Chromatographic Analysis of Large Numbers of Marine Bacterial Extracts and the Venom of the Spider Cupiennius Salei

Total Page:16

File Type:pdf, Size:1020Kb

Chromatographic Analysis of Large Numbers of Marine Bacterial Extracts and the Venom of the Spider Cupiennius Salei Chromatographic analysis of large numbers of marine bacterial extracts and the venom of the spider Cupiennius salei Von der Gemeinsamen Naturwissenschaftlichen Fakultät der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr.rer.nat.) genehmigte D i s s e r t a t i o n von Katalin Böröczky aus Budapest, Ungarn 1. Referent: Prof. Dr. Stefan Schulz 2. Referentin: Prof. Dr. Monika Mazik eingereicht am: 20.12.2004 mündliche Prüfung (Disputation) am: 22.02.2005 Druckjahr (2005) Katalin Böröczky Chromatographic analysis of large numbers of marine bacterial extracts and the venom of the spider Cupiennius salei Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Gemeinsamen Naturwissenschaftlichen Fakultät, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Tagungsbeiträge K. Böröczky, S. Schulz, Screening of lipophilic extracts of marine microorganisms with gas chromatography and cluster analysis, Poster, 3rd European Conference on Marine Natural products, Elmau, 2002. K. Böröczky, S, Schulz, Handling large chromatographic data sets − analysis of lipophilic marine extracts, Poster, BioPerspectives, Wiesbaden, 2004. CONTENTS 1 Introduction.......................................................................................................................1 2 Objective ............................................................................................................................8 3 Marine bacteria.................................................................................................................9 3.1 Research project..........................................................................................................9 3.2 Multivariate data analysis .........................................................................................13 3.2.1 Unsupervised data analysis...............................................................................14 3.2.2 Applications in chemistry .................................................................................19 3.2.3 Introduction to SPSS.........................................................................................20 3.3 Development of a high throughput process for the gas chromatographic investigation of several hundred marine extracts..................................................................21 3.3.1 The program ChromConv.................................................................................23 3.3.2 Gas chromatographic analysis of marine extracts ............................................30 3.3.3 Cluster analysis of marine extracts ...................................................................32 3.4 Results.......................................................................................................................33 3.4.1 Clusterification..................................................................................................33 3.4.2 Isolation and structure elucidation of two novel C35 terpenes.........................43 3.4.3 Selected substances from marine extracts.........................................................52 3.5 Discussion.................................................................................................................61 3.5.1 Data analysis tool..............................................................................................61 3.5.2 Conclusion ........................................................................................................65 3.5.3 Interesting substance classes from marine bacteria ..........................................66 3.6 Summary...................................................................................................................71 4 Low molecular weight components in the venom of the spider Cupiennius salei .....73 4.1 Spider venom ............................................................................................................73 4.2 Introduction in capillary electrophoresis ..................................................................77 4.3 Investigation of the venom of Cupiennius salei by different separation techniques 80 4.3.1 GC-MS experiments .........................................................................................83 4.3.2 Capillary electrophoresis experiments..............................................................85 4.4 Discussion.................................................................................................................90 4.5 Summary...................................................................................................................91 5 Experimental ...................................................................................................................92 5.1 Materials ...................................................................................................................92 5.2 Instrumentation and equipment.................................................................................93 5.3 Procedures.................................................................................................................95 5.3.1 Derivatization methods .....................................................................................95 5.3.2 Oxidative cleavage............................................................................................97 6 Abbreviations ..................................................................................................................99 7 References......................................................................................................................101 8 Appendix........................................................................................................................108 8.1 Mass spectra............................................................................................................108 8.1.1 Artifacts...........................................................................................................108 8.1.2 Diketopiperazines ...........................................................................................109 8.1.3 Amides ............................................................................................................110 8.1.4 Hexanetriols ....................................................................................................111 8.1.5 Long-chain ketones and alkenes .....................................................................112 8.1.6 Cyclic polysulfides..........................................................................................114 8.1.7 Isomeric lactones ............................................................................................116 8.2 GC-IR spectra .........................................................................................................118 8.3 Total ion chromatograms (TICs) ............................................................................120 8.4 Dendograms ............................................................................................................124 Introduction 1 INTRODUCTION Man has always utilized natural products for different purposes, of which medical application is the most common. Indeed, the first documents of traditional medicine trace back to the ancient ages. 1 Besides healing agents, natural products have been used as poisons, narcotics (1), hallucinogens, stimulants ( 2), perfumes ( 3), spices ( 4), dyes and so on. 2 More precisely, the term ’natural products’ stands for secondary metabolites; compounds produced often species specific by microorganisms, fungi, plants or animals that are not essential for the survival of the organism. The biosynthesis and degradation of secondary and primary metabolites (sugars, polysaccharides, amino acids, proteins, common fatty acids, lipids, nucleotides, RNA, and DNA) are interrelated. 2 The relevance of natural product research in drug discovery is a subject of discussions in the pharmaceutical industry today. Nevertheless, according to a study in the 1990’s more than 50% of the most often prescribed drugs in the US contained a natural product or a structurally related derivative. 1 Hence there is hardly any doubt about the importance of natural products. In fact, natural product research is much more than searching for compounds that are potentially beneficial to men (as medicines, fragrances, insecticides). Who knows what kind of role antibiotics from microorganisms play in nature other than defense or which additional physiological functions pheromones may have? 3 Investigating natural products requires joint work of organic chemists, biochemists, biologists and medical scientists. It offers at the same time challenging problems to solve: ultra-trace analysis in complex matrices, synthesis of complicated structures, revealing biosynthetic mechanisms, also on the level of genetics (combinatorial biosynthesis), and exploration of substrate-receptor interactions. 3 Early milestones of the history of natural products are records about plants and extracts used for medical purposes in the ancient world. The use of different plant oils (from Cedrus , Cupressus species, and Papaver somniferum ) were documented in Mesopotamia as early as in about 2600 BC . Several hundred drugs, some also of animal origin were recorded in Egyptian 1000 years later, although observations began long before. From about
Recommended publications
  • Lehman Caves Management Plan
    National Park Service U.S. Department of the Interior Great Basin National Park Lehman Caves Management Plan June 2019 ON THE COVER Photograph of visitors on tour of Lehman Caves NPS Photo ON THIS PAGE Photograph of cave shields, Grand Palace, Lehman Caves NPS Photo Shields in the Grand Palace, Lehman Caves. Lehman Caves Management Plan Great Basin National Park Baker, Nevada June 2019 Approved by: James Woolsey, Superintendent Date Executive Summary The Lehman Caves Management Plan (LCMP) guides management for Lehman Caves, located within Great Basin National Park (GRBA). The primary goal of the Lehman Caves Management Plan is to manage the cave in a manner that will preserve and protect cave resources and processes while allowing for respectful recreation and scientific use. More specifically, the intent of this plan is to manage Lehman Caves to maintain its geological, scenic, educational, cultural, biological, hydrological, paleontological, and recreational resources in accordance with applicable laws, regulations, and current guidelines such as the Federal Cave Resource Protection Act and National Park Service Management Policies. Section 1.0 provides an introduction and background to the park and pertinent laws and regulations. Section 2.0 goes into detail of the natural and cultural history of Lehman Caves. This history includes how infrastructure was built up in the cave to allow visitors to enter and tour, as well as visitation numbers from the 1920s to present. Section 3.0 states the management direction and objectives for Lehman Caves. Section 4.0 covers how the Management Plan will meet each of the objectives in Section 3.0.
    [Show full text]
  • Proceedings of the United States National Museum
    Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, D.C. Volume 111 1960 Number 3429 A REVISION OF THE GENUS OGCODES LATREILLE WITH PARTICULAR REFERENCE TO SPECIES OF THE WESTERN HEMISPHERE By Evert I. Schlinger^ Introduction The cosmopolitan Ogcodes is the largest genus of the acrocerid or spider-parasite family. As the most highly evolved member of the subfamily Acrocerinae, I place it in the same general line of develop- ment as Holops Philippi, Villalus Cole, Thersitomyia Hunter, and a new South African genus.^ Ogcodes is most closely associated with the latter two genera . The Ogcodes species have never been treated from a world point of view, and this probably accounts for the considerable confusion that exists in the literature. However, several large regional works have been published that were found useful: Cole (1919, Nearctic), Brunetti (192G, miscellaneous species of the world, mostly from Africa and Australia), Pleske (1930, Palaearctic), Sack (1936. Palaearctic), and Sabrosky (1944, 1948, Nearctic). Up to this time 97 specific names have been applied to species and subspecies of this genus. Of these, 19 were considered synonyms, hence 78 species were assumed valid. With the description of 14 new species and the addition of one new name while finding onl}^ five new synonyms, 1 Department of Biological Control, University of California, Riverside, Calif. • This new genus, along with other new species and genera, is being described in forthcoming papers by the author. 227 228 PROCEEDINGS OF THE NATIONAL MUSEUM vol. m we find there are now 88 world species and subspecies. Thus, the total number of known forms is increased by 16 percent.
