Dematophytes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Updating the Taxonomy of Dermatophytes of the BCCM/ IHEM Collection According to the New Standard: a Phylogenetic Approach
Mycopathologia https://doi.org/10.1007/s11046-019-00338-7 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL ARTICLE Updating the Taxonomy of Dermatophytes of the BCCM/ IHEM Collection According to the New Standard: A Phylogenetic Approach F. Baert . D. Stubbe . E. D’hooge . A. Packeu . M. Hendrickx Received: 23 January 2019 / Accepted: 30 April 2019 Ó Springer Nature B.V. 2019 Abstract Recent taxonomical revisions based on floccosum as the only representative, fell within the multilocus gene sequencing have provided some Nannizzia clade, whereas the phylogenetic analysis, clarifications to dermatophyte (Arthrodermataceae) based on the ITS region alone, differentiates Epider- family tree. These changes promoted us to investigate mophyton from Nannizzia as a separate genus. Re- the impact of the changed nomenclature of the identification and reclassification of many strains in dermatophyte strains in the BCCM/IHEM fungal the collection have had a profound impact on the collection, which contains strains of all dermatophyte composition of the BCCM/IHEM dermatophyte col- genera except for Ctenomyces. For 688 strains from lection. The biggest change is the decline of preva- this collection, both internal transcribed spacer region lence of Arthroderma strains; starting with 103 strains, (ITS) and partial b-tubulin (BT) sequences were only 22 strains remain in the genus after reassessment. aligned and a multilocus phylogenetic tree was Most Arthroderma strains were reclassified into Tri- constructed. The ITS ? BT phylogentic tree was able chophyton, with A. benhamiae and A. van- to distinguish the genera Arthroderma, Lophophyton, breuseghemii leaving the genus. The amount of Microsporum, Paraphyton, Nannizzia and Trichophy- Microsporum strains also dropped significantly with ton with high certainty. -
Dermatophytosis Due to Microsporum Nanum Infection in a Canine
DOI: 10.5433/1679-0359.2017v38n1p317 Dermatophytosis due to Microsporum nanum infection in a canine Dermatofitose por Microsporum nanum em um canino Marilia Avila Valandro1*; João Paulo da Exaltação Pascon2; Maria Lígia de Arruda Mistieri2; Irina Lubeck2 Abstract Miscrosporum nanum is a dermatophyte found in swine that causes non-pruritic lesions with desquamation, alopecia, and circular characteristics. M. nanum infection in dogs is rare and poorly understood in terms of its epidemiological and clinical features, and its therapeutic response. The present report describes a case of dermatophytosis due to M. nanum in a Dogo Argentino breed of dog that was used for wild boar hunting. The dermatophytosis presented with hypotrichosis, erythema, and non-pruritic desquamation in the back of the neck and chest area. The dermatophytosis was responsive to systemic treatment with itraconazole and topical (miconazole 2%) for 60 days. Thus, we conclude that the practice of hunting wild boar should be considered as a possible source of infection of M. nanum in the reported dog. The M. nanum infection showed clinical features that were similar to the lesions observed in swine, except for the absence of the circular pattern, and showed a good clinical response to the therapy. Finally, M. nanum should be considered as an etiologic agent of dermatophytosis in dogs that in some manner have had direct contact with domestic or wild swine. Key words: Dermatophytes. Dog. Therapy. Resumo O Miscrosporum nanum é um dermatófito encontrado em suídeos, promovendo lesões não pruriginosas, com características descamativas, alopécicas e circulares. A infecção de cães é rara e pouco compreendida em seus aspectos epidemiológicos, clínicos e terapêuticos. -
Exd.13726 - Auteur(S)
