Annual Report CTCC 2014
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Osmium-Nitrido Corroles As NIR Indicators for Oxygen Sensors and Triplet Sensitizers for Organic Cite This: J
Journal of Materials Chemistry C View Article Online PAPER View Journal | View Issue Osmium-nitrido corroles as NIR indicators for oxygen sensors and triplet sensitizers for organic Cite this: J. Mater. Chem. C, 2016, 4,5822 upconversion and singlet oxygen generation† Sergey M. Borisov,*a Abraham Alemayehub and Abhik Ghosh*b The photophysical properties of nitridoosmium(VI) corroles have been investigated. The complexes exhibit room temperature NIR phosphorescence (lmax 779–795 nm). Long decay times (110–150 msinsolution and 136–183 ms in polystyrene) are responsible for efficient quenching of the emission by oxygen. All the 1 Received 17th March 2016, complexes act as efficient sensitizers of singlet oxygen (quantum yields of O2 0.76–0.95). Optical oxygen Accepted 25th May 2016 sensors prepared on the basis of nitridoosmium(VI) corroles exhibit high photostability and excellent sensitivity DOI: 10.1039/c6tc01126h in the physiologically relevant range. The complexes have also been found to be promising sensitizers in triplet–triplet annihilation-based upconversion systems. Finally and not least, simple synthetic accessibility www.rsc.org/MaterialsC makes these dyes particularly attractive for application as optical materials. Creative Commons Attribution 3.0 Unported Licence. Introduction as triplet sensitizers in photon upconversion and as singlet oxygen generators in photodynamic therapy.31,32 Dyes exhibiting room temperature phosphorescence find numerous As porphyrin analogues with a rapidly unfolding chemistry, applications, for example, -
Sinchan Snigdha Adhikary
Sinchan Snigdha Adhikary Curriculum Vitae Graduate Student, Dept. of ORFE Princeton University Contact Information Permanent Address : E-mail: [email protected] B.R.M.B. Road, Mother Teresa Sarani, Ismile, Asansol, PIN- 713301, Paschim Bardhaman, West Bengal, India. Personal Sex: Male Information Date of Birth: 22nd February, 1997 Place of Birth: Asansol, West Bengal, India Citizen: Indian Education I. (Pursuing) PhD program, ORFE, Princeton University (2020-present) II. Master of Statistics (M. Stat), Indian Statistical Institute, Kolkata (July 2018 - June 2020) 1. Total Percentage Score: 83.7% 2. Specialization: Advanced Probability III. Bachelor of Statistics (B. Stat)(Hons.), Indian Statistical Institute, Kolkata (July 2015 - June 2018). 1. Total Percentage Score: 78.61% 2. Major: Statistics IV. Higher Secondary Examination (Std 12), Asansol Old Station High School, (June 2013 - May 2015) 1. Total Percentage Score(Best 5 subjects including languages): 95.0% 2. Courses: Bengali, English, Mathematics, Physics, Chemistry, Biology V. Secondary Examination (Std 10), Asansol Ramakrishna Mission High School, (May 2003 - May 2013) 1. Total Percentage Score: 93.0% 2. Courses: Bengali, English, Mathematics, Physical Science, Life Science, History, Geography. Academic Achievements • Unofficial GRE Scores (Exam date 1st July, 2019): Quantitative 169/170, Verbal 157/170, and Honors Analytical Writing 3.5/6 . • Unofficial TOEFL Scores (Exam date 4th October, 2019): Reading 29/30, Listening 25/30, Speaking 22/30, Writing 27/30. • Unofficial Mathematics Subject GRE Scores (Exam date 26th October, 2019): 970 out of 990, percentile 99% . 1 • Secured All India rank 1 in National Eligibility Test (Mathematical Sciences), held by CSIR-HRDG India-wide at 16th June, 2019. -
Annual Report 2004
