Applied Crypto Hardening

Total Page:16

File Type:pdf, Size:1020Kb

Applied Crypto Hardening Applied Crypto Hardening Wolfgang Breyha, David Durvaux, Tobias Dussa, L. Aaron Kaplan, Florian Mendel, Christian Mock, Manuel Koschuch, Adi Kriegisch, Ulrich Pöschl, Ramin Sabet, Berg San, Ralf Schlatterbeck, Thomas Schreck, Alexander Würstlein, Aaron Zauner, Pepi Zawodsky (University of Vienna, CERT.be, KIT-CERT, CERT.at, A-SIT/IAIK, coretec.at,FH Campus Wien, VRVis, MilCERT Austria, A-Trust, Runtux.com,Friedrich-Alexander University Erlangen-Nuremberg, azet.org, maclemon.at) April 25, 2017 Contents 1. Abstract 5 1.1. Acknowledgements ........................................ 6 2. Introduction 8 2.1. Audience .............................................. 8 2.2. Related publications ........................................ 8 2.3. How to read this guide ....................................... 8 2.4. Disclaimer and scope ........................................ 9 2.4.1. Scope ............................................ 10 2.5. Methods ............................................... 11 3. Practical recommendations 12 3.1. Webservers ............................................. 12 3.1.1. Apache ........................................... 12 3.1.2. lighttpd ........................................... 13 3.1.3. nginx ............................................ 14 3.1.4. Cherokee .......................................... 15 3.1.5. MS IIS ............................................ 17 3.2. SSH ................................................. 20 3.2.1. OpenSSH .......................................... 20 3.2.2. Cisco ASA .......................................... 21 3.2.3. Cisco IOS .......................................... 22 3.3. Mail Servers ............................................. 23 3.3.1. TLS usage in mail server protocols ............................ 23 3.3.2. Recommended configuration ............................... 23 3.3.3. Dovecot ........................................... 24 3.3.4. cyrus-imapd ........................................ 25 3.3.5. Postfix ........................................... 26 3.3.6. Exim ............................................ 28 3.3.7. Cisco ESA/IronPort ..................................... 30 3.4. VPNs ................................................. 33 3.4.1. IPsec ............................................ 33 3.4.2. Check Point FireWall-1 ................................... 35 3.4.3. OpenVPN .......................................... 38 3.4.4. PPTP ............................................ 40 3.4.5. Cisco ASA .......................................... 40 3.4.6. Openswan ......................................... 42 3.4.7. tinc ............................................. 43 3.5. PGP/GPG - Pretty Good Privacy .................................. 44 3.5.1. Hashing ........................................... 44 3.6. IPMI, ILO and other lights out management solutions ...................... 45 3.7. Instant Messaging Systems ..................................... 45 3.7.1. General server configuration recommendations ..................... 45 3.7.2. ejabberd .......................................... 45 Applied Crypto Hardening page 2 of 103 Contents Contents 3.7.3. Chat privacy - Off-the-Record Messaging (OTR) ...................... 47 3.7.4. Charybdis .......................................... 47 3.7.5. SILC ............................................. 47 3.8. Database Systems ......................................... 48 3.8.1. Oracle ............................................ 48 3.8.2. MySQL ........................................... 48 3.8.3. DB2 ............................................. 49 3.8.4. PostgreSQL ......................................... 49 3.9. Intercepting proxy solutions and reverse proxies ......................... 50 3.9.1. Bluecoat .......................................... 51 3.9.2. HAProxy .......................................... 52 3.9.3. Pound ............................................ 53 3.9.4. stunnel ........................................... 53 3.10. Kerberos .............................................. 54 3.10.1. Overview .......................................... 54 3.10.2. Implementations ...................................... 56 4. Theory 60 4.1. Overview .............................................. 60 4.2. Cipher suites ............................................ 60 4.2.1. Architectural overview ................................... 60 4.2.2. Forward Secrecy ...................................... 61 4.2.3. Recommended cipher suites ............................... 62 4.2.4. Compatibility: ....................................... 62 4.2.5. Compatibility: ....................................... 64 4.2.6. Explanation: ........................................ 64 4.2.7. Insecure Ciphers ...................................... 64 4.2.8. Compatibility ........................................ 65 4.2.9. Choosing your own cipher suites ............................. 65 4.3. Random Number Generators ................................... 67 4.3.1. When random number generators fail .......................... 67 4.3.2. Linux ............................................ 68 4.3.3. Recommendations ..................................... 68 4.4. Keylengths ............................................. 69 4.4.1. Summary .......................................... 70 4.4.2. Special remark on 3DES: .................................. 70 4.5. A note on Elliptic Curve Cryptography ............................... 71 4.6. A note on SHA-1 ........................................... 71 4.7. A note on Diffie Hellman Key Exchanges .............................. 72 4.8. Public Key Infrastructures ..................................... 