    [Show full text]
  • Common Name Proposal
    3 Park Place, Suite 307 Phone: 301-731-4535 [email protected] Annapolis, MD 21401-3722 USA Fax: 301-731-4538 www.entsoc.org Proposal Form for new Common Name or Change of ESA-Approved Common Name Complete this form and send or e-mail to the above address. Submissions will not be considered unless this form is filled out completely. The proposer is expected to be familiar with the rules, recommendations, and procedures outlined in the “Use and Submission of Common Names” on the ESA website and with the discussion by A.B. Gurney, 1953, Journal of Economic Entomology 46:207-211. 1. Proposed new common name: Four species in the spider genus Cupiennius: 1) redfaced banana spider, 2) spotlegged banana spider, 3) redlegged banana spider, 4) Sale’s banana spider 2. Previously approved common name (if any): none 3. Scientific name (genus, species, author): 1) Cupiennius chiapanensis Medina, 2) Cupiennius getazi Simon, 3) Cupiennius coccineus F. O. Pickard-Cambridge, 4) Cupiennius salei (Keyserling) Order: Araneae Family: Ctenidae Supporting Information 4. Reasons supporting the need for the proposed common name: For the last decade, I have been working on a project involving spiders that have been brought into North America in international cargo. I am in the process of summarizing the work and writing a manuscript. Some of these spiders are huge (leg span 50 to 70 mm) and typically cause strong reaction by cargo processors and produce handlers who discover these creatures when they are unloading and unpacking bananas. One of the spiders, C. chiapanensis, (which has bright red cheliceral hairs – see cover of American Entomologist, 2008, volume 54, issue 2) has caused several misidentifications by qualified arachnologists because 1) this spider was unknown until it was given its scientific name in 2006 and 2) prior to the 21st century, the only reference that many entomologists had to ID international spiders was a children’s book, The Golden Guide to Spiders by Levi and Levi.
    [Show full text]
  • Daily Locomotor Activity Patterns in Three Species of Cupiennius (Araneae, Ctenidae): the Males Are the Wandering Spiders
    Schmitt, A., M. Schuster and E B. Barth. 1990. Daily locomotor activity patterns in three species of Cupiennius (Araneae, Ctenidae): The males are the wandering spiders. J. Araehnol., 18:249-255. DAILY LOCOMOTOR ACTIVITY PATTERNS IN THREE SPECIES OF CUPIENNIUS (ARANEAE, CTENIDAE): THE MALES ARE THE WANDERING SPIDERS Alain Schmitt, Martin Schuster and Friedrich G. Barth Institut fiir Zoologic, Abteilung Neurobiologie Universit~it Wien, Althanstr. 14 A-1090 Wien, Austria ABSTRACT The daily locomotor activity patterns of spiders of three large species of the genus Cupiennius (Ctenidae) were measured in an artificial 12:12 light:dark cycle. Adult males (N = 10) and females = 10) of each species of these nocturnal Central American wandering spiders were compared. On average, males were 3.5 (C. coccineus and C. gemzi) to 12.7 (C. saleO times more active than females. Hence, males are the truly wandering spiders. We suggest that this is due to sexually motivated searching behavior of the males. Of the two sympatric species, the males and the females of C. cot.t.inell.~ were on average 3.1 times more active than those of C. getazi. In addition C. coccineus exhibited a relative minimumin its locomotor activity when C. getazi showed its absolute maximum. This difference in activity pattern may contribute to the reproductive isolation of these two sympatric species. INTRODUCTION In the field adult and subadult wandering spiders of the species Cupiennius salei (Keyserling) are quite sedentary. Identified individuals were previously found in their retreats on the same dwelling plants for at least one week (Barth and Seyfarth 1979; Seyfarth 1980).
