Study of Nitrobacter and Spirulina Algae for Conversion of Nitrites and Nitrate Salts to Harmless Gases

Total Page:16

File Type:pdf, Size:1020Kb

Study of Nitrobacter and Spirulina Algae for Conversion of Nitrites and Nitrate Salts to Harmless Gases Study of Nitrobacter and Spirulina Algae for Conversion of Nitrites and Nitrate Salts to Harmless Gases. Abstract The goal of my project is to find a way to remove the NOx emissions from air, particularly those emitted from automobile exhaust. NOx is one of the most dangerous pollutants in existence, not only being highly corrosive and toxic itself, but also catalyzing the formation of ground level ozone from oxygen. The system that I have designed converts the NO2 into nitrite and nitrate salts. To remove the salts, biological methods were used. Nitrifying bacteria convert nitrites to nitrates and denitrifying organisms convert nitrates to nitrogen gas. The nitrifying bacteria used was nitrobacter and the denitrifying organisms used was spirulina platensis, a type of algae. A photonic density measurement device was designed to measure the algae growth. A beaker with water containing nitrobacter and algae was initially set up. Then a salt solution with nitrite and nitrate which was obtained from step 2 of the experiment was added to this beaker. This solution had nitrite at 5 ppm (parts per million) and the nitrate was at 10 ppm. The volume of the solution was 325 mL. A nitrite and nitrate reading was taken every 12 hours and the growth of algae was measured every 6 hours using an arduino based photonic density device. Both the nitrite and the nitrate readings fell to zero after 5 days and the algae grew. Background Nitrobacter converts the nitrite salts to nitrate salt. It oxidizes the nitrite ion into the nitrate ion (Ferguson and Nicholls, 2013). To do this, it first reacts water with the ion. The oxygen is transferred to the nitrite ion, converting it to nitrate. This reaction leaves 2 hydrogen ions and two electrons. These ions can then be used by the cell's mitochondria to produce energy. The oxidation reaction is as follows, . The hydrogen plus ions and the two electrons can be reacted with oxygen gas from the atmosphere to produce water and energy. The reaction is as follows, . These reactions combined look like this, . This reaction gives , 74kJ of energy per mole of nitrite. As well as using nitrite as an energy source, nitrobacter is also a carbon sequestering bacteria, taking in carbon dioxide to fulfill its carbon needs. This makes it an optimal choice for nitrite removal. Spirulina converts nitrate to nitrogen gas (Bothe et al., 2007). The equation can be written out as follows. This reaction has four parts to it. Each requires a separate enzyme. First, the nitrate is converted to nitrite. This causes the combination of electrons, hydrogen cations, and the liberated oxygen to produce water. This is performed by nitrate reductase, Nar. This charge difference allows the cell’s mitochondria to create ATP. Then, the nitrite is converted to nitric oxide. This liberates still more oxygen, creating water and allowing ATP synthesis. This is performed by nitrite reductase, Nir. After that, two molecules of NO are converted to one molecule of N2 O, nitrous oxide. This is performed by nitric oxide reductase, Nor. This liberates yet another oxygen which the cell uses in the same fashion. The final step is taking the oxygen from the nitrous oxide, converting it to nitrogen gas and using the oxygen for energy. This is performed by nitrous oxide reductase, Nos. This process can release small amounts of NO and N2 O, however, it is a small amount and both NO and N2 O can be reused by other algae to produce N2 and energy. Culture Creation The algae was purchased as a small starter colony with a growth media. The nitrobacter was purchased as a fish tank supplement. It was contaminated with nitrosomonas, however, since there was no ammonia in the solution, the nitrosomonas should have quickly died off. The algae was started in a small colony that is shown in figure 1. A nitrobacter colony was also set up in a fish tank full of distilled water. It is shown in figure 2. Nitrobacter will die if exposed to sunlight or other bright light sources within four days of moving to a new habitat. To keep the nitrobacter alive, KNO2 was added to the tank. The KNO2 was made by heating KNO3 to make it decompose into oxygen and KNO2 . Since algae need sun to thrive and the nitrobacter need to stay in the dark, the two were grown separately, then combined. The algae colony was left to grow from December 1st 2019 to December 15th 2019 in