figures................................................................................................................. v Table of Tables ................................................................................................................. ix Nomenclature ................................................................................................................... xi Abstract…….. ................................................................................................................. xvi Chapter 1 Introduction..................................................................................................... 1 Chapter 2 Hybrid Electric Vehicle Modeling ................................................................. 9 2.1 Vehicle Configuration .......................................................................................... 10 2.2 Power Management Strategy .............................................................................. 13 2.3 Vehicle Powertrain Modeling.............................................................................. 14 2.3.1 Power Sources
    [Show full text]
  • EV White Paper
    2 | Page UAW Research EXECUTIVE SUMMARY: STRATEGIES FOR A FAIR EV FUTURE .................................................................................. 4 COMING SHIFT TO EVS .................................................................................................................................................... 4 DISRUPTIVE IMPLICATIONS OF EVS ..................................................................................................................................... 4 WILL THE U.S. FALL BEHIND? ........................................................................................................................................... 5 CREATING AN INDUSTRIAL POLICY TO LEAD .......................................................................................................................... 5 WHAT IS AN EV? WHY EVS? ................................................................................................................................... 6 CLIMATE CONCERNS POINT TO EVS .................................................................................................................................... 6 DIFFERENCES BETWEEN EVS AND ICES ............................................................................................................................... 7 THE COMING EV POWERTRAIN DISRUPTION ......................................................................................................... 8 ELECTRIC VEHICLE PRICES TO BECOME COMPETITIVE ............................................................................................................
    [Show full text]
  • Electrifying Cars: How Three Industries Will Evolve
    87 Climate Change Special Initiative Electrifying cars: How three industries will evolve Upon entering the mainstream—in a few years or a couple of decades—electrified cars will transform the auto and utilities sectors and create a new battery industry. What will it take to win in a battery- powered age? Russell Hensley, Stefan Knupfer, and Dickon Pinner It’s a safe bet that consumers will eventually swap their gas- powered cars and trucks for rechargeable models. Electrified transport, in some form, would seem to be in our future. But how long will investors have to wait for the bet to pay off? Years? Decades? Bears would bet on decades. For the next ten or so years, the purchase price of an electrified vehicle will probably exceed the price of an average gas-fueled family car by several thousand dollars. The difference is due largely to the cost of designing vehicles that can drive for extended distances on battery power and to the cost of the battery itself. What’s more, the infrastructure for charging the batteries of a large number of electrified vehicles isn’t in place, nor is the industry tooled to produce them on a mass scale. In any case, consumers aren’t exactly clamoring for battery-powered sedans sedans (see sidebar “From well to wheel”). Bulls are betting on interference by government. They think that concern over energy security, fossil fuel emissions, and long-term industrial competitiveness will prompt governments to seek a partial solution by creating incentives—some combination of subsidies, taxes, and investments—to migrate the market to battery-powered vehicles.
    [Show full text]
  • Thesis Battery End-Of-Life Considerations for Plug-In Hybrid Electric Vehicles
    THESIS BATTERY END-OF-LIFE CONSIDERATIONS FOR PLUG-IN HYBRID ELECTRIC VEHICLES Submitted by Eric Wood Department of Mechanical Engineering In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2011 Master’s Committee: Advisor: Thomas H. Bradley Anthony J. Marchese Peter M. Young ABSTRACT BATTERY END-OF-LIFE CONSIDERATIONS FOR PLUG-IN HYBRID ELECTRIC VEHICLES Plug-in hybrid electric vehicles (PHEVs) represent an advanced vehicle technology with the potential to displace petroleum consumption with energy generated on the US electric grid. While many benefits have been associated with the increased electrification of the US vehicle fleet, concerns over battery lifetime and replacement costs remain an obstacle to widespread PHEV adoption. In order to accurately determine the lifecycle cost of PHEVs, assessment studies must make use of informed assumptions regarding battery degradation and replacement. These assumptions should approach end-of-life (EOL) metrics not only in terms of pack level degradation but also loss of vehicle efficiency and performance in order to accurately represent consumer incentive for battery replacement. Battery degradation calculations should also remain sensitive to the range of ambient conditions and usage scenarios likely to be encountered in the US market. Degradation resulting from a single duty cycle has the potential to misrepresent battery life distributions for the US fleet. In this study, the sensitivity of PHEV lifecycle cost to the battery replacement assumption is explored to underscore the need for an improved understanding of PHEV battery EOL conditions. PHEV specific battery test results are presented to evaluate the ability of industry standard life test procedures to predict battery degradation in PHEVs.
