M 3 AAWG Describes Costs Associated with Using Crypto
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
MASTERCLASS GNUPG MASTERCLASS You Wouldn’T Want Other People Opening Your Letters and BEN EVERARD Your Data Is No Different
MASTERCLASS GNUPG MASTERCLASS You wouldn’t want other people opening your letters and BEN EVERARD your data is no different. Encrypt it today! SECURE EMAIL WITH GNUPG AND ENIGMAIL Send encrypted emails from your favourite email client. our typical email is about as secure as a The first thing that you need to do is create a key to JOHN LANE postcard, which is good news if you’re a represent your identity in the OpenPGP world. You’d Ygovernment agency. But you wouldn’t use a typically create one key per identity that you have. postcard for most things sent in the post; you’d use a Most people would have one identity, being sealed envelope. Email is no different; you just need themselves as a person. However, some may find an envelope – and it’s called “Encryption”. having separate personal and professional identities Since the early 1990s, the main way to encrypt useful. It’s a personal choice, but starting with a single email has been PGP, which stands for “Pretty Good key will help while you’re learning. Privacy”. It’s a protocol for the secure encryption of Launch Seahorse and click on the large plus-sign email that has since evolved into an open standard icon that’s just below the menu. Select ‘PGP Key’ and called OpenPGP. work your way through the screens that follow to supply your name and email address and then My lovely horse generate the key. The GNU Privacy Guard (GnuPG), is a free, GPL-licensed You can, optionally, use the Advanced Key Options implementation of the OpenPGP standard (there are to add a comment that can help others identify your other implementations, both free and commercial – key and to select the cipher, its strength and set when the PGP name now refers to a commercial product the key should expire. -
Securing Email Through Online Social Networks
SECURING EMAIL THROUGH ONLINE SOCIAL NETWORKS Atieh Saberi Pirouz A thesis in The Department of Concordia Institute for Information Systems Engineering (CIISE) Presented in Partial Fulfillment of the Requirements For the Degree of Master of Applied Science (Information Systems Security) at Concordia University Montreal,´ Quebec,´ Canada August 2013 © Atieh Saberi Pirouz, 2013 Concordia University School of Graduate Studies This is to certify that the thesis prepared By: Atieh Saberi Pirouz Entitled: Securing Email Through Online Social Networks and submitted in partial fulfillment of the requirements for the degree of Master of Applied Science (Information Systems Security) complies with the regulations of this University and meets the accepted standards with respect to originality and quality. Signed by the final examining commitee: Dr. Benjamin C. M. Fung Chair Dr. Lingyu Wang Examiner Dr. Zhenhua Zhu Examiner Dr. Mohammad Mannan Supervisor Approved Chair of Department or Graduate Program Director 20 Dr. Christopher Trueman, Dean Faculty of Engineering and Computer Science Abstract Securing Email Through Online Social Networks Atieh Saberi Pirouz Despite being one of the most basic and popular Internet applications, email still largely lacks user-to-user cryptographic protections. From a research perspective, designing privacy preserving techniques for email services is complicated by the re- quirement of balancing security and ease-of-use needs of everyday users. For example, users cannot be expected to manage long-term keys (e.g., PGP key-pair), or under- stand crypto primitives. To enable intuitive email protections for a large number of users, we design Friend- lyMail by leveraging existing pre-authenticated relationships between a sender and receiver on an Online Social Networking (OSN) site, so that users can send secure emails without requiring direct key exchange with the receiver in advance. -
Opportunistic Keying As a Countermeasure to Pervasive Monitoring
Opportunistic Keying as a Countermeasure to Pervasive Monitoring Stephen Kent BBN Technologies Abstract This document was prepared as part of the IETF response to concerns about “pervasive monitoring” (PM) [Farrell-pm]. It begins by exploring terminology that has been used in IETF standards (and in academic publications) to describe encryption and key management techniques, with a focus on authentication and anonymity. Based on this analysis, it propose a new term, “opportunistic keying” to describe a goal for IETF security protocols, in response to PM. It reviews key management mechanisms used in IETF security protocol standards, also with respect to these properties. The document explores possible impediments to and potential adverse effects associated with deployment and use of techniques that would increase the use of encryption, even when keys are distributed in an unauthenticated manner. 