A Study of Conserved Peptide-Binding Domains

Total Page:16

File Type:pdf, Size:1020Kb

A Study of Conserved Peptide-Binding Domains Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Spring 2021 Signaling and Trafficking in Choanoflagellates and Humans: A Study of Conserved Peptide-Binding Domains Haley Wofford Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Chemistry Commons Recommended Citation Wofford, Haley, "Signaling and Trafficking in Choanoflagellates and Humans: A Study of Conserved Peptide-Binding Domains" (2021). WWU Graduate School Collection. 1032. https://cedar.wwu.edu/wwuet/1032 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Signaling and Trafficking in Choanoflagellates and Humans: A Study of Conserved Peptide-Binding Domains By Haley Wofford Accepted in Partial Completion of the Requirements for the Degree Master of Science ADVISORY COMMITTEE Dr. Jeanine Amacher, Chair Dr. P. Clint Spiegel Dr. Sergey Smirnov GRADUATE SCHOOL Dr. David L. Patrick, Dean Master’s Thesis In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permissions from the owner of any third party copyrighted material included in these files. I acknowledge that I retain ownership rights to the copyright of this work, including but not limited to the right to use all or part of this work in future works, such as articles or books. Library users are granted permission for individual, research and non-commercial reproduction of this work for educational purposes only. Any further digital posting of this document requires specific permission from the author. Any copying or publication of this thesis for commercial purposes, or for financial gain, is not allowed without my written permission. Haley Wofford May 28, 2021 Signaling and Trafficking in Choanoflagellates and Humans: A Study of Conserved Peptide-Binding Domains A Thesis Presented to The Faculty of Western Washington University In Partial Fulfillment Of the Requirements for the Degree Master of Science by Haley Wofford May 2021 Abstract Many crucial cellular processes are regulated by signaling and trafficking pathways, which are largely dependent on protein interactions in the cell. These networks are thought to play a crucial role in the evolution of multicellular organisms from their unicellular ancestors. Choanoflagellates are unicellular organisms that can adopt a multicellular state, called a rosette. Though they evolved independently from and prior to the diversification of metazoans, they are the closest extant nonmetazoan ancestor to animals, making them a compelling model for the study of early multicellularity. Here, we look at two structurally conserved peptide-binding domains that both play important roles in cellular signaling and trafficking. PDZ and SH2 domains are peptide-binding domains that have highly conserved structures and are found in humans and choanoflagellates. We analyzed the binding cleft of a non-homologous PDZ domain and compared the binding affinities of that PDZ domain to two human PDZ domains. We also developed a program that looks specifically at the PDZ binding cleft and finds the most similar human PDZ domain to an uncharacterized choanoflagellate PDZ domain, then finds potential endogenous target sequences of the uncharacterized PDZ domain. To assess conservation of PDZ domain structure we solved high-resolution crystal structures of a representative M. brevicollis PDZ domain that is homologous to human Dlg1 PDZ2. We also studied the binding cleft of a conserved SH2 domain from the TEC family of kinases. Overall, we find that interactions between the domain and non-motif residues dramatically influence peptide binding and, using our program, we can begin to predict successful interactions. The evolutionary conservation of PDZ and SH2 domain makes them ideal candidates to study to better understand how the evolution of signaling and trafficking domains and pathways coincided with the emergence of multicellularity. iv Acknowledgements Over the course of the research for and writing of this thesis I have received a great deal of support, assistance, and encouragement. First, I would like to thank my advisor, Dr. Jeanine Amacher, whose expertise and insight was crucial in formulating the research questions and study designs herein. Your feedback allowed me to become not only a better scientist, but a better critical thinker. I would like to acknowledge the other members of my thesis committee, Dr. Clint Spiegel and Dr. Sergey Smirnov, whose guidance was invaluable in the completion of this thesis. Thank you both. Thank you to all members of the Amacher Lab who contributed to this project. Special thanks to Kevin Alexander Estrada Alamo who helped purify proteins, as well as Brandon Vogel and