Desert Skies – July

Total Page:16

File Type:pdf, Size:1020Kb

Desert Skies – July Desert Skies Tucson Amateur Astronomy Association Volume LV, Number 7 July, 2009 Astro-imaging using a DSLR Public star parties Websites: Trips On The Internet Su- Constellation of the month per-Skyway TAAA Astronomy Complex Updates Desert Skies: July, 2009 2 Volume LV, Number 7 Cover Photo: Rik Hill created this image using a digital SLR camera. For more information, see the Websites: Trips On The Internet Super-Skyway article. TAAA Web Page: http://www.tucsonastronomy.org TAAA Phone Number: (520) 792-6414 Office/Position Name Phone E-mail Address President Ken Shaver 762-5094 [email protected] Vice President Keith Schlottman 290-5883 [email protected] Secretary Luke Scott 749-4867 [email protected] Treasurer Terri Lappin 977-1290 [email protected] Member-at-Large George Barber 822-2392 [email protected] Member-at-Large John Kalas 620-6502 [email protected] Member-at-Large Teresa Plymate 883-9113 [email protected] Past President Bill Lofquist 297-6653 [email protected] Chief Observer Dr. Mary Turner 743-3437 [email protected] AL Correspondent (ALCor) Nick de Mesa 797-6614 [email protected] Astro-Imaging SIG Steve Peterson 762-8211 [email protected] Astronomy Fundamentals SIG JD Metzger 760-8248 [email protected] Newsletter Editor George Barber 822-2392 [email protected] School Star Party Scheduling Coordinator Paul Moss 240-2084 [email protected] School Star Party Volunteer Coordinator Roger Schuelke 404-6724 [email protected] Webmaster Debra Malmos 495-5830 [email protected] Mary Lofquist 297-6653 Club Apparel Sales [email protected] Mary McMacken 743-2066 TIMPA Gate Card controller John Kalas 620-6502 [email protected] Equipment Loan Coordinator Richard Dougall 245-5441 [email protected] Claude Plymate Librarians 883-9113 [email protected] Teresa Plymate Grand Canyon Star Party Coordinator Jim O’Connor 546-2961 [email protected] General Information Terri Lappin 977-1290 [email protected] TAAA Board Of Directors All Board Members [email protected] Membership in the TAAA magazines. To change an individual subscription to the group rate, pay the subscription amount to the TAAA treasurer. Include your Annual Fees magazine renewal notice. Individual membership ...........................................................$25.00 Family (includes two adults plus minor children) .....................$30.00 Please include a note explaining what you are paying for. Credit Youth under 18 years must join as a family upon parental or guardian cards are not accepted. Write one check or money order for fees plus acknowledgement of participation in TAAA events. Ask the Treasurer any options or donations. Make it payable to TAAA and send to: for the required form. Tucson Amateur Astronomy Association Discounts (one discount allowed, subtract from above rates) PO BOX 41254 Tucson, AZ 85717 Seniors (over 60 years) .............................................................$2.00 College Students, Teachers (K – 12) ..........................................$8.00 Mailing Address or Email Changes - Send to address above or email the Youth under 18 yrs (form required, contact the treasurer).......$13.00 treasurer. Options (add to above membership rates) TAAA Mission Statement - The mission of the Tucson Amateur Astron- Tucson society of the Astronomical League (TAL) fees............$ 7.50 omy Association is to provide opportunities for members and the public Sky & Telescope Magazine 1 year (12 issues) ..........................$32.95 to share the joy and excitement of astronomy through observing, educa- Astronomy Magazine 1 year (12 issues) ..................................$34.00 tion and fun. 2 years (24 issues) ................................$60.00 Postage for New Member Pack ...............................................