1. What’s in a Name (for Encryption)? Recent discussions in the IETF about pervasive monitoring (PM) have suggested a desire to increase use of encryption, even when the encrypted communication is unauthenticated. The term “opportunistic encryption” has been suggested as a term to describe key management techniques in which authenticated encryption is the preferred outcome, unauthenticated encryption is an acceptable fallback, and plaintext (unencrypted) communication is an undesirable (but perhaps necessary) result. This mode of operation differs from the options commonly offered by many IETF security protocols, in which authenticated, encrypted communication is the desired outcome, but plaintext communication is the fallback. The term opportunistic encryption (OE) was coined by Michael Richardson in “Opportunistic Encryption using the Internet Key Exchange (IKE)” an Informational RFC [RFC4322]. -
Software-Defined Networking: Improving Security for Enterprise and Home Networks
Worcester Polytechnic Institute Digital WPI Doctoral Dissertations (All Dissertations, All Years) Electronic Theses and Dissertations 2017-04-24 Software-defined etN working: Improving Security for Enterprise and Home Networks Curtis Robin Taylor Worcester Polytechnic Institute Follow this and additional works at: https://digitalcommons.wpi.edu/etd-dissertations Repository Citation Taylor, C. R. (2017). Software-defined Networking: Improving Security for Enterprise and Home Networks. Retrieved from https://digitalcommons.wpi.edu/etd-dissertations/161 This dissertation is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Doctoral Dissertations (All Dissertations, All Years) by an authorized administrator of Digital WPI. For more information, please contact [email protected]. Software-defined Networking: Improving Security for Enterprise and Home Networks by Curtis R. Taylor A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Computer Science by May 2017 APPROVED: Professor Craig A. Shue, Dissertation Advisor Professor Craig E. Wills, Head of Department Professor Mark Claypool, Committee Member Professor Thomas Eisenbarth, Committee Member Doctor Nathanael Paul, External Committee Member Abstract In enterprise networks, all aspects of the network, such as placement of security devices and performance, must be carefully considered. Even with forethought, networks operators are ulti- mately unaware of intra-subnet traffic. The inability to monitor intra-subnet traffic leads to blind spots in the network where compromised hosts have unfettered access to the network for spreading and reconnaissance. While network security middleboxes help to address compromises, they are limited in only seeing a subset of all network traffic that traverses routed infrastructure, which is where middleboxes are frequently deployed. -
Digital Security for Activists
Training the Motivated: Digital Security for Activists Glencora Borradaile Kelsy Kretschmer Abstract School of Electrical Engineering School of Public Policy The state of global surveillance and the political and Computer Science Sociology Program environment has many activists caring more about their Oregon State University Oregon State University online security culture. We report on the initiation of a Corvallis, OR 97331, USA Corvallis, OR 97331, USA Digital Security for Activists program and a pilot study of an [email protected] [email protected] introductory seminar. Pre- and post-surveys of the seminar will form an initial assessment of what kind of intervention might increase the security practices of activists and to inform the design of program offerings. We report on the pre-surveys from three offerings of the seminar. Introduction In collaboration with the Civil Liberties Defense Center (CLDC), the first author had been offering informal digital security trainings for activists and their lawyers. After the fall elections in the U.S., requests for these trainings increased dramatically and shortly thereafter we launched a Digital Security for Activists (DSA) program. The DSA program’s intent is to align with the CLDC mission (“to defend and uphold civil liberties through education, outreach, litigation, legal support, and assistance”) and enable citizen activists to assert their constitutional rights while organizing online. Copyright is held by the author/owner. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee. Poster In order to provide trainings that are useful and effective, we presented at the 13th Symposium on Usable Privacy and Security (SOUPS 2017). -
How Can We Protect the Internet Against Surveillance?