Institutional Repository - Research Portal Dépôt Institutionnel - Portail de la Recherche University of Namurresearchportal.unamur.be RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE In vitro models of dermatophyte infection to investigate epidermal barrier alterations Faway, Émilie; Lambert De Rouvroit, Catherine; Poumay, Yves Published in: Experimental dermatology DOI: Author(s)10.1111/exd.13726 - Auteur(s) : Publication date: 2018 Document Version PublicationPublisher's date PDF, - also Date known de aspublication Version of record : Link to publication Citation for pulished version (HARVARD): Faway, É, Lambert De Rouvroit, C & Poumay, Y 2018, 'In vitro models of dermatophyte infection to investigate Permanentepidermal link barrier - Permalien alterations', Experimental : dermatology, vol. 27, no. 8, pp. 915-922. https://doi.org/10.1111/exd.13726 Rights / License - Licence de droit d’auteur : General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document -
Diversity of Geophilic Dermatophytes Species in the Soils of Iran; the Significant Preponderance of Nannizzia Fulva
Journal of Fungi Article Diversity of Geophilic Dermatophytes Species in the Soils of Iran; The Significant Preponderance of Nannizzia fulva Simin Taghipour 1, Mahdi Abastabar 2, Fahimeh Piri 3, Elham Aboualigalehdari 4, Mohammad Reza Jabbari 2, Hossein Zarrinfar 5 , Sadegh Nouripour-Sisakht 6, Rasoul Mohammadi 7, Bahram Ahmadi 8, Saham Ansari 9, Farzad Katiraee 10 , Farhad Niknejad 11 , Mojtaba Didehdar 12, Mehdi Nazeri 13, Koichi Makimura 14 and Ali Rezaei-Matehkolaei 3,4,* 1 Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord 88157-13471, Iran; [email protected] 2 Invasive Fungi Research Center, Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran; [email protected] (M.A.); [email protected] (M.R.J.) 3 Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran; [email protected] 4 Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran; [email protected] 5 Allergy Research Center, Mashhad University of Medical Sciences, Mashhad 91766-99199, Iran; [email protected] 6 Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 75919-94799, Iran; [email protected] Citation: Taghipour, S.; Abastabar, M.; 7 Department of Medical Parasitology and Mycology, School of Medicine, Infectious Diseases and Tropical Piri, F.; Aboualigalehdari, E.; Jabbari, Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; M.R.; Zarrinfar, H.; Nouripour-Sisakht, [email protected] 8 S.; Mohammadi, R.; Ahmadi, B.; Department of Medical Laboratory Sciences, Faculty of Paramedical, Bushehr University of Medical Sciences, Bushehr 75187-59577, Iran; [email protected] Ansari, S.; et al. -
Mat Kadi Tora Tutti Tutto Ultima Hora En Lithuania
MAT KADI TORA TUTTI USTUTTO 20180148498A1 ULTIMAHORA EN LITHUANIA ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 /0148498 A1 Kozel et al. (43 ) Pub . Date : May 31 , 2018 ( 54 ) FUNGAL DETECTION USING MANNAN Publication Classification EPITOPE (51 ) Int. Cl. @(71 ) Applicant: BOARD OF REGENTS OF THE COZK 16 / 14 (2006 .01 ) NEVADA SYSTEM OF HIGHER GOIN 33 /569 ( 2006 . 01) EDUCTION , ON BEHALF OF THE CO7K 16 / 44 ( 2006 . 01 ) UNIVERSITY OF NEVADA , RENO , (52 ) U . S . CI. NV (US ) CPC . .. .. CO7K 16 / 14 ( 2013 .01 ) ; GOIN 33 /56961 ( 2013 .01 ) ; COZK 2317/ 622 (2013 . 01 ) ; COOK @(72 ) Inventors: Thomas R . Kozel , Reno , NV (US ) ; 2317 /33 (2013 . 01 ) ; CO7K 2317/ 92 ( 2013 .01 ) ; Breeana HUBBARD , Pullman , WA (US ) ; Amanda CO7K 16 /44 ( 2013 .01 ) BURNHAM -MARUSICH , Reno , NV (US ) ( 57 ) ABSTRACT ( 21) Appl . No. : 15 /567 , 547 (22 ) PCT Filed : Apr. 23 , 2016 Non - invasive methods are provided herein for diagnosing samples as including a fungus , including fungal infection or ( 86 ) PCT No. : PCT/ US16 /29085 contamination , with specific monoclonal antibodies capable $ 371 ( c) ( 1 ), of detecting molecules associated with fungi in the sample , ( 2 ) Date : Oct. 18 , 2017 such as a biological or environmental sample . These mol ecules can be identified using various methods, including Related U . S . Application Data but not limited to antibody based methods , such as an ( 60 ) Provisional application No. 62 /151 , 865, filed on Apr . enzyme- linked immunosorbant assay (ELISA ) , -
Redalyc.Dermatophytosis Due to Microsporum Nanum Infection in A