a sunny spot. The nitrobacter was given the same amount of time under an aluminum cover. Then, a new fish tank was filled halfway with distilled water, a quarter way with the nitrobacter tank’s water, and most of the algae was poured in. A small amount was left in the original bottle in case something went wrong. The tank was left in a sunny spot to grow. Figure 3 shows the algae on Jan 15th 2020. There was a large amount of growth but the algae was not growing fast. This was because the light source, the sun, was not strong enough. So, instead, I set up a light with an automatic timer. This drastically increased the growth, in a few days, the tank was fully green. The bubbling comes from the increased creation of N2 and O2 gas from denitrification and photosynthesis respectively. The tank is shown in figure 4. To further help the growth rate, a fish tank heater was added to keep the temperature at 78 ˚F. While the optimal temperature is around 90 ˚F, the beaker was kept closer to the optimal than it would have been without the heater. Experiment When all the other parts of the experiment were complete, a small colony of algae was scooped out of the larger tank with a spoon and put into a beaker filled with 200 mL of distilled water. The algae clump was then broken into smaller pieces with a glass stir rod. More nitrobacter containing water was added to the beaker and 250 mL of space were left. The salts produced earlier in the project were added to the beaker and the volume was topped off to 325 mL with distilled water. The salt that was made from the NO2 had a nitrite level of 5 ppm and a nitrate level of 10 ppm. The beaker is shown in figure 5. To take the measurement, other devices were connected. The setup with all the parts is shown in figure 6. A diagram of the system is in figure 7. The system was then left on for 5 days. Every day at 6am, midday, 6pm and midnight it took a reading of the optical density, the murkiness of the water. Every 12 hours, a nitrite/nitrate test strip was dipped in the solution. This happened at 8am and 8pm. The experiment ran for 4 days before the nitrite and the nitrate level reached zero. Results Graph 1 shows the nitrite and nitrate level. It took 4 days for the nitrite level to reach zero and 4 for the nitrate level to reach zero. Since the nitrite and nitrate chart shows the values in larger increments, I estimated the value based on the average of the two values the strip was closest to. I also used the value of other strips for this process, for example, the value 2.5 was calculated from the fact that the strip was between 5 and 0. The average of these values is 2.5, so I estimated that the strip, whose color was in the middle of the two, was 2.5. The data from the optical density measurement device is shown below in graph 2. The blue line shows the difference between the optical density above and below the beaker. Discussion Graph 1 shows the data from the nitrite and nitrate test strips. The salt that was made from the NO2 had a nitrite level of 5 ppm and a nitrate level of 10ppm. The tank, however, already had leftover nitrate and nitrite from the KNO2 that was added. This is why the initial nitrite and nitrate ppm are so high. The lines are not linear, because the nitrobacter converts the nitrite to nitrate, adding to the nitrate line. The algae destroy the nitrate. The nitrobacter are slower at metabolizing the nitrite, it took 24 hours for them to start consuming it. The algae, however, are much faster, destroying 58% of nitrate within 12 hours. After 24 hours, the nitrobacter started to convert the nitrite to nitrate, so the nitrite level drops during the next 12 hours but the algae compensate for the excess of nitrate. This happened overnight, when the algae are least active so the two effects cancelled out and the nitrate remained constant. When the light turned back on in the morning, the algae sped up their metabolism and the nitrate level went down. The nitrite level also decreased. The metabolism rate for the nitrobacter went down as the nitrite concentration went down, because nitrite conversion is the only energy source for the nitrobacter. The same is true for algae, but not quite so drastically, because algae can photosynthesis for energy as well. While the nitrite and nitrate value was most likely above zero at 8pm day 5, it was so low that the value is practically undetectable. Graph 2 shows the difference in optical density across the algae. The algae grew mostly during 6am to 6pm, when the light was on. The algae feed on nitrate, and each night the nitrobacter would convert the nitrite to nitrate.