RESEARCH SCHOOL OF CHEMISTRY Annual Report 2004 CANBERRA ACT 0200 AUSTRALIA ANU CRICOS Provider Number 00120C www.anu.edu.au RESEARCH SCHOOL OF CHEMISTRY Annual Report 2004 Institute of Advanced Studies Telephone: +61 2 6125 3637 Australian National University Bldg 35 Fax: +61 2 6125 0750 Canberra ACT 0200 Email: [email protected] Australia Website: http://rsc.anu.edu.au/index.php Editors: Ms Marilyn A Holloway, Professor Martin G Banwell, Ms Christine Sharrad Editorial Coordinator: Ms Michelle Baker Front Cover: The Wigner intracule for the Li2 molecule shows how the relative positions and momenta of the electrons are distributed — Professor Peter Gill, Theoretical Quantum Chemistry Group Back Cover: The “Superbowl” molecule is capable of capturing and releasing drugs and chemicals — Dr Mick Sherburn, Organic Synthesis, Methodology and Host-guest Chemistry Group RESEARCH SCHOOL OF CHEMISTRY CONTENTS Dean’s Report ____________________________________________________1 Mission Statement ________________________________________________4 Senior Staff ______________________________________________________5 Research Summaries Biological Chemistry Protein Structure and Function N E Dixon ________________________________________ 6 Nuclear Magnetic Resonance M A Keniry ________________________________________ 8 Structural Biology (ARC Fellow) A J Oakley _______________________________________ 10 Protein Crystallography and Engineering D L Ollis _________________________________ 12 Biomolecular NMR G Otting __________________________________________________ -
University of Wollongong the Bert Halpern Lecture
PREVIOUS BERT HALPERN LECTURERS: UNIVERSITY OF WOLLONGONG 1988 ALAN M. SARGESON (AUSTRALIAN NATIONAL UNIVERSITY) DEPARTMENT OF CHEMISTRY 1989 HANS C. FREEMAN (UNIVERSITY OF SYDNEY) 1990 ROBERT BREAKSPERE (UNIVERSITY OF TECHNOLOGY, SYDNEY) 1991 GRAHAM JOHNSTON (UNIVERSITY OF SYDNEY) 1992 GRAEME PEARMAN (CSIRO DIVISION OF ATMOSPHERIC RESEARCH) 1993 ATHEL BECKWITH (AUSTRALIAN NATIONAL UNIVERSITY) 1994 ANTHONY G WEDD (UNIVERSITY OF MELBOURNE) 1995 ARTHUR J BIRCH (AUSTRALIAN NATIONAL UNIVERSITY) 1996 LEN LINDOY (UNIVERSITY OF SYDNEY) 1997 PETER COLMAN (BIOMOLECULAR RESEARCH INSTITUTE) 1998 DON NAPPER (UNIVERSITY OF SYDNEY) THE BERT HALPERN LECTURE - 2006 2000 PAUL HADDAD (UNIVERSITY OF TASMANIA) 2001 JOHN BOWIE (UNIVERSITY OF ADELAIDE) 2002 GRAEME CLARK (UNIVERSITY OF MELBOURNE) Prof. Leo Radom University of Sydney 2003 DAVID BLACK (UNIVERSITY OF NEW SOUTH WALES) School of Chemistry 2004 BRUCE CORNELL (AMBRI PTY LTD) 2005 ROGER SUMMONS (MASSACHUSETTS INST. OF TECH., USA) Thursday 16th November, 2006 ORDER OF PROCEEDINGS: 5.30 – 6.00 p.m. Refreshments Union Function Centre UniCentre Function Rooms 3 & 4 5.30pm. for 6.00pm 6.00pm Welcome: Prof. William Price Head, Department of Chemistry Introduction: Prof. Rob Whelan Dean, Faculty of Science Lecture: Prof. Leo Radom Vote of thanks: Prof. Margaret Sheil Deputy Vice-Chancellor (Research) RSVP Louisa Willdin (by 13TH November, 2006) Phone: (02) 42 213509 Email: [email protected] THE BERT HALPERN LECTURE THE BERT HALPERN LECTURER 2006 The Bert Halpern Lecture is a public lecture presented annually at The University of Wollongong by a distinguished visiting scientist on a subject in chemistry or PROF LEO RADOM biochemistry. Leo Radom was educated at the University of Sydney where he graduated with First It honours the memory of Bert Halpern, the Professor of Chemistry at the University Class Honours and the University Medal in 1965, and subsequently a PhD in 1969 with of Wollongong from 1970-1980. -