72 4.8.1. Certificate Authorities ................................... 72 4.8.2. Hardening PKI ....................................... 74 4.8.3. Certification Authorization Records ............................ 74 4.9. TLS and its support mechanisms ................................. 76 4.9.1. HTTP Strict Transport Security (HSTS) .......................... 76 4.9.2. HTTP Public Key Pinning (HPKP) ............................. 78 A. Tools 82 A.1. SSL & TLS .............................................. 82 A.2. Key length .............................................. 83 A.3. RNGs ................................................ 83 A.4. Guides ................................................ 84 Applied Crypto Hardening page 3 of 103 Contents Contents B. Links 85 C. Suggested Reading 87 D. SSL libraries 88 D.1. Priority strings ........................................... 88 E. Cipher Suite Name Cross-Reference 89 F. Further research 96 F.1. Software not covered by this guide ................................ 97 G. Acknowledgements 98 H. Glossary 99 Applied Crypto Hardening page 4 of 103 1. Abstract This guide arose out of the need for system administrators to have an updated, solid, well researched and thought-through guide for configuring SSL, PGP, SSH and other cryptographic tools in the post-Snowden age. Triggered by the NSA leaks in the summer of 2013, many system administrators and IT security officers saw the need to strengthen their encryption settings. This guide is specifically written for these system administra- tors. As Schneier noted in , it seems that intelligence agencies and adversaries on the Internet are not breaking so much the mathematics of encryption per se, but rather use software and hardware weaknesses, subvert standardization processes, plant backdoors, rig random number generators and most of all exploit careless settings in server configurations and encryption systems to listen in on private communications. Worst of all, most communication on the internet is not encrypted at all by default (for SMTP, opportunistic TLS would be a solution). This guide can only address one aspect of securing our information systems: getting the crypto settings right to the best of the authors’ current knowledge. Other attacks, as the above mentioned, require different protection schemes which are not covered in this guide. This guide is not an introduction to cryptography. For background information on cryptography and cryptoanalysis we would like to refer the reader to the references in appendix [cha:links] and [cha:suggested-reading] at the end of this document. The focus of this guide is merely to give current best practices for configuring complex cipher suites and related parameters in a copy & paste-able manner. The guide tries to stay as concise as is possible for such a complex topic as cryptography. Naturally, it can not be complete. There are many excellent guides and best practice documents available when it comes to cryptography. However none of them focuses specifically on what an average system administrator needs for hardening his or her systems’ crypto settings. This guide tries to fill this gap. Applied Crypto Hardening page 5 of 103 1.1. Acknowledgements 1.1. Acknowledgements Do not talk unencrypted 1.1. Acknowledgements We would like to express our thanks to the following reviewers and people who have generously offered their time and interest (in alphabetical order): Applied Crypto Hardening page 6 of 103 1.1. Acknowledgements 1.1. Acknowledgements • Brown, Scott • Brulebois, Cyril • Dirksen-Thedens, Mathis • Dulaunoy, Alexandre • Gühring Philipp • Grigg, Ian • Haslinger, Gunnar • Huebl, Axel • Kovacic, Daniel • Lenzhofer, Stefan • Lorünser, Thomas • Maass, Max • Mehlmauer, Christian • Millauer, Tobias • Mirbach, Andreas • O’Brien, Hugh • Pacher, Christoph • Palfrader, Peter • Pape, Tobias (layout) • Petukhova,
Recommended publications
  • Master Thesis
    Master's Programme in Computer Network Engineering, 60 credits MASTER Connect street light control devices in a secure network THESIS Andreas Kostoulas, Efstathios Lykouropoulos, Zainab Jumaa Network security, 15 credits Halmstad 2015-02-16 “Connect street light control devices in a secure network” Master’s Thesis in Computer Network engineering 2014 Authors: Andreas Kostoulas, Efstathios Lykouropoulos, Zainab Jumaa Supervisor: Alexey Vinel Examiner: Tony Larsson Preface This thesis is submitted in partial fulfilment of the requirements for a Master’s Degree in Computer Network Engineering at the Department of Information Science - Computer and Electrical Engineering, at University of Halmstad, Sweden. The research - implementation described herein was conducted under the supervision of Professor Alexey Vinel and in cooperation with Greinon engineering. This was a challenging trip with both ups and downs but accompanied by an extend team of experts, always willing to coach, sponsor, help and motivate us. For this we would like to thank them. We would like to thank our parents and family for their financial and motivational support, although distance between us was more than 1500 kilometres. Last but not least we would like to thank our fellow researchers and friends on our department for useful discussions, comments, suggestions, thoughts and also creative and fun moments we spend together. i Abstract Wireless communications is a constantly progressing technology in network engineering society, creating an environment full of opportunities that are targeting in financial growth, quality of life and humans prosperity. Wireless security is the science that has as a goal to provide safe data communication between authorized users and prevent unauthorized users from gaining access, deny access, damage or counterfeit data in a wireless environment.