Semina: Ciências Agrárias ISSN: 1676-546X [email protected] Universidade Estadual de Londrina Brasil Avila Valandro, Marilia; da Exaltação Pascon, João Paulo; de Arruda Mistieri, Maria Lígia; Lubeck, Irina Dermatophytosis due to Microsporum nanum infection in a canine Semina: Ciências Agrárias, vol. 38, núm. 1, enero-febrero, 2017, pp. 317-320 Universidade Estadual de Londrina Londrina, Brasil Available in: http://www.redalyc.org/articulo.oa?id=445749994048 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative DOI: 10.5433/1679-0359.2017v38n1p317 Dermatophytosis due to Microsporum nanum infection in a canine Dermatofitose por Microsporum nanum em um canino Marilia Avila Valandro1*; João Paulo da Exaltação Pascon2; Maria Lígia de Arruda Mistieri2; Irina Lubeck2 Abstract Miscrosporum nanum is a dermatophyte found in swine that causes non-pruritic lesions with desquamation, alopecia, and circular characteristics. M. nanum infection in dogs is rare and poorly understood in terms of its epidemiological and clinical features, and its therapeutic response. The present report describes a case of dermatophytosis due to M. nanum in a Dogo Argentino breed of dog that was used for wild boar hunting. The dermatophytosis presented with hypotrichosis, erythema, and non-pruritic desquamation in the back of the neck and chest area. The dermatophytosis was responsive to systemic treatment with itraconazole and topical (miconazole 2%) for 60 days. Thus, we conclude that the practice of hunting wild boar should be considered as a possible source of infection of M. -
Bab 1 Pendahuluan
1 2 3 KATA PENGANTAR Buku Mikologi disusun dalam rangka melengkapi khasanah keilmuan bidang biologi khususnya Mikrobiologi. Ditujukan untuk mahasiswa baik program sarjana maupun peminat ilmu dasar mengenai jamur atau fungi. Dalam proses belajar mengajar di Perguruan Tinggi diperlukan adanya buku acuan dan bahan ajar sebagai bahan untuk dikembangkan baik oleh pengajar maupun oleh mahasiswa sehingga proses belajar akan tercapai sesuai dengan garis besar perkuliahan. Buku ini masih jauh dari sempurna, oleh karena itu penulis mohon maaf atas kekurangan-kekurangannya, namun demikian semoga buku ini bermanfaat bagi yang menggunakannya. Dengan tersusunnya buku ini, penulis menyampaikan terima kasih yang sebesar-besarnya atas bantuan dari semua pihak. Semoga buku ini dapat bermanfaat secara maksimal untuk seluruh pembaca. Terimakasih. Bandung, Januari 2020 Penulis 4 DAFTAR ISI Kata Pengantar .................................................................. iii Daftar Isi ................................................................... iv 1. Pendahuluan .............................................................. 1 A. Lata Belakang ........................................................ 1 B. Definisi dan Pengertian Umum Jamur ................... 2 2. Sifat-Sifat Umum Jamur........................................... 4 A. Morfologi dan Anatomi Jamur .............................. 4 1. Hifa dan Miselium ........................................... 4 2. Dinding Hifa .................................................... 6 3. Membran Hifa ................................................. -
Clinical Policy: Topical Agents: Anti-Fungals Reference Number: OH.PHAR.PPA.90 Effective Date: 01/01/2020 Revision Log Last Review Date: Line of Business: Medicaid
Clinical Policy: Topical Agents: Anti-Fungals Reference Number: OH.PHAR.PPA.90 Effective Date: 01/01/2020 Revision Log Last Review Date: Line of Business: Medicaid See Important Reminder at the end of this policy for important regulatory and legal information. Description NO PA REQUIRED “PREFERRED” PA REQUIRED “NON-PREFERRED” CICLOPIROX cream, gel, topical suspension, shampoo CICLOPIROX kit (generic of CNL® Nail lacquer kit) (generic of Loprox®) ERTACZO® (sertaconazole) CICLOPIROX solution (generic of Penlac®) EXELDERM® (sulconazole) CLOTRIMAZOLE (generic of Lotrimin®) JUBLIA® solution (efinaconazole) CLOTRIMAZOLE/BETAMETHASONE (generic of KERYDIN® solution (tavaborole) Lotrisone®) KETOCONAZOLE foam(generic of Extina®) ECONAZOLE (generic of Spectazole®) LUZU® (luliconazole) KETOCONAZOLE cream & shampoo (generic of Kuric®, MENTAX® (butenafine) Nizoral®) NAFTIFINE CREAM MICONAZOLE NAFTIN® GEL (naftifine) NYSTATIN OXICONAZOLE (generic of OXISTAT®) NYSTATIN/TRIAMCINOLONE PEDIADERM AF® cream (nystatin) TERBINAFINE (generic of Lamisil®) VUSION® ointment (miconazole/zinc) TOLNAFTATE (generic of Tinactin®) FDA approved indication(s) Ciclopirox is indicated for: • Topical treatment of mild to moderate onychomycosis of fingernails and toenails without lunula involvement, due to Trichophyton rubrum in immunocompetent patients (Penlac®, Ciclodan Nail Lacquer®) • Topical treatment of seborrheic dermatitis of the scalp (Loprox®) • Topical treatment of tinea corporis, tinea cruris, or tinea pedis (Epidermophyton floccosum; Microsporum canis; Trichophyton -