    [Show full text]
  • Vehicle Battery Range
    Vehicle battery range Automotive, commercial vehicle, leisure & marine, specialist & garden, motorcycle & powersport, floor cleaning & aerial access, workshop accessories The world’s leading battery manufacturer The complete solution from the world’s leading battery manufacturer Automotive Light commercial vehicle Commercial vehicle Leisure Marine 2 Contents Yuasa overview 4 Understanding ratings 8 Automotive 10 Commercial vehicle 22 Leisure & marine 28 Specialist & garden 34 Layout, container & terminal diagrams 36 Motorcycle & powersport 38 Floor cleaning & aerial access 52 Workshop accessories 54 Battery recycling 60 Find the right battery for your vehicle Find the right battery for your vehicle using our powerful online battery lookup system: Consumer website: www.yuasa.com Trade lookup: fit.yuasa.com Specialist & garden Motorcycle Powersport Floor cleaning & aerial access Workshop accessories 3 100 YEARS OF QUALITY, RELIABILITY & PERFORMANCE Over 100-year pedigree, founded in 1918 UK market leader for vehicle & industrial batteries Engineered for long life & maximumLithium-ion power Battery for Aircrafts The largest vehicle coverage from one brand Join the millions of people who enjoy● Lithium-ion the long service life, Batteries for Boeing 787 high performance and exceptional reliability provided by Yuasa, the world’s leading batteryGS manufacturer. Yuasa Technology's Lithium-ion battery which has been installed in Boeing 787 is the first Lithium-ion battery to replace a Ni-Cd battery on commercial airplane. Airplane batteries are required both light weight and high reliability because they can endure in severe environment at high altitude above 10,000 meters. APU Battery FCE Battery MAIN Battery FCE Battery FCE Battery (P/N LVP10-7) 4 MAIN/APU Battery (P/N LVP65-8) Photo by Boeing GS Yuasa Technology supplies two types of Lithium-ion batteries, FCE battery and MAIN/APU battery, for the Boeing 787 Dreamliner family (787-8, 787-9, 787-10).
    [Show full text]
  • Effect of Injection Timing and Coolant Temperatures of DI Diesel Engine on Cold and Hot Engine Startability and Emissions
    IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 3 Ver. VI (May- Jun. 2016), PP 62-70 www.iosrjournals.org Effect of Injection Timing and Coolant Temperatures of DI Diesel Engine on Cold and Hot Engine Startability and Emissions Miqdam Tariq Chaichan Energy and Renewable Energies Technology Center, University of Technology, Baghdad, Iraq Abstract: From the problematic combustion phases for diesel engines, cold start is most one. A large volume of pollutants produced during this period. These high levels of emitted emissions resulted from misfiring and incomplete combustion due to the low engine temperatures. Many variables intervene in, some of it follows fuel properties; others follow lubricant properties and some of it due to engine operation conditions. Injection timing plays a dominant rule in engine start ability in cold and hot weathers. In this study tests were conducted on DI four cylinder diesel engine to clarify this effect. Four injection timing were chosen (12, 15, 20 & 23oBTDC) to operate the engine, and their results were compared with engine operation at 17oBTDC (factory specification). Tests were conducted at four engine coolant temperatures (-10, 0, 25 & 50oC) to evaluate injection timing effect. The study results indicated that increasing test temperature led to reducing starting time apparently. Combustion instability was significant mainly during starting at cold temperatures (-10 & 0oC). Extremely high levels of HC, CO and opacity were experienced in the exhaust gas, mainly during cold starting. Combustion noise increased highly due to low starting temperature and retarded IT. Keywords: injection timing, start ability, HC, CO, smoke opacity, noise, cold starting I.
    [Show full text]
  • THESIS DESIGN and CONSTRUCTION of ELECTRIC MOTOR DYNAMOMETER and GRID ATTACHED STORAGE LABORATORY Submitted by Markus Lutz Depar
    THESIS DESIGN AND CONSTRUCTION OF ELECTRIC MOTOR DYNAMOMETER AND GRID ATTACHED STORAGE LABORATORY Submitted by Markus Lutz Department of Mechanical Engineering In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2011 Master’s Committee: Advisor: Thomas Bradley Daniel Zimmerle Peter Young Copyright by Markus Lutz 2011 All Rights Reserved ABSTRACT DESIGN AND CONSTRUCTION OF ELECTRIC MOTOR DYNAMOMETER AND GRID ATTACHED STORAGE LABORATORY The purpose of this thesis is to describe the design and development of a laboratory facility to both educate students on electric vehicle components as well as allow researchers to gain experimental results of grid‐attached‐storage testing. With the anticipated roll out of millions of electric vehicles, manufacturers of such vehicles need educated hires with field experience. Through instruction with this lab, Colorado State University plans to be a major resource in equipping the future electric vehicle work force with necessary training and hands‐on experience using real world, full‐scale, automotive grade electric vehicle components. The lab also supports research into grid‐ attached‐storage. This thesis explains the design objectives, challenges, selections, construction and initial testing of the lab, and also provides context for the types of education and research which can be performed utilizing the laboratory. ii ACKNOWLEDGEMENTS This material is based on work supported by the Department of Energy under Award Number DE‐EE0002627. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe on privately owned rights.
    [Show full text]