    [Show full text]
  • Email Transport Encryption STARTTLS Vs. DANE Vs. MTA-STS
    Email Transport Encryption STARTTLS vs. DANE vs. MTA-STS Delimitation This document deals with the encrypted transport of messages between two email servers. Encryption during transport is crucial for a basic level of security for the exchange of messages. The exchange of messages between an email client and a server or the end-to-end encryption of messages are not covered in this article. If the aim is to create a secure overall system, these aspects should be considered in addition to the recommendations in this article. Initial situation When the first standard for the Simple Mail Transfer Protocol (in short: SMTP) was adopted, encryption of the transport was not included. All messages were exchanged as plain text between the servers. They were thus basically readable for anyone who could tap into the data exchange between the two servers. This only changed with the introduction of the SMTP Service Extensions for Extend SMTP (ESMTP for short), which made it possible to choose encrypted transport as an opportunistic feature of data exchange. Opportunistic, because it had to be assumed that not all servers would be able to handle transport encryption. They should only encrypt when it is opportune; encryption is not mandatory. To indicate the basic ability to encrypt to a sending server, it was agreed that the receiving server should send the keyword STARTTLS at the beginning of an ESMTP transport session. STARTTLS STARTTLS can encrypt the transport between two email servers. The receiving server signals the sending server that it is capable of encrypting after a connection is established and in the ESMTP session.
    [Show full text]
  • Measuring the Rapid Growth of HSTS and HPKP Deployments
    Measuring the Rapid Growth of HSTS and HPKP Deployments Ivan Petrov∗ Denis Peskov∗ Gregory Coard∗ Taejoong Chungy David Choffnesy Dave Levin∗ Bruce M. Maggsz Alan Mislovey Christo Wilsony ∗ University of Maryland yNortheastern University zDuke University & Akamai Technologies ABSTRACT version of the website, thereby exposing future commu- A basic man-in-the-middle attack to bypass HTTPS strips nication to the MiTM attacker, as well. Second, if an the “s” off of an “https://” URL, thereby forcing the client attacker is able to have a certificate created in someone to effectively downgrade to an insecure connection. To ad- else's name, the attacker can impersonate that victim dress such crude attacks, the HSTS (HTTP Strict Transport domain. Security) protocol was recently introduced, which instructs Both of these attacks completely sidestep the protec- clients to preemptively (or at time of first acquire) load a tions that TLS seeks to provide to its users. To address list of domains to whom to connect strictly via HTTPS. In a these concerns, two recent additions to HTTPS have similar vein, the HPKP (HTTP Public Key Pinning) protocol been introduced. We describe them in detail in Sec- has clients obtain a set of public keys; if in future visits to tion 2, but at a high level: the website the certificate chain does not include any of those • HTTP Strict Transport Security public keys, the client is supposed to reject the connection. (HSTS) [10] addresses SSL stripping attacks by Both HSTS and HPKP are relatively new additions to the informing clients which domains it should connect web’s PKI that have seen a sudden surge in deployment in to strictly over HTTPS (i.e., if presented with an the last couple of years (we observe an order of magnitude http URL to one of these domains, they should greater deployment than a 2015 study of HSTS/HPKP).