American Scientist the Magazine of Sigma Xi, the Scientific Research Society
A reprint from American Scientist the magazine of Sigma Xi, The Scientific Research Society This reprint is provided for personal and noncommercial use. For any other use, please send a request to Permissions, American Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709, U.S.A., or by electronic mail to [email protected]. ©Sigma Xi, The Scientific Research Society and other rightsholders Perspective The Grammar of the Elements Did the Sanskrit alphabet influence Mendeleev’s periodic table? Abhik Ghosh and Paul Kiparsky mitri Ivanovich Mendeleev might have led Mendeleev to reference was not the first to recog- Sanskrit in this way. nize the periodicity of the In general terms, the origin of Men- chemical elements or even deleev’s periodic table is fairly well- Dto construct a primitive periodic table. known. As a freshly tenured profes- He did go much further than his peers, sor at Saint Petersburg University in however, in conceptualizing periodic- Russia in 1867, Mendeleev found him- ity as a fundamental law governing self responsible for teaching in organic the nature of the elements. Based on chemistry with no suitable textbook at that insight, whenever the properties hand. Characteristically, he set about of a given element didn’t fit the over- writing his own—Osnovy Khimii [Prin- all pattern, he famously left an empty ciples of Chemistry]—between 1868 spot in his table for an as yet undiscov- and 1870. During this period, while ered element. He used the prefixes eka, searching for a sensible order for dis- dvi, and tri, Sanskrit for the numbers cussing the chemistry of the approxi- es such as Sanskrit, and there is strong one, two, and three, to name these hypo- mately 65 elements known at the time, evidence that Mendeleev cultivated thetical elements, referring to the num- he hit upon the idea of the “periodic friends in that milieu. -
Curriculum Vitae
Sayar Karmakar University of Florida Department of Statistics Phone: (312) 709-0684 230 Newell Drive Email: [email protected] Gainesville, FL 32601 Tel: (352) 392-1941 Employment (Aug 2018-Current) Assistant Professor of Statistics, University of Florida Education Ph.D., Statistics, University of Chicago, June 2018 Master of Statistics, Indian Statistical Institute, 2013. Bachelor of Statistics , Indian Statistical Institute, 2011. Research Grants Awarded NSF DMS ATD program 2124222 New algorithms for inference and predictions on large geospatial datasets. 2021-24. Role- Solo P.I. $200,000. Link: https://www.nsf.gov/awardsearch/showAward?AWD_ID=2124222&HistoricalAwards=false Start-up grant from University of Florida. Project name: High dimensional inference for dependent data. Role- Solo P.I. $83,924 AMS Simons Travel Grant for 2021-2024. $5000 Research Publications Updates: https://sayarkarmakar.github.io. Published Journal Articles 1. Simultaneous inference for time-varying models: Sayar Karmakar, Stefan Richter, Wei Biao Wu; To appear at Journal of Econometrics. Link: https://doi.org/10.1016/j.jeconom.2021.03.002 2. Optimal Gaussian approximation for multiple time-series: Sayar Karmakar, Wei Biao Wu; Statistica Sinica 30, 1399-1417 (2020) Presented in Statistica Sinica Invited Papers Session JSM 2020. Link: https://doi.org/10.5705/ss.202017.0303 Arxiv version: https://arxiv.org/abs/2001.10164 3. Shrinkage estimation with singular priors and an application to small area estimation. Ryumei Nakada (Graduate student), Tatsuya Kubokawa, Malay Ghosh and Sayar Karmakar. Journal of Multivariate Analysis Volume 183, May 2021 Link: https://doi.org/10.1016/j.jmva.2021.104726 Sayar Karmakar 2 4. Long term prediction intervals of economic time-series: Marek Chudy∗, Sayar Karmakar∗, Wei Biao Wu; Empirical Economics 58, 191-222 (2020) [* Alphabetical order] Link: https://doi.org/10.1007/s00181-019-01689-2 5. -