$ 4.80 Desert Skies Publishing Guidelines - All articles, announcements, news, Donations are accepted for the following funds: SA-IDA/Light Pollution, etc. must be submitted by the newsletter deadline. Materials received TIMPA, Education, 30” Telescope & Land, and General/Undesignated. after that date will appear in the next issue. The editor retains all submis- Renewal Information sions unless prior arrangements are made. Submissions should be sub- mitted in Word compatible files via e-mail or on a recordable media.. All Your membership expires as indicated on your mailing label. material copyright Tucson Amateur Astronomy Association or specific TAAA members may join the Tucson society of the Astronomical author. No reproduction without permission, all rights reserved. We will League (TAL) at the time they join or renew. not publish slanderous or libelous material! Send submissions to: George Barber Discounted Sky & Telescope or Astronomy magazine subscriptions TAAA/Desert Skies Editor are available to members and can be started or renewed at anytime. 15940 W Ridgemoor Ave Rates are given above. Allow 3 months for processing. Subscriptions Tucson AZ 85736 must be sent through the TAAA. Do not send money directly to the Join our Email Lists on YahooGroups Announcements: http://tinyurl.com/e7o3y (TAAA news, no posting allowed, 15/month) TAAA Forum: http://tinyurl.com/hwoau (general astronomy discussion, posting allowed, 75/month) TAAA Dark Site: http://tinyurl.com/3d8ts9 (discussion of dark site issues, posting allowed) Desert Skies is published monthly by the Tucson Amateur Astronomy Association, Post Office Box 41254, Tucson AZ 85717. Volume LV, Number 7 3 Desert Skies: July, 2009 President’s Message The end of June has been very active with astronomy gas site. In all, June was a very active viewing month. It events. It is clear that club members are not going to go was a fitting way to end the spring astronomy season. I into the rainy season quietly. The reports from the Grand hope if you did not get a chance to attend one of the Canyon Star party have indicated that while attendance events that everyone had a chance to catch some photons was down this year and the weather started out a bit before the clouds set in. poorly, the dark skies were rewarding. I know that July brings us the dreaded Monsoons for as- Closer to home members had several events to choose tronomers but there is still a great deal of work going on from in June. A great representation of our members from for the club. We have made good advances on the con- TAAA attended the Huachuca Astronomy Clubs C-Row struction of the dark site infrastructure. Permits have been Star Party. The first night was hampered by an early mon- obtained and contractors signed and paid. We also have soon storm but once that cleared the rest of the event several committee activities to conduct in order to begin went fantastic. We had beautiful skies, great food and the Phase 2 planning. There is a big task ahead of us to great company. In the process we were able to raise some raise the funds we will need to continue to keep our mo- funds for the club. I would like to thank the HAC for their mentum moving on the dark site. Please keep an eye open generosity of sharing the proceeds from this event with for future opportunities to help out on these projects. TAAA. I hope that we can look forward to future event participation with the HAC as we become neighbors in As always, Clear Skies (As clear as they can be in Tucson Cochise County. in July), The Fundamentals SIG met at Catalina State Park and the Ken Shaver Gorilla Astronomers enjoyed a fine night at the Las Ciene- TAAA President Meeting Information and Calendar of Events TAAA MEETING DATE: Friday, July 3, at the Steward to celebrate the International Year of Astronomy 2009. It Observatory Auditorium – Room N210 was funded by the National Science Foundation and pro- duced by Interstellar Studios. Additional support was ASTRONOMY ESSENTIALS: 6:30 pm provided by the Astronomical Society of the Pacific Title: Objects of the season through the Night Sky Network program. Speaker: Dr. Mary Turner Dr. Turner will give her quarterly update on the best ob- BOARD OF DIRECTORS MEETING: Wednesday, July 8, jects for observing during the summer season. 