    [Show full text]
  • 2009 Vermilion, Alberta
    September 2010 ISSN 0071‐0709 PROCEEDINGS OF THE 57th ANNUAL MEETING OF THE Entomological Society of Alberta November 5‐7, 2009 Vermilion, Alberta Content Entomological Society of Alberta Board of Directors for 2009 .............................................................. 3 Annual Meeting Committees for 2009 ................................................................................................. 3 President’s Address ............................................................................................................................. 4 Program of the 57th Annual Meeting.................................................................................................... 6 Oral Presentation Abstracts ................................................................................................................10 Poster Presentation Abstracts.............................................................................................................21 Index to Authors.................................................................................................................................24 Minutes of the Entomology Society of Alberta Executive/Board of Directors Meeting ........................26 Minutes of the Entomological Society of Alberta 57th Annual General Meeting...................................29 2009 Regional Director to the Entomological Society of Canada Report ..............................................32 2009 Northern Director’s Reports .......................................................................................................33
    [Show full text]
  • Records of the Hawaii Biological Survey for 1996
    Records of the Hawaii Biological Survey for 1996. Bishop Museum Occasional Papers 49, 71 p. (1997) RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1996 Part 2: Notes1 This is the second of 2 parts to the Records of the Hawaii Biological Survey for 1996 and contains the notes on Hawaiian species of protists, fungi, plants, and animals includ- ing new state and island records, range extensions, and other information. Larger, more comprehensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 48]. Foraminifera of Hawaii: Literature Survey THOMAS A. BURCH & BEATRICE L. BURCH (Research Associates in Zoology, Hawaii Biological Survey, Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA) The result of a compilation of a checklist of Foraminifera of the Hawaiian Islands is a list of 755 taxa reported in the literature below. The entire list is planned to be published as a Bishop Museum Technical Report. This list also includes other names that have been applied to Hawaiian foraminiferans. Loeblich & Tappan (1994) and Jones (1994) dis- agree about which names should be used; therefore, each is cross referenced to the other. Literature Cited Bagg, R.M., Jr. 1980. Foraminifera collected near the Hawaiian Islands by the Steamer Albatross in 1902. Proc. U.S. Natl. Mus. 34(1603): 113–73. Barker, R.W. 1960. Taxonomic notes on the species figured by H. B. Brady in his report on the Foraminifera dredged by HMS Challenger during the years 1873–1876. Soc. Econ. Paleontol. Mineral. Spec. Publ. 9, 239 p. Belford, D.J.
    [Show full text]
  • Jump Takeoff in a Small Jumping Spider
    Journal of Comparative Physiology A https://doi.org/10.1007/s00359-021-01473-7 ORIGINAL PAPER Jump takeof in a small jumping spider Erin E. Brandt1,2 · Yoshan Sasiharan2 · Damian O. Elias1 · Natasha Mhatre2 Received: 27 October 2020 / Revised: 4 February 2021 / Accepted: 23 February 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Jumping in animals presents an interesting locomotory strategy as it requires the generation of large forces and accurate timing. Jumping in arachnids is further complicated by their semi-hydraulic locomotion system. Among arachnids, jumping spiders (Family Salticidae) are agile and dexterous jumpers. However, less is known about jumping in small salticid species. Here we used Habronattus conjunctus, a small jumping spider (body length ~ 4.5 mm) to examine its jumping performance and compare it to that of other jumping spiders and insects. We also explored how legs are used during the takeof phase of jumps. Jumps were staged between two raised platforms. We analyzed jumping videos with DeepLabCut to track 21 points on the cephalothorax, abdomen, and legs. By analyzing leg liftof and extension patterns, we found evidence that H. conjunc- tus primarily uses the third legs to power jumps. We also found that H. conjunctus jumps achieve lower takeof speeds and accelerations than most other jumping arthropods, including other jumping spiders. Habronattus conjunctus takeof time was similar to other jumping arthropods of the same body mass. We discuss the mechanical benefts and drawbacks of a semi- hydraulic system of locomotion and consider how small spiders may extract dexterous jumps from this locomotor system.
