Frequent Flyers

Total Page:16

File Type:pdf, Size:1020Kb

Frequent Flyers SPOTTER’S What can you spot in the GUIDE Butterfly House today? Frequent Flyers... Large tree Glasswing nymph Blue clipper Greta oto Idea leuconoe Parthenos sylvia lilacinus Central and South America Asia Southeast Asia The glasswing lacks wing Large tree nymphs are also The clipper has a range of scales in parts, giving known as ‘paper kites’ due to background colours, ranging them transparent wings their slow and graceful flight. from brown to blue – which which help them to avoid colours can you see today? being eaten. Blue morpho Great eggfly Owl butterfly Morpho peleides Hypolimnas bolina Caligo eurilochus Central and South America Southeast Asia Central and South America The iridescence on their Great eggfly butterflies are Their large eye spots act as a blue wings is created by not toxic. Females mimic deterrent to predators - they their wing-scales acting the wing pattern of the toxic could be the eyes of a much like prisms, refracting and common crow butterfly, larger creature. reflecting light. so they appear toxic and predators don’t attack them. SPOTTER’S What can you spot in the GUIDE Butterfly House today? Frequent Flyers... Great orange-tip Red lacewing Atlas moth Hebomoia glaucippe Cethosia biblis Attacus atlas Southeast Asia India and Southeast Asia Southeast Asia, Philippines Great orange-tips often rest Red lacewings lay their eggs The atlas moth is the largest with their wings closed to on passionflower plants as moth in the world, but once hide their orange colouration, the caterpillars eat the leaves they emerge they only live for using their ‘dead-leaf’ when they hatch. around one week. underwings as camouflage. Scarlet Postman mormon Common crow Heliconius melpomene Papilio rumanzovia Euploea core Central and South America Philippines India, Southeast Asia and Australia The postman butterfly has a Young scarlet mormon ‘daily round’, visiting the same caterpillars resemble bird These butterflies roost together sequence of flowers every droppings… an effective survival at night, clustering in a group day, just like a postman. technique, as predators don’t on a sheltered leaf or twig. want to eat bird poo!.
Recommended publications
  • Journal of the Asian Elephant Specialist Group GAJAH
    NUMBER 46 2017 GAJAHJournal of the Asian Elephant Specialist Group GAJAH Journal of the Asian Elephant Specialist Group Number 46 (2017) The journal is intended as a medium of communication on issues that concern the management and conservation of Asian elephants both in the wild and in captivity. It is a means by which everyone concerned with the Asian elephant (Elephas maximus), whether members of the Asian Elephant Specialist Group or not, can communicate their research results, experiences, ideas and perceptions freely, so that the conservation of Asian elephants can benefit. All articles published in Gajah reflect the individual views of the authors and not necessarily that of the editorial board or the Asian Elephant Specialist Group. Editor Dr. Jennifer Pastorini Centre for Conservation and Research 26/7 C2 Road, Kodigahawewa Julpallama, Tissamaharama Sri Lanka e-mail: [email protected] Editorial Board Dr. Ahimsa Campos-Arceiz Dr. Prithiviraj Fernando School of Geography Centre for Conservation and Research University of Nottingham Malaysia Campus 26/7 C2 Road, Kodigahawewa Jalan Broga, 43500 Semenyih, Kajang, Selangor Julpallama, Tissamaharama Malaysia Sri Lanka e-mail: [email protected] e-mail: [email protected] Dr. Varun R. Goswami Heidi Riddle Wildlife Conservation Society Riddles Elephant & Wildlife Sanctuary 551, 7th Main Road P.O. Box 715 Rajiv Gandhi Nagar, 2nd Phase, Kodigehall Greenbrier, Arkansas 72058 Bengaluru - 560 097 USA India e-mail: [email protected] e-mail: [email protected] Dr. T. N. C. Vidya
    [Show full text]
  • A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
    MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion.