Frederick Longshore-Neate who contributed to the computational aspects of this project. Josh Myers-Dean and Filip Jagodzinski wrote the program described herein and were instrumental in bringing that idea to life. It has been an absolute pleasure working with you both. Thank you for a wonderful collaboration. I would like to thank my biochemistry cohort: AP Wang, Erin Rosenkranz, Micah Nakao, and Shaun Peters; as well was Dr. Kenneth Childers and Chris Swanson. You all provided stimulating discussions, wise insight, and the best listening ears anyone could ask for. Thank you all for your friendship. Thank you to the Chemistry Department at Western Washington University for all your help: Dr. James Vyvyan, Sam Danforth, Amanda Weiss, Gary Carlton, Steve Sible, Miranda Abrashi, and Alexi Guddal. I would also like to thank the NSF and Western Washington University who funded my research and teaching assistantships for my graduate studies. In addition, I would like to thank my parents, who taught me to work hard and stay curious. Finally, my sister, who has always been, and will always be, my biggest inspiration. v Table of Contents Abstract ......................................................................................................................................... iv Acknowledgements ....................................................................................................................... v List of Tables and Figures .......................................................................................................... vii Introduction ................................................................................................................................... 1 Chapter 1: Biochemical characterization and computational analysis of non-homologous PDZ domains in Monosiga brevicollis ......................................................................................... 4 1.1 Introduction: PDZ Domains ................................................................................................ 5 1.2 Results................................................................................................................................... 8 1.2.1 Structural and biochemical characterization of A9UPE9 PDZ. ................................... 8 1.2.2 Binding experiments of A9UPE9 PDZ and DLG1 PDZ1. ............................................. 9 1.2.3 Structural and biochemical characterization of A9V7X5 PDZ. .................................. 17 1.3 Concluding Remarks.......................................................................................................... 20 1.4 Materials and Methods ...................................................................................................... 22 1.4.1 Protein Expression and Purification. .......................................................................... 22 1.4.2 Crystallization and Data Collection. ........................................................................... 23 1.4.3 Binding assays by fluorescence polarization. .............................................................. 24 Chapter 2: Structural characterization of DLG homolog Monosiga brevicollis A9UT73 PDZ2............................................................................................................................................. 25 2.1 Results: Structural characterization of PDZ domains in mbDLG ................................... 26 2.2 Concluding Remarks.......................................................................................................... 30 2.3 Materials and Methods ...................................................................................................... 33 2.3.1 Protein expression and purification ............................................................................. 33 2.3.2 Crystallization, data collection, and structure determination ..................................... 34 Chapter 3: A study of homologous TEC family kinase SH2 domains ................................... 35 3.1 Introduction: TEC family kinases and
Recommended publications
  • Chr21 Protein-Protein Interactions: Enrichment in Products Involved in Intellectual Disabilities, Autism and Late Onset Alzheimer Disease