Recommended publications
  • Nitrobacter As an Indicator of Toxicity in Wastewater
    State Water Survey Division WATER QUALITY SECTION AT Illinois Department of PEORIA, ILLINOIS Energy and Natural Resources SWS Contract Report 326 NITROBACTER AS AN INDICATOR OF TOXICITY IN WASTEWATER by Wuncheng Wang and Paula Reed Prepared for and funded by the Illinois Department of Energy and Natural Resources September 1983 CONTENTS PAGE Abstract 1 Introduction 1 Scope of study 3 Acknowledgments 3 Literature review 3 Microbial nitrification 3 Influence of toxicants on nitrification 5 Materials and methods 10 Culture 10 Methods 11 Results 12 Preliminary tests 13 Metal toxicity 13 Organic compounds toxicity 16 Time effect 22 Discussion 22 References 27 NITROBACTER AS AN INDICATOR OF TOXICITY IN WASTEWATER by Wuncheng Wang and Paula Reed ABSTRACT This report presents the results of a study of the use of Nitrobacter as an indicator of toxicity. Nitrobacter are strictly aerobic, autotrophic, and slow growing bacteria. Because they convert nitrite to nitrate, the effects that toxins have on them can be detected easily by monitoring changes in their nitrite consumption rate. The bacterial cultures were obtained from two sources — the Peoria and Princeton (Illinois) wastewater treatment plants — and tests were con• ducted to determine the effects on the cultures of inorganic ions and organic compounds. The inorganic ions included cadmium, copper, lead, and nickel. The organic compounds were phenol, chlorophenol (three derivatives), dichlo- rophenol (two derivatives), and trichlorophenol. The bioassay procedure is relatively simple and the results are repro• ducible . The effects of these chemical compounds on Nitrobacter were not dramatic. For example, of the compounds tested, 2,4,6-trichlorophenol was the most toxic to Nitrobacter.
    [Show full text]
  • Recycling of Vitamin B12 and NAD+ Within the Pdu Microcompartment of Salmonella Enterica Shouqiang Cheng Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Recycling of vitamin B12 and NAD+ within the Pdu microcompartment of Salmonella enterica Shouqiang Cheng Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Cheng, Shouqiang, "Recycling of vitamin B12 and NAD+ within the Pdu microcompartment of Salmonella enterica" (2010). Graduate Theses and Dissertations. 11713. https://lib.dr.iastate.edu/etd/11713 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. + Recycling of vitamin B12 and NAD within the Pdu microcompartment of Salmonella enterica by Shouqiang Cheng A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Biochemistry Program of Study Committee: Thomas A. Bobik, Major Professor Alan DiSpirito Basil Nikolau Reuben Peters Gregory J. Phillips Iowa State University Ames, Iowa 2010 Copyright © Shouqiang Cheng, 2010. All rights reserved. ii Table of contents Abstract.............................................................................................................................
    [Show full text]
  • Organic Matter Decomposition in Simulated Aquaculture Ponds Group Fish Culture and Fisheries Daily Supervisor(S) Dr
    O rganic matter decomposition in simulated aquaculture ponds Beatriz Torres Beristain Promotor: Prof. Dr. J.A .J. V erreth H oogleraar in de V isteelt en V isserij W ageningen U niversiteit C o-promotor: Dr. M .C .J. V erdegem U niversitair docent bij the Leerstoelgroep V isteelt en V isserij W ageningen U niversiteit Samenstelling promotiecommissie: Prof. Dr. Y . A vnimelech Technion, Israel Institute of Technology Prof. Dr. Ir. H .J. Gijzen U N ESC O -IH E, Delf, N etherlands Prof. Dr. Ir. M . W .A . V erstegen W ageningen U niversiteit Prof. Dr. Ir. A .A . K oelmans W ageningen U niversiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool W IA S O rganic matter decomposition in simulated aquaculture ponds Beatriz Torres Beristain Proefschrift Ter verkrijging van de graad van doctor O p gezag van de rector magnificus van W ageningen U niversiteit, Prof. Dr. Ir. L. Speelman, In het openbaar te verdedigen O p dinsdag 15 A pril 2005 des namiddags te half tw ee in de A ula Torres Beristain, B. O rganic matter decomposition in simulated aquaculture ponds PhD thesis, Fish C ulture and Fisheries Group, W ageningen Institute of A nimal Sciences. W ageningen U niversity, P.O . Box 338, 6700 A H W ageningen, The N etherlands. - W ith R ef. œW ith summary in Spanish, Dutch and English ISBN : 90-8504-170-8 A Domingo, Y olanda y A lejandro Table of contents C hapter 1 General introduction. 1 C hapter 2 R eview microbial ecology and role in aquaculture ponds.