    [Show full text]
  • Biodiversity Assessment of the Hunuwela Estate, Kahawatte Plantations PLC, Pelmadulla
    Biodiversity Assessment of the Hunuwela Estate, Kahawatte Plantations PLC, Pelmadulla April 2012 IUCN - International Union for Conservation of Nature, Sri Lanka Country Programme Survey team Mr. Sampath de A. Goonatilake (Fauna expert) Mr. Sarath Ekanayake (Flora expert) Mr. Chandana Asela (Fauna expert) GIS Map Kapila Gunaratne Project oversight Dr. Devaka Weerakoon Coordinated by Mr. Shamen Vidanage Mr. Bandula Withanachchi Photos Sampath de A Goonatilake © IUCN Sri Lanka Cover photo: Hunuwela Estate, Hunuwela–north division Macadamia Orchid; background Ravana Kapolla mountain ridge i CONTENTS Acknowledgements -------------------------------------------------------------------------------------------------- iii 1. Introduction ---------------------------------------------------------------------------------------------------------- 1 2. Objectives ------------------------------------------------------------------------------------------------------------- 3 3. Methodology ---------------------------------------------------------------------------------------------------------- 4 3.1 Site Description ------------------------------------------------------------------------------------------------ 4 3.2 Assessment Method ------------------------------------------------------------------------------------------- 4 3.2.1 Overall methodological approach --------------------------------------------------------------------- 4 3.2.2 Selection of sampling sites and sampling frequency ---------------------------------------------- 5 3.2.3 Methodology
    [Show full text]
  • Bhutan Journal of Natural Resources & Development Short Communication
    BJNRD (2016), 3(2): 42-46 Bhutan Journal of Natural Resources & Development Short Communication ISSN 2409–2797 (Print) www.bjnrd.org Open Access ISSN 2409–5273 (Online) DOI: http://dx.doi.org/10.17102/cnr.2016.11 Butterfly (Lepidoptera- Rhophalocera) Diversity in the Developing Urban Area of Gelephu, Bhutan 1 Tshering Nidup Abstract Urban development has led to substantial fragmentation of natural habitats of wildlife, depletion of water resources, and increase in air and soil pollution resulting in significant impact on biodiversity and ecological processes. Butterflies are good biological indicators of anthropogenic disturbance of environment. Considering the impact of habitat fragmentation and change in environment and climate variables, this study was undertaken to study butterfly diversity in and around the expanding Gelephu town in southern Bhutan. The survey was carried out from January to December, 2015 with an objec- tive to generate baseline information on the presence and status of butterflies in the urban area of Gele- phu. A total of 56 species of butterflies belonging to 5 different families were recorded. Family Nym- phalidae had the highest number of species (46%, n = 26) and the lowest was represented by family Papilionidae (5%, n = 3). Establishment of Green Park in the urban area could create good habitat for increasing butterfly biodiversity in urban area of Gelephu. Keywords: Butterfly, conservation, diversity, urban area Introduction some scientific information and interest among young people in Bhutan. Singh and Chib (2015) Biodiversity decline is attributed mainly to in- published a checklist and Wangdi and Sherub crease in global human population (Stoate et al., (2015) published a pictorial guide along with a 2001; Benton et al., 2002; 2003).
    [Show full text]
  • Literature Review
    Annex 9A Ecology – Literature Review LITERATURE REVIEW INTRODUCTION A literature review was conducted to review the baseline ecological characters of the Assessment Area, identify habitat resources and species of potential conservation importance, and identify information gaps to determine whether field surveys are required to provide sufficient information for the Ecological Impact Assessment. This Annex presents the findings of this literature review. LEGISLATIVE REQUIREMENTS AND EVALUATION CRITERIA 9A.1.2.1 Marine Parks Ordinance (Cap. 476) and its Subsidiary Legislation The Marine Parks Ordinance (Cap. 476) provides for the designation, control and management of marine parks and marine reserves. It also stipulates the Director of Agriculture, Fisheries and Conservation as the Country and Marine Parks Authority which is advised by the Country and Marine Parks Board. The Marine Parks and Marine Reserves Regulation was enacted in July 1996 to provide for the prohibition and control of certain activities in marine parks or marine reserves. 9A.1.2.2 Wild Animals Protection Ordinance (Cap. 170) Under the Wild Animals Protection Ordinance (Cap. 170), designated wild animals are protected from being hunted, whilst their nests and eggs are protected from destruction and removal. All birds and most mammals including all cetaceans are protected under this Ordinance, as well as certain reptiles (including all sea turtles), amphibians and invertebrates. The Second Schedule of the Ordinance that lists all the animals protected was last revised in June 1997. 9A.1.2.3 Protection of Endangered Species of Animals and Plants Ordinance (Cap. 586) The Protection of Endangered Species of Animals and Plants Ordinance (Cap. 586) was enacted to align Hong Kong’s control regime with the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES).