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.11.872606; this version posted December 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Chr21 protein-protein interactions: enrichment in products involved in intellectual disabilities, autism and Late Onset Alzheimer Disease Julia Viard1,2*, Yann Loe-Mie1*, Rachel Daudin1, Malik Khelfaoui1, Christine Plancon2, Anne Boland2, Francisco Tejedor3, Richard L. Huganir4, Eunjoon Kim5, Makoto Kinoshita6, Guofa Liu7, Volker Haucke8, Thomas Moncion9, Eugene Yu10, Valérie Hindie9, Henri Bléhaut11, Clotilde Mircher12, Yann Herault13,14,15,16,17, Jean-François Deleuze2, Jean- Christophe Rain9, Michel Simonneau1, 18, 19, 20** and Aude-Marie Lepagnol- Bestel1** 1 Centre Psychiatrie & Neurosciences, INSERM U894, 75014 Paris, France 2 Laboratoire de génomique fonctionnelle, CNG, CEA, Evry 3 Instituto de Neurociencias CSIC-UMH, Universidad Miguel Hernandez-Campus de San Juan 03550 San Juan (Alicante), Spain 4 Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA 5 Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Republic of Korea 6 Department of Molecular Biology, Division of Biological Science, Nagoya University Graduate School of Science, Furo, Chikusa, Nagoya, Japan 7 Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA 8 Leibniz Forschungsinstitut für Molekulare Pharmakologie
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Downloads/ (Accessed on 17 January 2020)
    cells Review Novel Approaches for Identifying the Molecular Background of Schizophrenia Arkadiy K. Golov 1,2,*, Nikolay V. Kondratyev 1 , George P. Kostyuk 3 and Vera E. Golimbet 1 1 Mental Health Research Center, 34 Kashirskoye shosse, 115522 Moscow, Russian; [email protected] (N.V.K.); [email protected] (V.E.G.) 2 Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russian 3 Alekseev Psychiatric Clinical Hospital No. 1, 2 Zagorodnoye shosse, 115191 Moscow, Russian; [email protected] * Correspondence: [email protected] Received: 5 November 2019; Accepted: 16 January 2020; Published: 18 January 2020 Abstract: Recent advances in psychiatric genetics have led to the discovery of dozens of genomic loci associated with schizophrenia. However, a gap exists between the detection of genetic associations and understanding the underlying molecular mechanisms. This review describes the basic approaches used in the so-called post-GWAS studies to generate biological interpretation of the existing population genetic data, including both molecular (creation and analysis of knockout animals, exploration of the transcriptional effects of common variants in human brain cells) and computational (fine-mapping of causal variability, gene set enrichment analysis, partitioned heritability analysis) methods. The results of the crucial studies, in which these approaches were used to uncover the molecular and neurobiological basis of the disease, are also reported. Keywords: schizophrenia; GWAS; causal genetic variants; enhancers; brain epigenomics; genome/epigenome editing 1. Introduction Schizophrenia is a severe mental illness that affects between 0.5% and 0.7% of the human population [1]. Both environmental and genetic factors are thought to be involved in its pathogenesis, with genetic factors playing a key role in disease risk, as the heritability of schizophrenia is estimated to be 70–85% [2,3].
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Viewed and Published Immediately Upon Acceptance Cited in Pubmed and Archived on Pubmed Central Yours — You Keep the Copyright
    BMC Genomics BioMed Central Research article Open Access Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice Claudia Prinzen1, Dietrich Trümbach2, Wolfgang Wurst2, Kristina Endres1, Rolf Postina1 and Falk Fahrenholz*1 Address: 1Johannes Gutenberg-University, Institute of Biochemistry, Mainz, Johann-Joachim-Becherweg 30, 55128 Mainz, Germany and 2Helmholtz Zentrum München – German Research Center for Environmental Health, Institute for Developmental Genetics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany Email: Claudia Prinzen - [email protected]; Dietrich Trümbach - [email protected]; Wolfgang Wurst - [email protected]; Kristina Endres - [email protected]; Rolf Postina - [email protected]; Falk Fahrenholz* - [email protected] * Corresponding author Published: 5 February 2009 Received: 19 June 2008 Accepted: 5 February 2009 BMC Genomics 2009, 10:66 doi:10.1186/1471-2164-10-66 This article is available from: http://www.biomedcentral.com/1471-2164/10/66 © 2009 Prinzen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: In a transgenic mouse model of Alzheimer disease (AD), cleavage of the amyloid precursor protein (APP) by the α-secretase ADAM10 prevented amyloid plaque formation, and alleviated cognitive deficits. Furthermore, ADAM10 overexpression increased the cortical synaptogenesis. These results suggest that upregulation of ADAM10 in the brain has beneficial effects on AD pathology. Results: To assess the influence of ADAM10 on the gene expression profile in the brain, we performed a microarray analysis using RNA isolated from brains of five months old mice overexpressing either the α-secretase ADAM10, or a dominant-negative mutant (dn) of this enzyme.