    [Show full text]
  • MTA STS Improving Email Security.Pdf
    Improving Email Security with the MTA-STS Standard By Brian Godiksen An Email Best Practices Whitepaper CONTENTS Executive Overview 03 Why Does Email Need Encryption in Transit? 04 The Problem with “Opportunistic Encryption” 07 The Anatomy of a Man-in-the-Middle Attack 08 The Next Major Step with Email Encryption: MTA-STS 10 What Steps Should Senders Take to Adopt MTA-STS? 11 About SocketLabs 12 Brian Godiksen Brian has been helping organizations optimize email deliverability since joining SocketLabs in 2011. He currently manages a team of deliverability analysts that consult with customers on best infrastructure practices, including email authentication implementation, bounce processing, IP address warm-up, and email marketing list management. Brian leads the fight against spam and email abuse at SocketLabs by managing compliance across the platform. He is an active participant in key industry groups such as M3AAWG and the Email Experience Council. You can read more of Brian’s content here on the SocketLabs website. ©2019 SocketLabs 2 Executive The Edward Snowden leaks of 2013 opened many peoples’ eyes to the fact that mass surveillance was possible by Overview intercepting and spying on email transmissions. Today, compromised systems, database thefts, and technology breaches remain common fixtures in news feeds around the world. As a natural response, the technology industry is rabidly focused on improving the security and encryption of communications across all platforms. Since those early days of enlightenment, industry experts have discussed and attempted a variety of new strategies to combat “pervasive monitoring” of email channels. While pervasive monitoring assaults can take many forms, the most prominent forms of interference were man-in-the-middle (MitM) attacks.
    [Show full text]
  • Ipv6-Ipsec And
    IPSec and SSL Virtual Private Networks ITU/APNIC/MICT IPv6 Security Workshop 23rd – 27th May 2016 Bangkok Last updated 29 June 2014 1 Acknowledgment p Content sourced from n Merike Kaeo of Double Shot Security n Contact: [email protected] Virtual Private Networks p Creates a secure tunnel over a public network p Any VPN is not automagically secure n You need to add security functionality to create secure VPNs n That means using firewalls for access control n And probably IPsec or SSL/TLS for confidentiality and data origin authentication 3 VPN Protocols p IPsec (Internet Protocol Security) n Open standard for VPN implementation n Operates on the network layer Other VPN Implementations p MPLS VPN n Used for large and small enterprises n Pseudowire, VPLS, VPRN p GRE Tunnel n Packet encapsulation protocol developed by Cisco n Not encrypted n Implemented with IPsec p L2TP IPsec n Uses L2TP protocol n Usually implemented along with IPsec n IPsec provides the secure channel, while L2TP provides the tunnel What is IPSec? Internet IPSec p IETF standard that enables encrypted communication between peers: n Consists of open standards for securing private communications n Network layer encryption ensuring data confidentiality, integrity, and authentication n Scales from small to very large networks What Does IPsec Provide ? p Confidentiality….many algorithms to choose from p Data integrity and source authentication n Data “signed” by sender and “signature” verified by the recipient n Modification of data can be detected by signature “verification”
    [Show full text]
  • Comptia Security+ 501
    CompTIA Security+ 501 CompTIA Security+ SY0-501 Instructor: Ron Woerner, CISSP, CISM CompTIA Security+ Domain 6 – Cryptography & PKI 6.4 Given a scenario, implement public key infrastructure Cybrary - Ron Woerner 1 CompTIA Security+ 501 6.4 Public-Key Infrastructure (PKI) ● Components ● Types of certificates ○ Public / Private Key ○ User ○ Certificate ○ Root ○ CA ○ Wildcard ○ CRL ○ SAN ○ Code signing ● Concepts ○ Self-signed ○ Online vs Offline CA ○ Machine/computer ○ Stapling ○ Domain validation ○ Pinning ○ Trust model ● Certificate formats ○ Key escrow ○ Certificate chaining Public and Private Keys ● Encrypt a document with the recipient’s public key. Only their private key needs to be kept secret and only it can decrypt the message ● The sender’s private key is used to sign the message Cybrary - Ron Woerner 2 CompTIA Security+ 501 PKI Components Public Key Infrastructure ● Solves the issues with key management ● A set of roles, policies, and procedures needed to manage public- key(asymmetric) encryption ● The process of creating, managing, distributing, storing, using, and revoke keys and digital certificates. ● Public Key Infrastructure X.509 (PKIX) is the working group formed by the IETF to develop standards and models PKI PKI Components - Digital Certificate ● A digitally signed block of data used to prove the ownership of a public key issued by a Certificate Authority ● Includes ○ information about the key, ○ information about the identity of its owner (called the subject), ○ and the digital signature of an entity that has verified the certificate's contents (called the issuer) ● X.509 v3 standard defines the certificate formats and fields for public keys. Cybrary - Ron Woerner 3 CompTIA Security+ 501 Digital Certificate Components X.509 Certificate Types ● Root certificates: for root authorities.