6:30 pm. The meeting is held at Steward Observatory Conference Room N305. GENERAL MEETING: 7:30 pm Title: 400 Years of the Telescope STAR PARTIES AND EVENTS: Speaker: PBS documentary presentation 02 July - Tucson Botanical Garden Star Party 06 July – Astro-Imaging SIG at China Rose This documentary tells the story of humanity’s view of the 09 July – Astronomy Fundamentals SIG Meeting universe and our place in it through the ever increasing 18 July - TAAA Star Party at Las Cienegas telescope lens. Our perception of the universe began to 18 July – LPL Apollo Landing Celebration change with Galileo’s telescope – a scope of such poor 21 July - Biosphere 2 Teacher Conference Star Party quality that we’d toss into the garbage heap today. Tech- 25 July - TAAA Star Party at TIMPA nological advancements in telescope building and modern 26 July - Catalina Village Star Party day imaging have brought about an evolution in our un- derstanding of astronomy and physics. Innovative con- cepts such as the Large Binocular Telescope (in Arizona) and Keck’s dual 10m telescopes (in Hawaii), have contrib- NEWSLETTER SCHEDULE: Deadline for articles: Sat, uted to this changing view. The upcoming James Webb July 25. The newsletter
Recommended publications
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • Campus Building & Department Index- Alphabetical
    CAMPUS BUILDING & DEPARTMENT INDEX- ALPHABETICAL 2009-2010 A --- Electrical & Computer Nuerology Clinic 522 (F1) Adminstration 66 (D5) Engineering Bldg. 104 (C4) Nugent, Robert L. 40 (C6) Admissions, Office of 40 (C6) Engineering & Mines, College of 72 (C4) Nursing, College of 203 (F2) African American Studies 128 (D4) Engineering Building 20 (C5) O --- Agricultural Sciences 38 (C6) Dennis DeConcini Environment Old Main Building 21 (C5) Agriculture, College of 36 (C6) & Natural Resources Bldg. 120 (B7) Optical Science(Meinel) 94 (F6) A.M.E. Building 119 (D3) Extended University 158 (A5) P --- Apache Hall 50A (D7) F --- Park Ave. Parking Garage 116 (B3) Architecture, College of 75 (C4) Facilities Mgmt., AHSC 206 (E1) Park Student Center 87 (A6) Art Annex, Ceramics 470 (C3) Facilities Mgmt., Annex 460 (E1) Parking and Transportation Services 181 (C7) AZ Coop. Wildlife & Fishery Facilities Mgmt., Renovation 470 (D3) Payroll Department 158 (A5) Research Unit 43 (D6) Facilities Mgmt. Warehouse 215 (E1) Pharmacy, College of 207 (F2) Arizona Hall 84 (A7) Faculty Office Building 220 (E1) PHASE 420 (B3) Arizona Health Sciences Ctr. 201 (F2) Faculty Senate Office 456 (C2) Physics & Atmospheric Science (PAS) 81 (C6) Basic Services 201 (F2) Family & Consumer Res. 33 (B6) Pima Hall 135 (D4) Biomed. Research Lab 209 (E1) Family Practice Unit, AHSC 204 (E2) Pinal Hall 59 (E7) Bookstore 201 (F2) Fine Arts, Faculty of 4 (B4) Plantarium, Flandrau 91 (E5) Cancer Center 222 (F2) Fluid Dynamics Res. Lab 112 (C4) Planetary Sci., Dept. of 92 (E5) Central Heat/Refrig. 205 (E2) Forbes (Agriculture) 36 (C6) Police Department 100 (F4) Cl. Sci.
    [Show full text]
  • Highly Sampled Measurements in a Controlled Atmosphere at the Biosphere 2 Landscape Evolution Observatory
    www.nature.com/scientificdata OpEN Highly sampled measurements Data DEscRiptor in a controlled atmosphere at the Biosphere 2 Landscape Evolution Observatory Jorge Arevalo 1,2 ✉ , Xubin Zeng 1,3, Matej Durcik3, Michael Sibayan4, Luke Pangle5, Nate Abramson6, Aaron Bugaj3, Wei-Ren Ng3, Minseok Kim3, Greg Barron-Gaford 3,7, Joost van Haren3,8,9, Guo-Yue Niu 1,3, John Adams3, Joaquin Ruiz3,6 & Peter A. Troch1,3 Land-atmosphere interactions at diferent temporal and spatial scales are important for our understanding of the Earth system and its modeling. The Landscape Evolution Observatory (LEO) at Biosphere 2, managed by the University of Arizona, hosts three nearly identical artifcial bare-soil hillslopes with dimensions of 11 × 30 m2 (1 m depth) in a controlled and highly monitored environment within three large greenhouses. These facilities provide a unique opportunity to explore these interactions. The dataset presented here is a subset of the measurements in each LEO’s hillslopes, from 1 July 2015 to 30 June 2019 every 15 minutes, consisting of temperature, water content and heat fux of the soil (at 5 cm depth) for 12 co-located points; temperature, relative humidity and wind speed above ground at 5 locations and 5 diferent heights ranging from 0.25 m to 9–10 m; 3D wind at 1 location; the four components of radiation at 2 locations; spatially aggregated precipitation rates, total subsurface discharge, and relative water storage; and the measurements from a weather station outside the greenhouses. Background & Summary Te understanding of land-atmosphere interactions is important for improvements in Earth System Modelling1–3 for climate assessment, weather prediction, and subseasonal-to-seasonal forecasts4.