    [Show full text]
  • Colourful Butterfly Wings: Scale Stacks, Iridescence and Sexual Dichromatism of Pieridae Doekele G
    158 entomologische berichten 67(5) 2007 Colourful butterfly wings: scale stacks, iridescence and sexual dichromatism of Pieridae Doekele G. Stavenga Hein L. Leertouwer KEY WORDS Coliadinae, Pierinae, scattering, pterins Entomologische Berichten 67 (5): 158-164 The colour of butterflies is determined by the optical properties of their wing scales. The main scale structures, ridges and crossribs, scatter incident light. The scales of pierid butterflies have usually numerous pigmented beads, which absorb light at short wavelengths and enhance light scattering at long wavelengths. Males of many species of the pierid subfamily Coliadinae have ultraviolet-iridescent wings, because the scale ridges are structured into a multilayer reflector. The iridescence is combined with a yellow or orange-brown colouration, causing the common name of the subfamily, the yellows or sulfurs. In the subfamily Pierinae, iridescent wing tips are encountered in the males of most species of the Colotis-group and some species of the tribe Anthocharidini. The wing tips contain pigments absorbing short-wavelength light, resulting in yellow, orange or red colours. Iridescent wings are not found among the Pierini. The different wing colours can be understood from combinations of wavelength-dependent scattering, absorption and iridescence, which are characteristic for the species and sex. Introduction often complex and as yet poorly understood optical phenomena The colour of a butterfly wing depends on the interaction of encountered in lycaenids and papilionids. The Pieridae have light with the material of the wing and its spatial structure. But- two main subfamilies: Coliadinae and Pierinae. Within Pierinae, terfly wings consist of a wing substrate, upon which stacks of the tribes Pierini and Anthocharidini are distinguished, together light-scattering scales are arranged.
    [Show full text]
  • Male-Killing Wolbachia in the Butterfly Hypolimnas Bolina
    Blackwell Publishing, Ltd. Male-killing Wolbachia in the butterfly Hypolimnas bolina 1, 2,† 2,‡ 1 Wataru Mitsuhashi *, Haruo Fukuda , Kazunari Nicho & Ritsuko Murakami 1National Institute of Agrobiological Sciences, Tsukuba Ibaraki 305-8634, Japan; 2Kagoshima Prefectural Museum, Kagoshima Kagoshima 892-0853, Japan Accepted: 11 May 2004 Key words: sex ratio distortion, symbiosis, 16S rDNA, ftsZ gene, groE operon, wsp gene, tetracycline, Lepidoptera, Nymphalidae Abstract Some lines of the butterfly Hypolimnas bolina L. (Lepidoptera: Nymphalidae) are characterized by their female-biased sex ratio. In these lines, most males die before reaching the middle larval stage. However, the cause of the bias remains unclear. We detected the proteobacterium Wolbachia in all individuals in the female-biased butterfly lines and in some of the lines with a normal sex ratio. Tet- racycline treatment of adult females of a female-biased line led to a significant increase in both the hatch rate of their eggs (F1) and the male-to-female ratio of F1 pupae. In addition, certain assays of tetracycline treatment on mother butterflies significantly increased the male to female ratio of F1 adults. Known bacterial sex ratio distorters other than Wolbachia were not detected by diagnostic PCR assay, nor by the sequencing of 16S rDNA amplified using general prokaryotic 16S rDNA primers. These results strongly suggest that the distortion of the sex ratio is due to the killing of males by the inherited Wolbachia. Sequences of the 16S rDNA amplified using Wolbachia-specific primers, the cell division protein gene ( ftsZ), the molecular chaperone groE genes (groE operon), and the Wolbachia surface protein gene (wsp) from Wolbachia in lines belonging to three subspecies of the butterfly (bolina, jacintha, and philippensis) revealed no variation among lines nor between female- biased lines and a normal one.