    [Show full text]
  • Food Waste Composting and Microbial Community Structure Profiling
    processes Review Food Waste Composting and Microbial Community Structure Profiling Kishneth Palaniveloo 1,* , Muhammad Azri Amran 1, Nur Azeyanti Norhashim 1 , Nuradilla Mohamad-Fauzi 1,2, Fang Peng-Hui 3, Low Hui-Wen 3, Yap Kai-Lin 3, Looi Jiale 3, Melissa Goh Chian-Yee 3, Lai Jing-Yi 3, Baskaran Gunasekaran 3,* and Shariza Abdul Razak 4,* 1 Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, University of Malaya, Wilayah Persekutuan Kuala Lumpur 50603, Malaysia; [email protected] (M.A.A.); [email protected] (N.A.N.) 2 Institute of Biological Sciences, Faculty of Science, University of Malaya, Wilayah Persekutuan Kuala Lumpur 50603, Malaysia; [email protected] 3 Faculty of Applied Science, UCSI University (South Wing), Cheras, Wilayah Persekutuan Kuala Lumpur 56000, Malaysia; [email protected] (F.P.-H.); [email protected] (L.H.-W.); [email protected] (Y.K.-L.); [email protected] (L.J.); [email protected] (M.G.C.-Y.); [email protected] (L.J.-Y.) 4 Nutrition and Dietetics Program, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia * Correspondence: [email protected] (K.P.); [email protected] (B.G.); [email protected] (S.A.R.); Tel.: +60-3-7967-4640 (K.P.); +60-16-323-4159 (B.G.); +60-19-964-4043 (S.A.R.) Received: 20 May 2020; Accepted: 16 June 2020; Published: 22 June 2020 Abstract: Over the last decade, food waste has been one of the major issues globally as it brings a negative impact on the environment and health.
    [Show full text]
  • Nutrient Control Design Manual: State of Technology Review Report,” Were
    United States Office of Research and EPA/600/R‐09/012 Environmental Protection Development January 2009 Agency Washington, DC 20460 Nutrient Control Design Manual State of Technology Review Report EPA/600/R‐09/012 January 2009 Nutrient Control Design Manual State of Technology Review Report by The Cadmus Group, Inc 57 Water Street Watertown, MA 02472 Scientific, Technical, Research, Engineering, and Modeling Support (STREAMS) Task Order 68 Contract No. EP‐C‐05‐058 George T. Moore, Task Order Manager United States Environmental Protection Agency Office of Research and Development / National Risk Management Research Laboratory 26 West Martin Luther King Drive, Mail Code 445 Cincinnati, Ohio, 45268 Notice This document was prepared by The Cadmus Group, Inc. (Cadmus) under EPA Contract No. EP‐C‐ 05‐058, Task Order 68. The Cadmus Team was lead by Patricia Hertzler and Laura Dufresne with Senior Advisors Clifford Randall, Emeritus Professor of Civil and Environmental Engineering at Virginia Tech and Director of the Occoquan Watershed Monitoring Program; James Barnard, Global Practice and Technology Leader at Black & Veatch; David Stensel, Professor of Civil and Environmental Engineering at the University of Washington; and Jeanette Brown, Executive Director of the Stamford Water Pollution Control Authority and Adjunct Professor of Environmental Engineering at Manhattan College. Disclaimer The views expressed in this document are those of the individual authors and do not necessarily, reflect the views and policies of the U.S. Environmental Protection Agency (EPA). Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This document has been reviewed in accordance with EPA’s peer and administrative review policies and approved for publication.