How can we protect the Internet against surveillance? Seven TODO items for users, web developers and protocol engineers Peter Eckersley [email protected] Okay, so everyone is spying on the Internet It's not just the NSA... Lots of governments are in this game! Not to mention the commerical malware industry These guys are fearsome, octopus-like adversaries Does this mean we should just give up? No. Reason 1: some people can't afford to give up Reason 2: there is a line we can hold vs. So, how do we get there? TODO #1 Users should maximise their own security Make sure your OS and browser are patched! Use encryption where you can! In your browser, install HTTPS Everywhere https://eff.org/https-everywhere For instant messaging, use OTR (easiest with Pidgin or Adium, but be aware of the exploit risk tradeoff) For confidential browsing, use the Tor Browser Bundle Other tools to consider: TextSecure for SMS PGP for email (UX is terrible!) SpiderOak etc for cloud storage Lots of new things in the pipeline TODO #2 Run an open wireless network! openwireless.org How to do this securely right now? Chain your WPA2 network on a router below your open one. TODO #3 Site operators... Deploy SSL/TLS/HTTPS DEPLOY IT CORRECTLY! This, miserably, is a lot harder than it should be TLS/SSL Authentication Apparently, ~52 countries These are usually specialist, narrowly targetted attacks (but that's several entire other talks... we're working on making HTTPS more secure, easier and saner!) In the mean time, here's what you need A valid certificate HTTPS by default Secure cookies No “mixed content” Perfect Forward Secrecy A well-tuned configuration How do I make HTTPS the default? Firefox and Chrome: redirect, set the HSTS header Safari and IE: sorry, you can't (!!!) What's a secure cookie? Go and check your site right now.. -
The Danger of the New Internet Choke Points
The Danger of the New Internet Choke Points Authored by: Andrei Robachevsky, Christine Runnegar, Karen O’Donoghue and Mat Ford FEBRUARY 2014 Introduction The ongoing disclosures of pervasive surveillance of Internet users’ communications and data by national security agencies have prompted protocol designers, software and hardware vendors, as well as Internet service and content providers, to re-evaluate prevailing security and privacy threat models and to refocus on providing more effective security and confidentiality. At IETF88, there was consensus to address pervasive monitoring as an attack and to consider the pervasive attack threat model when designing a protocol. One area of work currently being pursued by the IETF is the viability of more widespread encryption. While there are some who believe that widely deployed encryption with strong authentication should be used extensively, many others believe that there are practical obstacles to this approach including a general lack of reasonable tools and user understanding as to how to use the technology, plus significant obstacles to scaling infrastructure and services using existing technologies. As a result, the discussion within the IETF has principally focused on opportunistic encryption and weak authentication. “Weak authentication” means cryptographically strong authentication between previously unknown parties without relying on trusted third parties. In certain contexts, and by using certain techniques, one can achieve the desired level of security (see, for instance, Arkko, Nikander. Weak Authentication: How to Authenticate Unknown Principals without Trusted Parties, Security Protocols Workshop, volume 2845 of Lecture Notes in Computer Science, page 5-19. Springer, (2002)). “Opportunistic encryption” refers to encryption without authentication. It is a mode of protocol operation where the content of the communication is secure against passive surveillance, but there is no guarantee that the endpoints are reliably identified. -
Gnu Privacy Guard (Gnupg) Mini Howto (English)
Gnu Privacy Guard (GnuPG) Mini Howto (English) Brenno J.S.A.A.F. de Winter (English) <brenno@dew int er . com> Michael Fischer v. Mollard (German) <f i s cher @math .uni- goettingen. de> Arjen Baart <arj en@andromeda .nl> Version 0.1.4 August 10, 2004 This documents explains how to use the GNU Privacy Guard (GnuPG), an Open Source OpenPGP compatible encryption system To keep this program totally free the use of the RSA algorithm and other patented algorithm has been avoided. The document was originally written by Michael Fischer v. Mollar in German. The text has been translated and adjusted on some points and cannot be considered as a full one-on-one copy. Contents 1 Concepts 2 1.1 Public Key Encryption .............................................................................................................................................. 2 1.2 Digital Signatures ..................................................................................................................................................... 3 1.3 Web of trust .............................................................................................................................................................. 3 1.4 Boundaries to security .............................................................................................................................................. 3 2 Installation 4 2.1 Sources for GnuPG. ................................................................................................................................................. -
Online Self Defense – Black Belt Level