How Much Human Ringworm Is Zoophilic? Mcphee A, Cherian S, Robson J Adapted from Poster Produced for the Zoonoses Conference 25–26 July 2014 Brisbane
How much human ringworm is zoophilic? McPhee A, Cherian S, Robson J Adapted from poster produced for the Zoonoses Conference 25–26 July 2014 Brisbane Introduction Epidermophyton floccosum Humans Common Dermatophytes can be the cause of common infections in both Trichophyton rubrum [worldwide] Humans Very common humans and animals. The source of human infection may be Trichophyton rubrum [African] Humans Less common anthropophilic (human), geophilic (soil) or zoophilic (animal). Trichophyton interdigitale Anthropophilic Humans Common Zoophilic dermatophyte infections usually elicit a strong host [anthropophilic] response on the skin where there is contact with the infective Trichophyton tonsurans Humans Common animal or contaminated fomites. Table 1 illustrates the range of Trichophyton violaceum Humans Less common dermatophytes that are isolated from the mycology laboratory Microsporum audouinii Humans Less common and grouped by source of acquisition. Microsporum gypseum Soil Common Geophilic Microsporum nanum Soil/Pigs Rare Guinea pigs, Aim Trichophyton interdigitale [zoophilic] Common kangaroos To characterize and compare zoophilic with non-zoophilic Microsporum canis Cats Common dermatophyte human infections isolated at Sullivan Nicolaides Zoophilic Trichophyton verrucosum Cattle Rare Pathology (SNP) for the year 2013. Trichophyton equinum Horses Rare Microsporum nanum Soil/pigs Rare Method Table 1: Classification of dermatophytes according to source Superficial fungal cultures submitted in 2013 to Sullivan Nicolaides Pathology were reviewed. This laboratory services Queensland and extends into New South Wales as far south as Coffs Harbour. Specimens include skin scrapings, skin biopsies, nails and involved hair. All cutaneous samples (Figure 1) submitted for fungal culture receive direct examination using Calcofluor white/Evans Blue/ KOH/Glycerol under fluorescent and/or light microscopy (Figure 2) and cultured. -
DERMATOPHYTOSIS ( Ti Ri ) ( Ti Ri ) (=Tinea = Ringworm)
DERMATOPHYTOSIS (Ti(=Tinea = Ringworm) IInfection of the skin, hair or nails caused by a group of keratinophilic fungi, called dermatophytes ¨ Microsporum Hair, skin ¨ Epidermophyton Skin, nail ¨ TTihrichoph htyton HHiair, skin, nail DERMATOPHYTES IDigest keratin by their keratinases IResistant to cycloheximide IClassified into three groups depending on their usual habitat All three dermatoppyhytes contain virulence factors that allow them to invade the skin, hair, and nails Keratinases Elastase Proteinases DERMATOPHYTES IANTROPOPHILIC Trichophyton rubrum... IGEOPHILIC Microsporum gypseum... IZOOPHILIC Microsporum canis: cats and dogs Microsporum nanum: swine Trichophyton verrucosum: horse and swine… Zoophilic dermatophytes Microscopic characteristics of dermatophyte genera Microsporum Epidermophyton Trichophyton DERMATOPHYTOSIS PhPathogenesi s and Immuni ty IContact and trauma IMoisture ICrowded living conditions ICellular immunodeficiency Æ(()chronic inf.) IReRe--infectioninfection is possible (but, larger inoculum is needed, the course is shorter ) DERMATOPHYTOSIS Clllinical Cllfassification IInfection is named according to the anatomic location involved: a. Tinea barbae e. Tinea pedis (Athlete’ s foot) b. Tinea corporis f. Tinea manuum c. Tinea capitis g. Tinea unguium d. Tinea cruris (Jock itch) DERMATOPHYTOSIS Clini ca l manifestat ions ISkin: Circular, dry, erythematous, scaly, itchy lesions IHair: Typical lesions,”kerion”, scarring, “l“alopeci i”a” INail: Thickened,,fm, deformed, friable, discolored nails, subungual debris accumulation IFavus (Tinea favosa) DERMATOPHYTOSIS TiiTransmission IClose human contact ISharing clothes, combs, brushes, towels, bedsheets... (Indirect ) IAnimalAnimal--toto--humanhuman contact (Zoophilic) DERMATOPHYTOSIS Diagnos is I. Clllinical Appearance Wood lamp (UV, 365 nm) II. Lab A. Direct microscopic examination ((1010--2525%% KOH) Ectothrix/endothrix/favic hair DERMATOPHYTOSIS Diagnos is B. Culture Mycobiotic agar Sabdbouraud dextrose agar DERMATOPHYTES Iden tifica tion A. Colony characteristics B. -