Final Program of ICPP-5
Program International Conference on Porphyrins and Phthalocyanines 1 MONDAY Program of ICPP-5 Copyright © 2008 Society of Porphyrins & Phthalocyanines Moscow Russia - July 6-11, 2008 http://www.icpp-spp.org MONDAY 2 International Conference on Porphyrins and Phthalocyanines Program Monday 7 July, 2008 - AM Award Lecture Large Hall Chaired by: Daniel G. Nocera 10:00 to 11:00 H. B. Gray Heme Protein Folding Landscapes Symposia Lectures Synthesis of Porphyrins and Phthalocyanines Large Hall Chaired by: Michael J. Cook and Andrey Mironov 11:30 to 12:00 Harry Anderson Synthesis of porphyrin dimers for two-photon excited photodynamic therapy 12:00 to 12:20 Yulia Gorbunova, Kirill Birin, Alexander Martynov, Aslan Tsivadze Synthetic approaches to heteroleptic sandwich tetrapyrroles 12:20 to 12:40 José Cavaleiro Synthesis of New Glycoporphyrin Derivatives 12:40 to 13:00 Ozer Bekaroglu Ball-type or cofacial bis-phthalocyanines: synthesis and properties 13:00 to 13:20 Hidemitsu Uno Bicyclo[[2.2.2]octadiene-fused Porphyrins. Structures, Properties, and Reactivities 13:20 to 13:40 Penelope Brothers, Amelia Albrett, Peter Boyd, Jeanet Conradie, Abhik Ghosh Corroles containing coordinated boron Moscow Russia - July 6-11, 2008 Copyright © 2008 Society of Porphyrins & Phthalocyanines http://www.icpp-spp.org Program International Conference on Porphyrins and Phthalocyanines 3 MONDAY Tumor Imaging, Photodynamic Therapy and other Medical Applications of Porphyrin-Based Compounds Beige Hall Chaired by: Ravindra Pandey and Jianjun Guo 11:30 to 12:00 Charles -
Print This Article
Bengal Journal of Otolaryngology and Head Neck Surgery Official Publication of The Association of Otolaryngologists of India, West Bengal Volume 23 No. 3 - December, 2015 EDITORIAL BOARD CONTENTS From the desk of the Editor Editor Main Article Dr Saumendra Nath Bandyopadhyay Hyperbaric Oxygen Therapy in the treatment of Idiopathic 87 Sudden Sensorineural Hearing Loss Editorial Secretary Debasish Guha, Shaoni Sanyal, Chayan Bhattacharyya, Abhijit Santra, Dr Swagatam Banerjee Swagatam Banerjee Three Years’ Experience of Management of Different Types 92 Members of Rhinosporidiosis in Rural Part of Western West Bengal Dr Sarmishtha Bandyopadhyay Debdulal Chakraborty, Chiranjib Das, Rajesh Hansda Dr Radheshyam Mahato Identifying Recurrent Laryngeal Nerve in Thyroid Surgery 99 Using Relationship with Superior Parathyroid Gland and Treasurer Tubercle of Zuckerkandl Dr Snehasis Barman Somesh Mozumder, Shirish Dubey, Aniruddha Dam, Anup Kumar Bhowmick Ex-Officio Members Acetic Acid Instillation after Canal Wall Down 104 Dr Prabir Basu Mastoidectomy Hamsa Shetty, Gangadhara K S (President) Dr Dwaipayan Mukherjee (Hony. Secretary) Invited Article Operating Room Essentials for Budding Doctors - A 109 This journal is indexed Perspective in OCLC WorldCat, Tushar Chakravorty Google Scholar, WHO Hinari, OAIster, BASE, Case Series abcGATE, CiteFactor, SIS, Ossicular Status in Cholesteatoma : Experience in a State 116 JournalTOCS, OAJI, EZB Medical College of West Bengal and listed in AcademicKeys Somesh Mozumder, Arunabha Sengupta, Alok Ranjan Mondal, -
Dr. David M. Smith PERSONAL