    [Show full text]
  • Loss of RET Promotes Mesenchymal Identity in Neuroblastoma Cells
    cancers Article Loss of RET Promotes Mesenchymal Identity in Neuroblastoma Cells Joachim T. Siaw 1,†, Jonatan L. Gabre 1,2,† , Ezgi Uçkun 1 , Marc Vigny 3, Wancun Zhang 4, Jimmy Van den Eynden 2 , Bengt Hallberg 1 , Ruth H. Palmer 1 and Jikui Guan 1,4,* 1 Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; [email protected] (J.T.S.); [email protected] (J.L.G.); [email protected] (E.U.); [email protected] (B.H.); [email protected] (R.H.P.) 2 Anatomy and Embryology Unit, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; [email protected] 3 Université Pierre et Marie Curie, UPMC, INSERM UMRS-839, 75005 Paris, France; [email protected] 4 Department of Pediatric Oncology Surgery, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Simple Summary: The anaplastic lymphoma kinase (ALK) and rearranged during transfection (RET) receptor tyrosine kinases (RTKs) are expressed in both the developing neural crest and the pediatric cancer neuroblastoma. Moreover, ALK is mutated in approximately 10% of neuroblastomas. Here, we investigated ALK and RET in neuroblastoma, with the aim of better understanding their respective contributions. Using neuroblastoma cell lines, we show that ALK modulates RET signaling at the level of RET phosphorylation, as well as at the level of transcription. Using CRISPR/Cas9, we generated Citation: Siaw, J.T.; Gabre, J.L.; Uçkun, E.; Vigny, M.; Zhang, W.; Van RET knockout neuroblastoma cell lines and performed a multi-omics approach, combining RNA-Seq den Eynden, J.; Hallberg, B.; Palmer, and proteomics to characterize the effect of deleting RET in a neuroblastoma context.
    [Show full text]
  • Functional Proximity Mapping of RNA Binding Proteins Uncovers a Mitochondrial Mrna Anchor That Promotes Stress Recovery
    Functional proximity mapping of RNA binding proteins uncovers a mitochondrial mRNA anchor that promotes stress recovery Wei Qin Stanford University Samuel Myers Broad Institute Dominique Carey The Broad Institute of MIT and Harvard Steven Carr Broad Institute Alice Ting ( [email protected] ) Stanford University https://orcid.org/0000-0002-8277-5226 Article Keywords: Unbiased Proteome Discovery, Nucleolus, Outer Mitochondrial Membrane, Local Translation, Functional Protein Mapping Posted Date: November 12th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-103196/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/49 Abstract Proximity labeling (PL) with genetically-targeted promiscuous enzymes has emerged as a powerful tool for unbiased proteome discovery. By combining the spatiotemporal specicity of PL with methods for functional protein enrichment, it should be possible to map specic protein subclasses within distinct compartments of living cells. Here we demonstrate this capability for RNA binding proteins (RBPs), by combining peroxidase-based PL with organic-aqueous phase separation of crosslinked protein-RNA complexes (“APEX-PS”). We validated APEX-PS by mapping nuclear RBPs, then applied it to uncover the RBPomes of two unpuriable subcompartments - the nucleolus and the outer mitochondrial membrane (OMM). At the OMM, we discovered the RBP SYNJ2BP, which retains specic nuclear-encoded mitochondrial mRNAs during translation stress, to promote their local translation and import of protein products into the mitochondrion during stress recovery. APEX-PS is a versatile tool for compartment- specic RBP discovery and expands the scope of PL to functional protein mapping. Introduction RNA-protein interactions are pervasive in both transient and stable macromolecular complexes underlying transcription, translation and stress response 1, 2.