    [Show full text]
  • SYSTEMATICS of VAGRANTINI BUTTERFLIES (LEPIDOPTERA: Nymphalidae)
    Treubia 2003 33 (1) 71-87 SYSTEMATICS OF VAGRANTINI BUTTERFLIES (LEPIDOPTERA: NYMPHAlIDAE). PART 1. CLADISTIC ANALYSIS Djunijanti Peggie . Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences JI. Raya Jakarta Bogor Km. 46, Cibinong 16911, Indonesia Abstract Eiglit ge/lera of lndo-Australian butterjiies: Algia. Algiachroa, Cirrochroa, Cupha, Phalanta, Terinos, Vagrans, and Vindula are presented here. These genera together with two Afrotropical genera: Lachnoptera and Smerina, and a Central American genlls Euptoieta were previollsly placed as subiribe uncertain. One-hundred adult morphological characters were scored for fifty-four taxa, and were analyzed simultaneousuj (Nixon and Carpenter, 1993). The cladistic analysis showed that all species were properly assigned to monophyletic genera, and the arrangement of the outgroup taxa is in concordance with the classification previously suggested. The eight lndo-Australian and two Afrotropical genera belong to the tribe Vagrantini within the subfamily Heliconiinae. Key words: Heliconiines, Vagrantini, Indo-Australian, butterflies. Introduction The subfamily Heliconiinae is recognized by most authorities but the included taxa may differ. Ackery (in Vane-Wright and Ackery, 1984) suggested that the heliconiines may prove to represent a highly specialized subgroup of the Argynnini sensu lato. Heliconiinae sensu Harvey (in Nijhout, 1991) also include Acraeinae and Argynninae of Ackery (1988).Parsons (1999)included argynnines within Heliconiinae but retained Acraeinae as a distinct subfamily. Harvey (in N ijhou t, 1991) recognized three tribes of Heliconiinae: Pardopsini, Acraeini, and Heliconiini. The Heliconiini include the Neotropical Heliconiina (Brower, 2000), some genera which were placed as "subtribe uncertain", Argynnina, Boloriina and three other genera (the Neotropical genusYramea, the Oriental Kuekenthaliella, and Prokuekenthaliella) with uncertain relationships.
    [Show full text]
  • Diversity of Butterflies (Rhopalocera) and Spatial Distribution of Host Plants Using QGIS in Halang Lipa, Batangas, Philippines
    Global Journal Of Biodiversity Science and Management 2017. 7(1): 1-10 ISSN: 2074-0875 Journal home page: http://www.aensiweb.com/ GJBSM/ RESEARCH ARTICLE Diversity of Butterflies (Rhopalocera) and Spatial Distribution of Host Plants Using QGIS in Halang Lipa, Batangas, Philippines 1Jeffrey R. Manalo, 1,2Alma E. Nacua, 1Aleine Leilanie B. Oro, 1Nikki Rose N. Tosoc, 1Maria Rowena G. Zapanta, 1Mary Grace D.C. Empasis, 1Mark Joseph E. Mendoza, 1Cariza Jane M. Soriano 1University of the East, Manila, CM Recto Manila Philippines and 2 Universidad de Manila, 659-A Cecilia Muñoz St, Ermita, Manila, Metro Manila ABSTRACT Background: There are few studies on butterflies, specifically in Halang Lipa Batangas City. The aim of this paper: is to determine the species composition and abundance of butterflies and the spatial distribution of host plant and nectarine plants with the used of QGIS. Methods: Rapid transect walk once on November 2016. Results revealed 25 species of butterflies belong to 22 genus to a family of Hespiridae, Lyceanidae, Papilionidae, Pieridae, Nymphalidae, and Satyridae of both in open and closed canopy forest. Butterflies are attracted to specific host plants and suitable nectarine plants to sustain life span, given the wrong host plant butterfly refuse to eat and die of starvation. Conclusion: The cluster analysis of the species composition has shown that the Dipterocarp forest have low similarity of species composition with only 50%, in both area of study. This supports the conservation of butterflies and host plants in Lipa Batangas. Key words: QGIS, agro system, dipterocarp, Host plant, and nectarine plants, Received; Accepted; Available online Address For Correspondence: Alma E.