Curriculum vitae David M. Smith Curriculum vitae: Dr. David M. Smith PERSONAL: Born April 22, 1973, Dubbo Australia. Married, Three children. Holder of Croatian and Australian citizenships. CURRENT STATUS 03.18‐: Director General of the Ruđer Bošković Institute (RBI) in Zagreb, Croatia. The Institute has 11 Divisions and over 850 employees. PREVIOUS WORK EXPERIENCE 03.16‐03.18.: Divisional Head and Senior Scientist, Division of Physical Chemistry, Ruđer Bošković Institute (RBI) in Zagreb, Croatia. The Division has 6 research laboratories and 75 employees. 04.16‐10.16: Special Advisor to the Croatian Minister for Science, Education and Sports, in the area of Research and Development. 10.09‐01.14: Assistant Director for International Collaboration and Projects at the Ruđer Bošković Institute (RBI). 10.09‐12.17: Visiting Professor at the Excellence Cluster: “Engineering of Advanced Materials” (EAM) and the Center for Computational Chemistry (CCC) at the Friedrich‐Alexander‐University (FAU) of Erlangen‐Nuremberg, Germany. 02.14‐02.16: Senior Scientist (equivalent to Full Professor) in the Division of Organic Chemistry and Biochemistry (DOCB) at RBI in Zagreb, Croatia. 10.08‐02.16: Group leader of the Group for Quantum Organic Chemistry (GQOC) in DOCB, RBI. The group grew from 6 and 16 members during this period. 02.08‐02.14: Senior Research Associate (equivalent to Associate Professor), DOCB, RBI 03.04‐02.08: Research Associate (equivalent to Assistant Professor), DOCB, RBI. 10.01‐02.04: Postdoctoral Fellow in the group of Prof. Hendrik Zipse at the Department of Chemistry, Ludwig‐ Maximilians‐University (LMU), Munich, Germany. 04.00‐08.01: Postdoctoral Researcher in the group of Prof. -
Stable Platinum(IV) Corroles: Synthesis, Molecular Structure, and Room-Temperature Near-IR Phosphorescence
Lawrence Berkeley National Laboratory Recent Work Title Stable Platinum(IV) Corroles: Synthesis, Molecular Structure, and Room-Temperature Near-IR Phosphorescence. Permalink https://escholarship.org/uc/item/9n05q3k2 Journal ACS omega, 3(8) ISSN 2470-1343 Authors Alemayehu, Abraham B McCormick, Laura J Gagnon, Kevin J et al. Publication Date 2018-08-17 DOI 10.1021/acsomega.8b01149 Peer reviewed eScholarship.org Powered by the California Digital Library University of California This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article Cite This: ACS Omega 2018, 3, 9360−9368 http://pubs.acs.org/journal/acsodf Stable Platinum(IV) Corroles: Synthesis, Molecular Structure, and Room-Temperature Near-IR Phosphorescence † ‡ ‡ § Abraham B. Alemayehu, Laura J. McCormick, Kevin J. Gagnon, Sergey M. Borisov, † and Abhik Ghosh*, † Department of Chemistry, UiTThe Arctic University of Norway, N-9037 Tromsø, Norway ‡ Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States § Institute of Analytical Chemistry and Food Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria *S Supporting Information ABSTRACT: A series of stable Pt(IV) corrole complexes with the general IV 3− formula Pt [TpXPC](m/p-C6H4CN)(py), where TpXPC is the trianion of a tris(p-X-phenyl)corrole and X = CF3, H, and CH3, has been synthesized, affording key physicochemical data on a rare and elusive class of metallocorroles. Single-crystal X-ray structures of two of the complexes revealed very short equatorial Pt−N distances of 1.94−1.97 Å, an axial Pt−C distance of ∼2.03 Å, and an axial Pt−N distance of ∼2.22 Å. -
A Combined Experimental and DFT Study of Metal–Ligand Interactions