    [Show full text]
  • Mist Teleworker ME
    MIST TELEWORKER GUIDE ​ ​ ​ ​ ​ Experience the corporate network @ home DOCUMENT OWNERS: ​ ​ ​ ​ Robert Young – [email protected] ​ Slava Dementyev – [email protected] ​ Jan Van de Laer – [email protected] ​ 1 Table of Contents Solution Overview 3 How it works 5 Configuration Steps 6 Setup Mist Edge 6 Configure and prepare the SSID 15 Enable Wired client connection via ETH1 / Module port of the AP 16 Enable Split Tunneling for the Corp SSID 17 Create a Site for Remote Office Workers 18 Claim an AP and ship it to Employee’s location 18 Troubleshooting 20 Packet Captures on the Mist Edge 23 2 Solution Overview Mist Teleworker solution leverages Mist Edge for extending a corporate network to remote office workers using an IPSEC secured L2TPv3 tunnel from a remote Mist AP. In addition, MistEdge provides an additional RadSec service to securely proxy authentication requests from remote APs to provide the same user experience as inside the office. WIth Mist Teleworker solution customers can extend their corporate WLAN to employee homes whenever they need to work remotely, providing the same level of security and access to corporate resources, while extending visibility into user network experience and streamlining IT operations even when employees are not in the office. What are the benefits of the Mist Teleworker solution with Mist Edge compared to all the other alternatives? Agility: ● Zero Touch Provisioning - no AP pre-staging required, support for flexible all home coverage with secure Mesh ● Exceptional support with minimal support - leverage Mist SLEs and Marvis Actions Security: ● Traffic Isolation - same level of traffic control as in the office.
    [Show full text]
  • HTTP2 Explained
    HTTP2 Explained Daniel Stenberg Mozilla Corporation [email protected] ABSTRACT credits to everyone who helps out! I hope to make this document A detailed description explaining the background and problems better over time. with current HTTP that has lead to the development of the next This document is available at http://daniel.haxx.se/http2. generation HTTP protocol: HTTP 2. It also describes and elaborates around the new protocol design and functionality, 1.3 License including some implementation specifics and a few words about This document is licensed under the the future. Creative Commons Attribution 4.0 This article is an editorial note submitted to CCR. It has NOT license: been peer reviewed. The author takes full responsibility for this http://creativecommons.org/licenses/by/4.0/ article’s technical content. Comments can be posted through CCR Online. 2. HTTP Today Keywords HTTP 1.1 has turned into a protocol used for virtually everything HTTP 2.0, security, protocol on the Internet. Huge investments have been done on protocols and infrastructure that takes advantage of this. This is taken to the 1. Background extent that it is often easier today to make things run on top of HTTP rather than building something new on its own. This is a document describing http2 from a technical and protocol level. It started out as a presentation I did in Stockholm in April 2014. I've since gotten a lot of questions about the contents of 2.1 HTTP 1.1 is Huge that presentation from people who couldn't attend, so I decided to When HTTP was created and thrown out into the world it was convert it into a full-blown document with all details and proper probably perceived as a rather simple and straight-forward explanations.
    [Show full text]
  • Configuring Secure Shell
    Configuring Secure Shell The Secure Shell (SSH) feature is an application and a protocol that provides a secure replacement to the Berkeley r-tools. The protocol secures sessions using standard cryptographic mechanisms, and the application can be used similarly to the Berkeley rexec and rsh tools. Two versions of SSH are available: SSH Version 1 and SSH Version 2. • Finding Feature Information, page 1 • Prerequisites for Configuring Secure Shell, page 1 • Restrictions for Configuring Secure Shell, page 2 • Information about SSH, page 2 • How to Configure Secure Shell, page 5 • Configuration Examples for Secure Shell, page 16 • Additional References for Secure Shell, page 18 • Feature Information for SSH, page 18 Finding Feature Information Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required. Prerequisites for Configuring Secure Shell The following are the prerequisites for configuring the switch for secure shell (SSH): • For SSH to work, the switch needs an Rivest, Shamir, and Adleman (RSA) public/private key pair. This is the same with Secure Copy Protocol (SCP), which relies on SSH for its secure transport.