    [Show full text]
  • O.Univ.Prof.Em. Dr. F. G. BARTH ______
    UNIVERSITÄT WIEN, Fakultät für Lebenswissenschaften Department Neurobiologie o.Univ.Prof.em. Dr. F. G. BARTH __________________________________________________________________________ SCHRIFTENVERZEICHNIS - LIST OF PUBLICATIONS FULL PAPERS P = "Public Science", R = Review 1. BARTH FG (1964) A phasic-tonic proprioceptor in the telson of the crayfish Procambarus clarki (Girard). Z vergl Physiol 48: 181-189 2. AUTRUM H, BARTH FG (1966) Einzelzellableitung von einem Spaltsinnesorgan der Spinne Cupiennius salei Keys. Naturwissenschaften 53 (16): 412-413 3. BARTH FG (1967) Ein einzelnes Spaltsinnesorgan auf dem Spinnentarsus: seine Erregung in Abhängigkeit von den Parametern des Luftschallreizes. Z vergl Physiol 55: 407-449 4. BARTH FG (1969) Die Feinstruktur des Spinnenintegumentes. I. Die Cuticula des Laufbeines adulter häutungsferner Tiere (Cupiennius salei Keys.). Z Zellforsch 97: 137- 159 5. BARTH FG, DEUTSCHLÄNDER N (1969) Zum Bau eines Einzelspaltsinnesorgans auf dem Tarsus der Spinne Cupiennius salei Keys. Bull Mus Nat Hist Natur 41 (1): 9-13 6. BARTH FG (1970) Die Feinstruktur des Spinnenintegumentes II. Die räumliche Anordnung der Mikrofasern in der lamellierten Cuticula und ihre Beziehung zur Gestalt der Porenkanäle (Cupiennius salei Keys., adult, häutungsfern, Tarsus). Z Zellforsch 104: 87-106 7. BARTH FG, LIBERA W (1970) Ein Atlas der Spaltsinnesorgane von Cupiennius salei Keys., Chelicerata (Araneae). Z Morph Tiere 68: 343-369 P 8. BARTH FG (1971) Gehörorgane der Insekten. Bild der Wissenschaft (Nov. 1971): 1106-1115 9. BARTH FG (1971) Der sensorische Apparat der Spaltsinnesorgane (Cupiennius salei Keys., Araneae). Z Zellforsch 112: 212-246 10. BARTH FG, SEYFARTH E-A (1971) Slit sense organs and kinesthetic orientation. Z vergl Physiol 74: 326-328 11. BARTH FG (1972) Die Physiologie der Spaltsinnesorgane.
    [Show full text]
  • An Analysis of Geographic and Intersexual Chemical Variation in Venoms of the Spider Tegenaria Agrestis (Agelenidae)
    Toxicon 39 (2001) 955±968 www.elsevier.com/locate/toxicon An analysis of geographic and intersexual chemical variation in venoms of the spider Tegenaria agrestis (Agelenidae) G.J. Binford* Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA Received 31 August 2000; accepted 24 October 2000 Abstract The spider Tegenaria agrestis is native to Europe, where it is considered medically innocuous. This species recently colonized the US where it has been accused of bites that result in necrotic lesions and systemic effects in humans. One possible explanation of this pattern is the US spiders have unique venom characteristics. This study compares whole venoms from US and European populations to look for unique US characteristics, and to increase our understanding of venom variability within species. This study compared venoms from T. agrestis males and females from Marysville, Washington (US), Tungstead Quarry, England (UK) and Le Landeron, Switzerland, by means of liquid chromatography; and the US and UK populations by insect bioassays. Chromatographic pro®les were different between sexes, but similar within sexes between US and UK populations. Venoms from the Swiss population differed subtly in composition from UK and US venoms. No peaks were unique to the US population. Intersexual differences were primarily in relative abundance of components. Insect assays revealed no differences between US and UK venom potency, but female venoms were more potent than male. These results are dif®cult to reconcile with claims of necrotic effects that are unique to venoms of US Tegenaria. q 2001 Elsevier Science Ltd. All rights reserved. Keywords: Spider; Venom; Variation; Population; Sex; Comparative 1.