RSC Advances View Article Online PAPER View Journal | View Issue Gold dipyrrin-bisphenolates: a combined experimental and DFT study of metal–ligand Cite this: RSC Adv., 2020, 10,533 interactions† Kolle E. Thomas,a Nicolas Desbois,b Jeanet Conradie, ac Simon J. Teat, d Claude P. Gros *b and Abhik Ghosh *a Given that noninnocent and metalloradical-type electronic structures are ubiquitous among dipyrrin- bisphenolate (DPP) complexes, we synthesized the gold(III) derivatives as potentially innocent paradigms against which the properties of other metallo-DPP derivatives can be evaluated. Electronic absorption Received 7th November 2019 spectra, electrochemical studies, a single-crystal X-ray structure, and DFT calculations all suggest that Accepted 18th December 2019 the ground states of the new complexes indeed correspond to an innocent AuIII–DPP3À, paralleling DOI: 10.1039/c9ra09228e a similar description noted for Au corroles. Interestingly, while DFT calculations indicate purely ligand- rsc.li/rsc-advances centered oxidations, reduction of AuDPP is predicted to occur across both the metal and the ligand. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. 1. Introduction 2. Results and discussion 2.1 Physical measurements The dipyrrin-bisphenols (H3DPP) are an emerging class of ligands that share a number of similarities with corroles Three Au(III) meso-para-X-phenyl dipyrrin-bisphenolate 1 ¼ (Fig. 1). Thus, they are triprotic, afford a square-planar envi- complexes Au[XDPP] with X CF3, H, and Me were obtained ronment for coordinated metals, and even exhibit redox-active as blue solids in 50–77% yields via the interaction of the cor- behavior remarkably similar to that of corroles.2,3 Thus, like responding free ligands and a threefold molar excess of Au(III) – 12 This article is licensed under a their corrole analogues,4 6 a number of M[DPP] derivatives (M ¼ acetate in pyridine. -
Infrared Spectroelectrochemistry of Iron-Nitrosyl Triarylcorroles
Marquette University e-Publications@Marquette Chemistry Faculty Research and Publications Chemistry, Department of 3-2020 Infrared Spectroelectrochemistry of Iron-Nitrosyl Triarylcorroles. Implications for Ligand Noninnocence Md. Hafizur Rahman Michael D. Ryan Hugo Vazquez-Lima Abraham Alemayehu Abhik Ghosh Follow this and additional works at: https://epublications.marquette.edu/chem_fac Part of the Chemistry Commons Marquette University e-Publications@Marquette Chemistry Faculty Research and Publications/College of Arts and Sciences This paper is NOT THE PUBLISHED VERSION. Access the published version via the link in the citation below. Inorganic Chemistry, Vol. 59, No. 5 (March 2020): 3232-3238. DOI. This article is © American Chemical Society and permission has been granted for this version to appear in e-Publications@Marquette. American Chemical Society does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from American Chemical Society. Infrared Spectroelectrochemistry of Iron- Nitrosyl Triarylcorroles. Implications for Ligand Noninnocence Md. Hafizur Rahman Department of Chemistry, Marquette University, 1414 West Clybourn Street, Milwaukee, Wisconsin Michael D. Ryan Department of Chemistry, Marquette University, 1414 West Clybourn Street, Milwaukee, Wisconsin Hugo Vazquez-Lima Department of Chemistry, UiT—The Arctic University of Tromsø, 9037 Tromsø, Norway Centro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, Edif. IC9, CU, San Manuel, 72570 Puebla, Puebla, Mexico Abraham Alemayehu Department of Chemistry, UiT—The Arctic University of Tromsø, 9037 Tromsø, Norway Abhik Ghosh Department of Chemistry, UiT—The Arctic University of Tromsø, 9037 Tromsø, Norway Abstract Recent DFT calculations have suggested that iron nitrosyl triarylcorrole complexes have substantial {FeNO}7–corrole•2– character.