    [Show full text]
  • AWS Site-To-Site VPN User Guide AWS Site-To-Site VPN User Guide
    AWS Site-to-Site VPN User Guide AWS Site-to-Site VPN User Guide AWS Site-to-Site VPN: User Guide Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. AWS Site-to-Site VPN User Guide Table of Contents What is Site-to-Site VPN ..................................................................................................................... 1 Concepts ................................................................................................................................... 1 Working with Site-to-Site VPN ..................................................................................................... 1 Site-to-Site VPN limitations ......................................................................................................... 2 Pricing ...................................................................................................................................... 2 How AWS Site-to-Site VPN works ........................................................................................................ 3 Site-to-Site VPN Components .....................................................................................................
    [Show full text]
  • Opportunistic Keying As a Countermeasure to Pervasive Monitoring
    Opportunistic Keying as a Countermeasure to Pervasive Monitoring Stephen Kent BBN Technologies Abstract This document was prepared as part of the IETF response to concerns about “pervasive monitoring” (PM) [Farrell-pm]. It begins by exploring terminology that has been used in IETF standards (and in academic publications) to describe encryption and key management techniques, with a focus on authentication and anonymity. Based on this analysis, it propose a new term, “opportunistic keying” to describe a goal for IETF security protocols, in response to PM. It reviews key management mechanisms used in IETF security protocol standards, also with respect to these properties. The document explores possible impediments to and potential adverse effects associated with deployment and use of techniques that would increase the use of encryption, even when keys are distributed in an unauthenticated manner. 1. What’s in a Name (for Encryption)? Recent discussions in the IETF about pervasive monitoring (PM) have suggested a desire to increase use of encryption, even when the encrypted communication is unauthenticated. The term “opportunistic encryption” has been suggested as a term to describe key management techniques in which authenticated encryption is the preferred outcome, unauthenticated encryption is an acceptable fallback, and plaintext (unencrypted) communication is an undesirable (but perhaps necessary) result. This mode of operation differs from the options commonly offered by many IETF security protocols, in which authenticated, encrypted communication is the desired outcome, but plaintext communication is the fallback. The term opportunistic encryption (OE) was coined by Michael Richardson in “Opportunistic Encryption using the Internet Key Exchange (IKE)” an Informational RFC [RFC4322].
    [Show full text]
  • Building Ipv6 Based Tunneling Mechanisms for Voip Security
    WK,QWHUQDWLRQDO0XOWL&RQIHUHQFHRQ6\VWHPV6LJQDOV 'HYLFHV Building IPv6 Based Tunneling Mechanisms for VoIP Security Amzari J. Ghazali, Waleed Al-Nuaimy, Ali Al-Ataby, Majid A. Al-Taee Department of Electrical Engineering and Electronics University of Liverpool, UK e-mail: {amzari.ghazali, wax, ali.ataby, altaeem}@liv.ac.uk Abstract—Internet protocol version 6 (IPv6) was such as Toredo, 6to4 and manual configuration [4]. developed to resolve the IPv4 address exhaustion Despite the benefits of using IPv6, there are still problem and support new features. However, IPv6 still challenges and obstacles in implementing and comprises some defectiveness of IPv4 protocol such as practically using IPv6 VoIP [5]. The issues of the multimedia security. This paper presents IPv6-based transition from the current IPv4 network to IPv6 as tunneling mechanisms for securing Voice over Internet Protocol (VoIP) network traffic using OpenSwan IPSec well as VoIP performance for both IP versions need (site-to-site). IPSec with Triple Data Encryption to be assessed and compared. Algorithm (3DES) is used to create a Virtual Private Evaluation of VoIP performance with IPSec in Network (VPN) on top of existing physical networks. IPv4, IPv6 and 6to4 networks using Teredo for NAT Secure communication mechanisms can therefore be provided for data and control information transmitted traversal in a test LAN was previously reported in between networks. Secure VoIP-oriented mechanisms [6]. The testbed used softphones to setup calls, and on VPN IPv6 have been designed, implemented and background traffic was generated to create congestion tested successfully using open source approaches. The on the links and routers. The results demonstrated the performance of the IPv6 VoIP network is assessed feasibility of using a single Linux box to handle experimentally in terms of several performance metrics IPSec, 6to4 and NAT processing, and it was found including jitter, throughput and packet loss rate.
    [Show full text]