    [Show full text]
  • Role of PDZ-Binding Motif from West Nile Virus NS5 Protein on Viral
    www.nature.com/scientificreports OPEN Role of PDZ‑binding motif from West Nile virus NS5 protein on viral replication Emilie Giraud1*, Chloé Otero del Val2, Célia Caillet‑Saguy2, Nada Zehrouni2, Cécile Khou5, Joël Caillet4, Yves Jacob3, Nathalie Pardigon5 & Nicolas Wolf2 West Nile virus (WNV) is a Flavivirus, which can cause febrile illness in humans that may progress to encephalitis. Like any other obligate intracellular pathogens, Flaviviruses hijack cellular protein functions as a strategy for sustaining their life cycle. Many cellular proteins display globular domain known as PDZ domain that interacts with PDZ‑Binding Motifs (PBM) identifed in many viral proteins. Thus, cellular PDZ‑containing proteins are common targets during viral infection. The non‑structural protein 5 (NS5) from WNV provides both RNA cap methyltransferase and RNA polymerase activities and is involved in viral replication but its interactions with host proteins remain poorly known. In this study, we demonstrate that the C‑terminal PBM of WNV NS5 recognizes several human PDZ‑ containing proteins using both in vitro and in cellulo high‑throughput methods. Furthermore, we constructed and assayed in cell culture WNV replicons where the PBM within NS5 was mutated. Our results demonstrate that the PBM of WNV NS5 is important in WNV replication. Moreover, we show that knockdown of the PDZ‑containing proteins TJP1, PARD3, ARHGAP21 or SHANK2 results in the decrease of WNV replication in cells. Altogether, our data reveal that interactions between the PBM of NS5 and PDZ‑containing proteins afect West Nile virus replication. Arboviruses include numerous human and animal pathogens that are important global health threats responsible for arboviroses.
    [Show full text]
  • Host Cell Factors Necessary for Influenza a Infection: Meta-Analysis of Genome Wide Studies
    Host Cell Factors Necessary for Influenza A Infection: Meta-Analysis of Genome Wide Studies Juliana S. Capitanio and Richard W. Wozniak Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta Abstract: The Influenza A virus belongs to the Orthomyxoviridae family. Influenza virus infection occurs yearly in all countries of the world. It usually kills between 250,000 and 500,000 people and causes severe illness in millions more. Over the last century alone we have seen 3 global influenza pandemics. The great human and financial cost of this disease has made it the second most studied virus today, behind HIV. Recently, several genome-wide RNA interference studies have focused on identifying host molecules that participate in Influen- za infection. We used nine of these studies for this meta-analysis. Even though the overlap among genes identified in multiple screens was small, network analysis indicates that similar protein complexes and biological functions of the host were present. As a result, several host gene complexes important for the Influenza virus life cycle were identified. The biological function and the relevance of each identified protein complex in the Influenza virus life cycle is further detailed in this paper. Background and PA bound to the viral genome via nucleoprotein (NP). The viral core is enveloped by a lipid membrane derived from Influenza virus the host cell. The viral protein M1 underlies the membrane and anchors NEP/NS2. Hemagglutinin (HA), neuraminidase Viruses are the simplest life form on earth. They parasite host (NA), and M2 proteins are inserted into the envelope, facing organisms and subvert the host cellular machinery for differ- the viral exterior.