    [Show full text]
  • NEWSLETTER August 2015
    NEWSLETTER August 2015 New Horizons at Pluto Credit NASA This space is reserved for promoting member's businesses. You can place an advert here for a donation to the group. Issue 11 August 2015 Page 1 Contents Cover 1 Contents 2 About the cover picture New Horizons 3-7 Thanet Astronomy Group Contact Details 8 Member's Meeting Dates and Times 9 Advertisement (West Bay Cafe) 10 What we did last month 11 Junior Members Page 12 Advertisement (Renaissance Glass) 13 Book Review 14 What's in the sky this month 15-17 Member's Page 18-19 Did You Know ? 20 Junior Astronomers Club (JAC & Gill) 21 Executive Committee Messages 22 Adult Word Search 23 Junior Word Search 24 Member's For Sale and Wanted 25 Issue 11 August 2015 Page 2 About the Cover Picture NEW HORIZONS New Horizons at Pluto Credit NASA New Horizons The Mission The New Horizons mission is the first mission to Pluto and the Kuiper Belt This mission has sent a space craft to the outer reaches of our Solar System to look at the dwarf planet Pluto, and beyond into the Kuiper Belt. The Kuiper Belt is the region of our Solar System beyond the orbit of the planet Neptune, about 30 Astronomical Units (AU) from the Sun and out to about 50 AU. This region contains the minor planet Pluto and its moons Charon, Hydra, Nix and Styx along with many comets, asteroids and many other small objects mostly made of ice. The Kuiper Belt - Credit: NASA Issue 11 August 2015 Page 3 About the Cover Picture NEW HORIZONS An AU or Astronomical Unit is equal to the distance between the Sun and the Earth about 93,000,000 miles or 150,000,000 km.
    [Show full text]
  • (Most Recent Update, March 16, 2020, 6 Pm) Stewa
    Steward/Astronomy Specific Guidelines for Responding/Adapting to C19 Pandemic (Most Recent Update, March 16, 2020, 6 p.m.) Steward Observatory and the Department of Astronomy are adopting policies that will minimize the risk of transmission of COVID-19 while allowing us to continue to support our educational, outreach, and research missions. Facts and information are being shared with us at a high rate -- and these policies will have to evolve with time. We appreciate your patience and attention to the information below. We have tried to identify by subsection the individuals to whom you should address questions, but please always start with your supervisor/advisor. Our policies are intended to be consistent with those of the University of Arizona and the College of Science. We refer you to their web pages at these links: https://www.arizona.edu/coronavirus-covid-19-information and https://science.arizona.edu/coronavirus This is an evolving situation. We will update this document based on Federal, State and University policies as they become available. Please check the Provost and College pages at least daily, as they are also being updated frequently. Effective Immediately -- These policies are effective March 16, 2020 and will be updated as needed to stay consistent with U Arizona and College of Science Policies Courses and Classes (undergraduate and graduate) - All courses will be 100% online for the remaining of the semester. If you are an instructor and are having trouble moving your course to on-line, please contact Associate Department Head Xiaohui Fan, who will help you find assistance. - No in-person component to any classes.
    [Show full text]
  • LSST Jan2005 3Page.Indd
    EMBARGOED FOR RELEASE: 12:30 p.m. PST, January 11, 2005 RELEASE: LSSTC-02 Steward Observatory Mirror Lab Awarded Contract for Large Synoptic Survey Telescope Mirror The LSST Corporation has awarded a $2.3 million contract to the University of Arizona Steward Observatory Mirror Lab to purchase the glass and begin engineering work for the 8.4-meter diameter main mirror for the Large Synoptic Survey Telescope (LSST). This award was announced today in San Diego at the 205th meeting of the American Astronomical Society. Acquiring the LSST primary mirror was made possible by a generous, private donation from Arizona businessman Richard Caris. The UA award covers the first of four phases in an estimated $13.8 million effort to design, cast, polish and integrate the mirror into the LSST mirror support cell. Coupled with substantial support provided by Research Corporation under the leadership of John Schaefer, these private funds boost the LSST off the drawing board and into production. The LSST is a proposed world-class, ground-based telescope that can survey the entire visible sky every three nights. It will generate an awesome 30 terabytes of data per night from a three billion-pixel digital camera, producing a vast database of information on the universe. LSST will take exposures every 10 seconds, opening a movie-like window on objects that change or move on rapid timescales -- exploding supernovae, Earth-approaching asteroids, and The contract for casting of the 8.4-meter primary mirror of the distant Kuiper belt objects. Via the light-bending gravity of dark matter, LSST Large Synoptic Survey Telescope by the University of Arizona will chart the history of the expansion of the universe, yielding a unique probe (UA) Mirror Lab is signed by (L-R) Dr.