Online Self Defense – Black Belt Level Review - White Belt Level 1.Do your updates 2.Use good antivirus/antimalware software 3.A long password is a strong password 4.Be suspicious of all emails, particularly those asking you to click on links, or that have attachments. Review – Yellow Belt 1.Always verify t!at you are on the we#site you mean to be 2.$et #rowser to more secure settings 3.Use privacy enhancing browser plugins 4.$can everything you download %.Only download programs from the official we#site Review - Green Belt Level ● (nformation is the currency of the internet ● )rivacy has finincial as well as ethical implications ● *a"e sure that your connection is encrypted +,--)$. ● Anonymizing we# proxies can help ● 1)Ns are better ● -or Browser is even better Review – Brown Belt Level 1.Unencrypted email is like sending a postcard instead of a letter 2.-o encrypt email use *ozilla -!under#ird with the 3nigmail plugin 3.-o encrypt chat use Pidgin with the OTR plugin Threat Modeling Decide what your most likely t!reats and plan your defense based on the following questions. 1. What is the most vulnerable/exploitable? 2. What is the most valuable? 3.How can I mitigate my vulnerabilities? 4. What can I o to limit amage i! an attac" is success!ul? Segregation of Identity ● Limit ability of a t!ird party to connect di'erent aspects of your life. 7or e0ample casual we# #rowsing and !ome #anking. ● 8roup activities wit! similar security re5uirements. ● Be self disciplined a#out t!is segregation. -
Hot Topics in Computer Security
Hot Topics in Computer Security Iliano Cervesato http://www.qatar.cmu.edu/iliano Andrew’s Leap June 30, 2010 Outline Let’s play a security game Cryptographic protocols Where did this guy say he’s from? 1 Here is the game Threat “Someone can break into my apartment and steal or destroy my stuff” Attacks and countermeasures I have a basic protection, but worse things can happen, help me to find what and how to mitigate them 2 My apartment’s basic protection Classic wooden door with a 3 points lock On the balcony (2nd floor), PVC windows with a single point lock 3 But … what’s in my apartment? $299 $89 4 What do we learn from the game You never prevent a threat .... you lower the risk! Performing an attack has a cost It's a balance between . the assets that you want to protect . the efforts an attacker will make Deploying a countermeasure has a cost It's a balance between . the cost of recovering from the attack . the cost of a deploying a protection mechanism 5 But keep in mind ... Security should always serves the business and not constrains it, otherwise ... nobody will invest in it or will be disable to be more efficient What is your definition of the risk analysis for computer science? 6 Now you know ... Marketing guy: “My software is totally secure!” You: “Oh really? Against what?” Your boss: “Design my information system and make it secure!” You: “tell me what you want to protect and let's talk together about ... potential threats . -
LAB :: PGP (Pretty Good Privacy)
LAB :: PGP (Pretty Good Privacy) GnuPG : GnuPG forms the heart of Gpg4win – the actual encryption software. Kleopatra : The central certificate administration of Gpg4win, which ensures uniform user navigation for all cryptographic operations. Download Gpg4win (GNU Privacy Guard for Windows) from https://www.gpg4win.org/index.html Install GnuPG & Related application 1. The installation assistant will start and you will see this welcome dialog: 2. Close all programs that are running on your computer and click on [ Next ] 3. The next page displays the licensing agreement – it is only important if you wish to modify or forward Gpg4win. If you only want to use the software, you can do this right away – without reading the license. Click on [ Next ] 4. On the page that contains the selection of components you can decide which programs you want to install. A default selection has already been made for you. You can also install individual components at a later time. Moving your mouse cursor over a component will display a brief description. Another useful feature is the display of required hard drive space for all selected components. Bellow are the application and there fucntion: a. GnuPG: Gnu Privacy Guard b. Kleopatra: Keymanager for OpenPGP c. GPA: GNU Privacy Assistant d. GpgOL: GnuPG for Outlook e. GpgEX: GnuPG Shell Extension f. Claws-Mail: Claws Mail user client g. Gpg4win Compedium: The Gpg4Win documentation Click on [ Next ] 5. The system will suggest a folder for the installation, e.g.: C:\Programme Files (x86)\GNU\GnuPG You can accept the suggestion or select a different folder for installing Gpg4win. -
Assessment Tasks 3 Publication Without Notice
ITEC643 Cryptography and Information Security S2 Day 2019 Dept of Computing Contents Disclaimer General Information 2 Macquarie University has taken all reasonable measures to ensure the information in this Learning Outcomes 3 publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, General Assessment Information 3 procedures or rules. The University reserves the right to make changes to any information in this Assessment Tasks 3 publication without notice. Users of this publication are advised to check the website Delivery and Resources 6 version of this publication [or the relevant faculty or department] before acting on any information in Unit Schedule 7 this publication. Learning and Teaching Activities 8 Policies and Procedures 8 Graduate Capabilities 10 Changes from Previous Offering 15 Grading Standards 15 Changes since First Published 17 https://unitguides.mq.edu.au/unit_offerings/119161/unit_guide/print 1 Unit guide ITEC643 Cryptography and Information Security General Information Unit convenor and teaching staff Convenor Christophe Doche [email protected] Contact via By email BD building Level 2 TBA Lecturer Les Bell [email protected] TBA Lecturer Alireza Jolfaei [email protected] BD Building Level 3 Tutor Mohamadali Mehrabi [email protected] BD Building Level 2 Credit points 4 Prerequisites Admission to MInfoTech or MEng or MSc or MScInnovation or GradDipIT or MInfoTech(Cyber Sec) Corequisites Co-badged status COMP343 / ITEC643 Unit description This unit provides an introduction to modern cryptography and information security. First, some cryptographic primitives, such as private key and public key ciphers, hash functions and digital signatures, are introduced.