    [Show full text]
  • A Study of the Current Subspecies of Hebomoia Glaucippe (Linnaeus 1758) from the Philippines (Lepidoptera: Pieridae) 25-32 Nachr
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Nachrichten des Entomologischen Vereins Apollo Jahr/Year: 2008 Band/Volume: 29 Autor(en)/Author(s): Treadaway Colin G., Schröder Heinz-Gerd Artikel/Article: A study of the current subspecies of Hebomoia glaucippe (Linnaeus 1758) from the Philippines (Lepidoptera: Pieridae) 25-32 Nachr. entomol. Ver. Apollo, N. F. 29 (/2): 25–32 (2008) 25 A study of the current subspecies of Hebomoia glaucippe (Linnaeus 1758) from the Philippines (Lepidoptera: Pieridae) Colin G. Treadaway and Heinz G. Sch­roeder Colin G. Treadaway F.R.E.S., Entomologie II, Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany­; colin.treadaway­@web.de Dr. Heinz G. Sch­roeder, Entomologie II, Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany­; heinzingeschroeder@gmx­.de Abstract: The species Hebomoia glaucippe (Linnaeus 758) sind ty­pische Vertreter in beiden Geschlechtern abgebildet, has a wide distribution stretching from India and South und die Verbreitung der Unterarten wird auf einer Karte China to Malay­sia, Indonesia, Sundaland, Taiwan to the Phil- dargestellt. ippines and on to lesser Sunda Islands occurring in a large number of subspecies. On the Philippines Hebomoia glau­ cippe, up till now, was represented by­ 0 subspecies. A study­ Introduction of a very­ large number of glaucippe specimens from the Hebomoia glaucippe (Linnaeus 758) over its broad range areas occupied by­ the so far known subspecies over different periods of the y­ear has illustrated that the variation of of Asian occurrence has developed a large number of each of the known subspecies is very­ much broader than subspecies, some of which can be dramatically­ different previously­ considered.
    [Show full text]
  • Red List of Bangladesh 2015
    Red List of Bangladesh Volume 1: Summary Chief National Technical Expert Mohammad Ali Reza Khan Technical Coordinator Mohammad Shahad Mahabub Chowdhury IUCN, International Union for Conservation of Nature Bangladesh Country Office 2015 i The designation of geographical entitles in this book and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, International Union for Conservation of Nature concerning the legal status of any country, territory, administration, or concerning the delimitation of its frontiers or boundaries. The biodiversity database and views expressed in this publication are not necessarily reflect those of IUCN, Bangladesh Forest Department and The World Bank. This publication has been made possible because of the funding received from The World Bank through Bangladesh Forest Department to implement the subproject entitled ‘Updating Species Red List of Bangladesh’ under the ‘Strengthening Regional Cooperation for Wildlife Protection (SRCWP)’ Project. Published by: IUCN Bangladesh Country Office Copyright: © 2015 Bangladesh Forest Department and IUCN, International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holders, provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holders. Citation: Of this volume IUCN Bangladesh. 2015. Red List of Bangladesh Volume 1: Summary. IUCN, International Union for Conservation of Nature, Bangladesh Country Office, Dhaka, Bangladesh, pp. xvi+122. ISBN: 978-984-34-0733-7 Publication Assistant: Sheikh Asaduzzaman Design and Printed by: Progressive Printers Pvt.
    [Show full text]
  • Tympanal Ears in Nymphalidae Butterflies: Morphological Diversity and Tests on the Function of Hearing
    Tympanal Ears in Nymphalidae Butterflies: Morphological Diversity and Tests on the Function of Hearing by Laura E. Hall A thesis submitted to the Faculty of Graduate Studies and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science in Biology Carleton University Ottawa, Ontario, Canada © 2014 Laura E. Hall i Abstract Several Nymphalidae butterflies possess a sensory structure called the Vogel’s organ (VO) that is proposed to function in hearing. However, little is known about the VO’s structure, taxonomic distribution or function. My first research objective was to examine VO morphology and its accessory structures across taxa. Criteria were established to categorize development levels of butterfly VOs and tholi. I observed that enlarged forewing veins are associated with the VOs of several species within two subfamilies of Nymphalidae. Further, I discovered a putative light/temperature-sensitive organ associated with the VOs of several Biblidinae species. The second objective was to test the hypothesis that insect ears function to detect bird flight sounds for predator avoidance. Neurophysiological recordings collected from moth ears show a clear response to flight sounds and chirps from a live bird in the laboratory. Finally, a portable electrophysiology rig was developed to further test this hypothesis in future field studies. ii Acknowledgements First and foremost I would like to thank David Hall who spent endless hours listening to my musings and ramblings regarding butterfly ears, sharing in the joy of my discoveries, and comforting me in times of frustration. Without him, this thesis would not have been possible. I thank Dr.
    [Show full text]