    [Show full text]
  • The Southern Arizona Region
    This report was prepared for the Southern Arizona’s Regional Steering Committee as an input to the OECD Review of Higher Education in Regional and City Development. It was prepared in response to guidelines provided by the OECD to all participating regions. The guidelines encouraged constructive and critical evaluation of the policies, practices and strategies in HEIs’ regional engagement. The opinions expressed are not necessarily those of the Regional Steering Committee, the OECD or its Member countries. 2 TABLE OF CONTENTS ACKNOWLEDGEMENTS............................................................................................................. iii ACRONYMS..................................................................................................................................... v LIST OF FIGURES, TABLES AND APPENDICES....................................................... ………. vii EXECUTIVE SUMMARY.............................................................................................................. ix CHAPTER 1. OVERVIEW OF THE SOUTHERN ARIZONA REGION................................. 1 1.1 Introduction…………………………………………………………………............................... 1 1.2 The geographical situation............................................................................................................ 1 1.3 History of Southern Arizona…………………………….………………………….................... 3 1.4 The demographic situation………………………………………………………………............ 3 1.5 The regional economy………………………………………………………………………...... 14 1.6 Governance..................................................................................................................................
    [Show full text]
  • Physical Space Inventory Fall, 2015 Annual Report
    Planning, Design& Construction Space Management Physical Space Inventory Cover page photo credit: Bill Timmerman-Timmerman Photography http://www.billtimmerman.com/ Contact Information for the University of Arizona: Web Site: http://www.arizona.edu/ Planning, Design & Construction Space Management 220 W. 6th St. USA Building, 3rd Floor Tucson, Arizona 85701-1014 http://www.pdc.arizona.edu/ Produced and Published by: Jorge L. Zepeda, Business Analyst, Space Management Physical Space Inventory Fall, 2015 OVERVIEW The University of Arizona experienced a net growth of 1,109,473 gross square feet (GSF)/ 639,075 net assignable square feet (NASF) during the course of fiscal year 2015. The fiscal year was an active year for the University’s real estate portfolio with the construction of new facilities, large scale renovations, the acquisition of off-campus properties; in addition to, the completion of the University of Arizona Health Network (UAHN) and Banner Health transaction. New facilities include the award-winning Environment and Natural Resource Phase 2 (207,632 GSF/ 91,519 NASF) and the Arizona Cancer Center Phoenix (227,579 GSF/ 133,878 NASF). The Environment and Natural Resources Phase 2 facility provides faculty offices, research/instructional dry laboratories/work spaces to further advance interdisciplinary research in earth, environmental, natural resources, math and related sciences. As well as, supplying a large classroom auditorium to meet the demands of an increasing student population. The Arizona Cancer Center Phoenix houses new medical and research facilities equipped with modern technology to provide the highest quality cancer research and comprehensive care to patients across the state and nation. The University also expanded throughout the surrounding communities to continue providing educational services/opportunities across the state with the acquisitions of The Al- Marah Horse Ranch (84,999 GSF/ 77,368 NASF), Southwest Center (11,070 GSF/ 7,835 NASF) and the Ames Learning Center (8,866 GSF/ 7,555 NASF) in Cochise and Pima Counties respectively.
    [Show full text]
  • RECOMBINATION LINE VS. FORBIDDEN LINE ABUNDANCES in PLANETARY NEBULAE Steward Observatory, University of Arizona, 933 North Cher
    RECOMBINATION LINE VS. FORBIDDEN LINE ABUNDANCES IN PLANETARY NEBULAE MARK ROBERTSON-TESSI Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721; [email protected] AND DONALD R. GARNETT Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721; [email protected] ABSTRACT Recombination lines (RLs) of C II, N II, and O II in planetary nebulae (PNs) have been found to give abundances that are much larger in some cases than abundances from collisionally-excited forbidden lines (CELs). The origins of this abundance discrepancy are highly debated. We present new spectroscopic observations of O II and C II recombination lines for six planetary nebulae. With these data we compare the abundances derived from the optical recombination lines with those determined from collisionally-excited lines. Combining our new data with published results on RLs in other PNs, we examine the discrepancy in abundances derived from RLs and CELs. We find that there is a wide range in the measured abundance discrepancy ∆(O+2) = log O+2(RL) - log O+2(CEL), ranging from approximately 0.1 dex (within the 1σ measurement errors) up to 1.4 dex. This tends to rule out errors in the recombination coefficients as a source of the discrepancy. Most RLs yield similar abundances, with the notable exception of O II multiplet V15, known to arise primarily from dielectronic recombination, which gives abundances averaging 0.6 dex higher than other O II RLs. We compare ∆(O+2) against a variety of physical properties of the PNs to look for clues 2 as to the mechanism responsible for the abundance discrepancy.