Davis Overview of Fungi and Diseases 2014
JHH ID Tutorials Dr Josh Davis December 2014 MYCOLOGY OVERVIEW 1. OVERVIEW. It is estimated that there are 1.5 million extant species of fungi on Earth, of which 60,000 have been described/named; of these only approximately 400 species have ever been described to cause disease in humans and only approximately 20 do so with any frequency. Many others are plant pathogens or symbionts. At least 13,500 fungal species form lichens, symbiotic partnerships between fungi (usually ascomycota) and photosynthetic microbes (eg. algae, cyanobacteria). 2. CLASSIFICATION. There are several confusing/overlapping classifications systems for fungi. 2.1 Biological Kingdom FUNGI; Phyla: 2.1.1 Phylum Zygomycota – Agents of zygomycosis, “mucormycosis”. Most primitive fungi. Broad, ribbon-like hyphae, no septae. Generally grow fast on agar (“lid-lifters”). 2.1.1.1 Order Mucorales – eg. Rhizopus, Rhizomucor, Mucor, Saskanaea, Cuninghamella 2.1.1.2 Order Entomophthorales – Basidiobolus, Canidiobolus 2.1.2 Phylum Basidiomycota – Mushrooms, jelly fungi, smuts, rusts, stinkhorns . and the teleomorph of cryptococcus! 2.1.3 Phylum Ascomycota – e.g. Pseudoallescheria, Curvularia, Saccharomyces. 2.1.4 Phylum Deuteromycota, or Fungi Imperfecti. Not a true phylum. Contains asexual (“imperfect”) forms of fungi (anamorphs), most of which have not had a sexual form described. Most human pathogens are in this group – eg: Aspergillus, Candida, Cryptococcus, Scedosporium, Alternaria, Trichophyton, Cladosporium etc. etc. 1. Sporotrix at 37 and 25 degrees; 2. Aspergillus fumigatus, niger, terreus, flavus (L to R); 3. Candida albicans 2.2 Morphological 2.2.1 Broad classification - Yeasts, Moulds and Dimorphic Fungi 2.2.1.1 Yeasts are single-celled organisms which reproduce by budding and grow as smooth colonies on agar. -
Phylogeny of Dermatophytes with Genomic Character Evaluation of Clinically Distinct Trichophyton Rubrum and T
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 89: 153–175 (2018). Phylogeny of dermatophytes with genomic character evaluation of clinically distinct Trichophyton rubrum and T. violaceum P. Zhan1,2,3,4, K. Dukik3,4,D.Li1,5, J. Sun6, J.B. Stielow3,8,9, B. Gerrits van den Ende3, B. Brankovics3,4, S.B.J. Menken4, H. Mei1,W.Bao7,G.Lv1,W.Liu1*, and G.S. de Hoog3,4,8,9* 1Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; 2Dermatology Hospital of Jiangxi Provinces, Jiangxi Dermatology Institute, Nanchang, China; 3Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; 4Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands; 5Georgetown University Medical Center, Department of Microbiology and Immunology, Washington, DC, USA; 6Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; 7Nanjing General Hospital of Nanjing Command, Nanjing, China; 8Thermo Fisher Scientific, Landsmeer, The Netherlands; 9Center of Expertise in Mycology of Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands *Correspondence: W. Liu, [email protected]; G.S. de Hoog, [email protected] Abstract: Trichophyton rubrum and T. violaceum are prevalent agents of human dermatophyte infections, the former being found on glabrous skin and nail, while the latter is confined to the scalp. The two species are phenotypically different but are highly similar phylogenetically. The taxonomy of dermatophytes is currently being reconsidered on the basis of molecular phylogeny. Molecular species definitions do not always coincide with existing concepts which are guided by ecological and clinical principles.