    [Show full text]
  • Final Edition, May 1, 2020
    Final Edition, May 1, 2020 EXPLORATIONS 2020: Research, Scholarship and Creative Expression at William Paterson University Sponsors and Supporters Faculty Senate Research, Office of Sponsored Programs Scholarship and Creative Expression Council Martin Williams, Director Lisa Warner, College of Education, Co-Chair Christine Bravo, Assistant Director, Nicholas Hirshon, College of Arts and Pre-Award Services Communication, Co-Chair Kate Boschert, Assistant Director, Myles Garvey, Cotsakos College of Business Research Development Kim Dimino, College of Science and Health Maureen Peters, Program Assistant Richard Huizar, College of Humanities and Anna Baiata, Grant and Contract Social Sciences Support Specialist David Williams, Cheng Library Skyler Hagner, Graduate Assistant Babita Srivastava, Adjunct Representative Chuckie Moses II, Undergraduate Assistant Jan Pinkston, Honors College, Professional Staff Martin Williams, Office of Sponsored Programs Sandra Hill, Associate Provost for Academic Affairs David and Lorraine Cheng Library Honors College Edward Owusu-Ansah, Dean Barbara Andrew, Director Cotsakos College of Business Jan Pinkston, Assistant Director Susan Godar, Interim Dean College of Education 12th Annual Undergraduate Research Amy Ginsberg, Dean Conference College of Arts and Communication Bhanu P. S. Chauhan, Chemistry, Co-Chair Darryl Moore, Dean Jaishri Menon, Biology, Co-Chair Center for Research, College of Science and Health Brenda Marshal, Director Venkat Sharma, Dean College of Humanities and Social Sciences Richard Helldobler, President Wartyna Davis, Interim Dean Joshua Powers, Provost and Marketing and Public Relations Senior Vice President for Academic Stuart Goldstein, Associate Vice President Christine Diehl, Director, Marketing Affairs Poster and Cover Art Liam Garcia, Undergraduate Student, Prof. Matt Finn, Art Department William Paterson University, Copyright 2020 2 EXPLORATIONS will not be presented in-person in 2020 because of COVID-19 (Coronavirus Disease) Pandemic.
    [Show full text]
  • Arxiv:2104.01203V2 [Physics.Bio-Ph] 24 Apr 2021
    Universal features in panarthropod inter-limb coordination during forward walking Jasmine A. Nirody1,2 1Center for Studies in Physics and Biology, Rockefeller University, New York, NY 10065 USA 2All Souls College, University of Oxford, Oxford OX1 4AL United Kingdom April 27, 2021 Abstract Terrestrial animals must often negotiate heterogeneous, varying environments. Accordingly, their locomotive strategies must adapt to a wide range of terrain, as well as to a range of speeds in order to accomplish different behavioral goals. Studies in Drosophila have found that inter-leg coordination patterns (ICPs) vary smoothly with walking speed, rather than switching between distinct gaits as in vertebrates (e.g., horses transitioning between trotting and galloping). Such a continuum of stepping patterns implies that separate neural controllers are not necessary for each observed ICP. Furthermore, the spectrum of Drosophila stepping patterns includes all canonical coordination patterns observed during forward walking in insects. This raises the exciting possibility that the controller in Drosophila is common to all insects, and perhaps more generally to panarthropod walkers. Here, we survey and collate data on leg kinematics and inter-leg coordination relationships during forward walking in a range of arthropod species, as well as include data from a recent behavioral investigation into the tardigrade Hypsibius exemplaris. Using this comparative dataset, we point to several functional and morphological features that are shared amongst panarthropods. The goal of the framework presented in this review is to emphasize the importance of comparative functional and morphological analyses in understanding the origins and diversification of walking in Panarthropoda. Walking, a behavior fundamental to numerous tasks important for an organism's survival, is assumed to have become highly optimized during evolution.
    [Show full text]
  • Comparative Analysis of Courtship in <I>Agelenopsis</I> Funnel-Web Spiders
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Comparative analysis of courtship in Agelenopsis funnel-web spiders (Araneae, Agelenidae) with an emphasis on potential isolating mechanisms Audra Blair Galasso [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Behavior and Ethology Commons Recommended Citation Galasso, Audra Blair, "Comparative analysis of courtship in Agelenopsis funnel-web spiders (Araneae, Agelenidae) with an emphasis on potential isolating mechanisms. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1377 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Audra Blair Galasso entitled "Comparative analysis of courtship in Agelenopsis funnel-web spiders (Araneae, Agelenidae) with an emphasis on potential isolating mechanisms." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology. Susan E. Riechert, Major
    [Show full text]