    [Show full text]
  • Reflections on My Time in the Wolfe Den
    Reflections on my time in the Wolfe den H. Philip Stahl ABSTRACT The three and a half years I spent as a member of the Infrared Group were transitional. Bill Wolfe was the nexus. Bill played a role in getting me to Arizona and keeping me there. He helped me advance professionally and taught me how to think like a systems engineer. He played a central role in my effort to earn a PhD. And, he helped start me in SPIE. This paper contains my personal and honest reflections on the impact which Bill Wolfe has had on me. Keywords: History 1. INTRODUCTION When Mary Turner asked me to give a Wolfe Tribute talk, my first reaction was no; and, so was my second reaction. My reasons were simple. I didn’t think I had anything to say. I have not followed in his footsteps. I long ago left the field of infrared and radiometry for optical testing and interferometry. I have not contributed any new knowledge or theories based on Bill’s work. I have not worked my entire career with him nor do I know him well enough to shed light on his character or share any humorous stories. I have had a modest career, I am not a chief scientist or a tenured professor or a business owner or a corporate officer. And, I’m not even sure if I am officially a Bill Wolfe student. While Bill was my employer and adviser for my first three and a half years at the Optical Sciences Center, Martin Tomasko of the Lunar and Planetary Laboratory was the Principal Investigator for my project and I got my Master’s degree by paying $10 after passing my PhD preliminary examination so that I could teach introductory physics a Pima Community College – because as a new father I needed to supplement my assistantship to pay the hospital bill which was not covered by the student health plan.
    [Show full text]
  • 00E the Construction of the Universe Symphony
    The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope
    [Show full text]
  • Louis J. Scuderi: Curriculum Vitae
    Louis J. Scuderi University of Hawaii at Manoa Phone: (505) 270-4756 Institute for Astronomy Email: [email protected] 2680 Woodlawn Drive Homepage: http://www.ifa.hawaii.edu/∼lscuderi Honolulu, HI, 96822 Education B.S. Astronomy and Physics. University of Arizona, Steward Observatory. August 2011. M.S. Astronomy. University of Hawaii at Manoa, Institute for Astronomy. December 2013. Professional Appointments 2011-present Graduate Research Assistant, IfA, U. Hawaii at Manoa 2010-2011 NASA Undergraduate Space Grant Intern, LPL, U. Arizona 2008-2011 Undergraduate Student Researcher, Steward Observatory, U. Arizona Research Interests Planetary occurrence rates, planetary atmospheres, and planet formation history including both Terrestrial and Jovian type planets. Publications Journal Articles L.J. Scuderi, J.A. Dittmann, J.R. Males, E.M. Green, L.M. Close, 2010, ApJ 714 462. On the Apparent Orbital Inclination Change of the Extrasolar Transiting Planet TrES-2b. arXiv URL: http://arxiv.org/abs/0907.1685 M.A. Kenworthy, L. J. Scuderi, 2012 ApJ 752 313. Infrared Variability of the Gliese 569B System. arXiv URL: http://arxiv.org/abs/1204.3454 E. Sinukoff, B. Fulton, L. Scuderi, E. Gaidos, 2013 Space Science Reviews Volume 180, Issue 1-4, pp. 71-99. Below One Earth: The Detection, Formation, and Properties of Subterrestrial World. arxiv URL: http://arxiv.org/abs/1308.6308 J.A. Ditmann, L.M. Close, E.M. Green, L.J. Scuderi, J.R. Males, 2009 ApJ 669 L48-L51. Follow-up Observations of HAT-P-11b. arXiv URL: http://arxiv.org/abs/0905.1114 J.A. Dittmann, L.M. Close, L.J. Scuderi, M.D.
    [Show full text]