    [Show full text]
  • Low DLG2 Gene Expression, a Link Between 11Q- Deleted and MYCN-Amplifed Neuroblastoma, Causes Forced Cell Cycle Progression, and Predicts Poor Patient Survival
    Low DLG2 gene expression, a link between 11q- deleted and MYCN-amplied neuroblastoma, causes forced cell cycle progression, and predicts poor patient survival. Simon Keane University of Skövde Sophie Ameen University of Skövde Angelica Lindlöf University of Skövde Katarina Ejeskär ( [email protected] ) University of Skövde https://orcid.org/0000-0001-8962-0860 Research Keywords: neuroblastoma, 11q, MAGUK, DLG2, MYCN Posted Date: January 14th, 2020 DOI: https://doi.org/10.21203/rs.2.20811/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/22 Abstract Neuroblastoma (NB) is a childhood neural crest tumor. There are two groups of aggressive NBs, one with MYCN amplication, and another with 11q chromosomal deletion; these chromosomal aberrations are generally mutually exclusive. The DLG2 gene resides in the 11q-deleted region, thus makes it an interesting NB candidate tumor suppressor gene. Methods We evaluated the association of DLG2 gene expression in NB with patient outcomes, stage and MYCN status, using online microarray data combining independent NB patient data sets. Functional studies were also conducted using NB cell models and the fruit y. Results Using the array data we concluded that higher DLG2 expression was positively correlated to patient survival. We could also see that expression of DLG2 was inversely correlated with MYCN status and tumor stage. Cell proliferation was lowered in both 11q-normal and 11q-deleted NB cells after DLG2 over expression, and increased in 11q-normal NB cells after DLG2 silencing. Higher level of DLG2 increased the percentage of cells in the G2/M phase and decreased the percentage of cells in the G1 phase.
    [Show full text]
  • 1 1 2 3 Cell Type-Specific Transcriptomics of Hypothalamic
    1 2 3 4 Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to 5 weight-loss 6 7 Fredrick E. Henry1,†, Ken Sugino1,†, Adam Tozer2, Tiago Branco2, Scott M. Sternson1,* 8 9 1Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 10 20147, USA. 11 2Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, 12 Cambridge CB2 0QH, UK 13 14 †Co-first author 15 *Correspondence to: [email protected] 16 Phone: 571-209-4103 17 18 Authors have no competing interests 19 1 20 Abstract 21 Molecular and cellular processes in neurons are critical for sensing and responding to energy 22 deficit states, such as during weight-loss. AGRP neurons are a key hypothalamic population 23 that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific 24 transcriptomics can be used to identify pathways that counteract weight-loss, and here we 25 report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived 26 young adult mice. For comparison, we also analyzed POMC neurons, an intermingled 27 population that suppresses appetite and body weight. We find that AGRP neurons are 28 considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell 29 type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion 30 channels, neuropeptides, and receptors. Combined with methods to validate and manipulate 31 these pathways, this resource greatly expands molecular insight into neuronal regulation of 32 body weight, and may be useful for devising therapeutic strategies for obesity and eating 33 disorders.
    [Show full text]
  • Dlg1 Maintains Dendritic Cell Function by Securing Voltage-Gated K+ Channel Integrity
    Dlg1 Maintains Dendritic Cell Function by Securing Voltage-Gated K + Channel Integrity This information is current as Xuejiao Dong, Lisi Wei, Xueheng Guo, Zhiyong Yang, of September 24, 2021. Chuan Wu, Peiyu Li, Lu Lu, Hai Qi, Yan Shi, Xiaoyu Hu, Li Wu, Liangyi Chen and Wanli Liu J Immunol published online 26 April 2019 http://www.jimmunol.org/content/early/2019/04/25/jimmun ol.1900089 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/04/25/jimmunol.190008 Material 9.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published April 26, 2019, doi:10.4049/jimmunol.1900089 The Journal of Immunology Dlg1 Maintains Dendritic Cell Function by Securing Voltage-Gated K+ Channel Integrity Xuejiao Dong,*,1 Lisi Wei,†,1 Xueheng Guo,‡,x,1 Zhiyong Yang,{ Chuan Wu,‖ Peiyu Li,#,** Lu Lu,# Hai Qi,‡ Yan Shi,‡ Xiaoyu Hu,‡ Li Wu,‡ Liangyi Chen,† and Wanli Liu* Dendritic cells (DCs) play key roles in Ab responses by presenting Ags to lymphocytes and by producing proinflammatory cytokines.
    [Show full text]