    [Show full text]
  • Nitrogen Biogeochemistry of Aquaculture Ponds 1
    Aquaculture 166Ž. 1998 181±212 Review Nitrogen biogeochemistry of aquaculture ponds 1 John A. Hargreaves Mississippi State UniÕersity, Department of Wildlife and Fisheries, Box 9690, Mississippi State, MS 39762, USA Accepted 6 June 1998 Abstract NitrogenŽ. N biogeochemistry of aquaculture ponds is dominated by biological transformations of N added to ponds in the form of inorganic or organic fertilizers and formulated feeds. Nitrogen application in excess of pond assimilatory capacity can lead to the deterioration of water quality through the accumulation of nitrogenous compoundsŽ. e.g., ammonia and nitrite with toxicity to fish or shrimp. Principal sources of ammonia include fish excretion and sediment flux derived from the mineralization of organic matter and molecular diffusion from reduced sediment, although cyanobacterial nitrogen fixation and atmospheric deposition are occasionally important. Principal sinks for ammonia include phytoplankton uptake and nitrification. The magnitude of losses by ammonia volatilization and ammonium fixation to cation exchange sites is minor, but unknown. Interactions between pond sediment and water are important regulators of N biogeo- chemistry. Sediment represents a source of ammonia and a sink for nitrite and nitrate. The large volume of reduced sediment suggests that the potential for N removal by denitrification is high, although the magnitude of N removal by this mechanism is low because nitrification and denitrification are tightly coupled in aquatic sediments and sediment nitrification is limited by the depth of sediment oxygen penetration. Nitrogen biogeochemistry of aquaculture ponds is affected by feeds and feeding practices, water exchange and circulation, aeration, pond depth and other management procedures. Opportunities for management of N biogeochemistry are limited and goals are based largely on the intensity of fish production.
    [Show full text]
  • The Mechanical Quadrature Method for Linear And
    OdokumaOdokuma and Akponah and Akponah 21 INTERNATIONAL JOURNAL OF NATURAL AND APPLIED SCIENCES (IJNAS), VOL. 2, NO. 2(2007); P. 21 – 31. 6 FIGS Response of nitrosomonas, nitrobacter and escherichia coli to drilling fluids L.O. Odokuma and E. Akponah ABSTRACT Inhibition of ammonia oxidation by Nitrosomonas, nitrite consumption by Nitrobacter and carbon IV oxide evolution by Escherithia coil were employed as indices to determine the effect of four drilling fluids (Paradril, IMCO-W, IMCO-O and Gel/KCL/polymer to these bacteria. The percent log survival of these bacteria when exposed to these fluids was also used as an index. Ammonia oxidation was monitored as nitrite accumulation. Both nitrite accumulation and nitrite consumption were determined by coupling of diazotised sulfanilic acid with -napthylethylene diaminedihydrochloride. Result revealed decreases in the percentage log survival with increasing concentration of the drilling fluids and increasing exposure period of the three bacteria. Nitrite accumulation in cultures containing Nitmsomonas decreased with increase in concentration and exposure time of the four fluids. Controls (containing Winogradsky Phase I with Nitrosomonas and no toxicants) revealed an increase in nitrite accumulation with increase in exposure time. Nitrite consumption in Nitmbacter containing cultures decreased with increase in concentration and exposure time to fluids. Controls (containing Winogradsky Phase II with Nitrobacter and no toxicants) showed a similar trend but the decrease was not as rapid. Carbon IV oxide evolution in cultures containing E. coil generally decreased with increase in concentration and exposure time to fluids. Controls (containing lactose broth with E. coli and no toxicant) revealed an increase in CO2 evolution with increase in exposure time.
    [Show full text]
  • Diversification and Niche Adaptations of Nitrospina-Like Bacteria in The
    The ISME Journal (2016) 10, 1383–1399 OPEN © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Diversification and niche adaptations of Nitrospina- like bacteria in the polyextreme interfaces of Red Sea brines David Kamanda Ngugi1, Jochen Blom2, Ramunas Stepanauskas3 and Ulrich Stingl1 1Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; 2Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany and 3Bigelow Laboratories for Ocean Sciences, East Boothbay, ME 04544-0380, USA Nitrite-oxidizing bacteria (NOB) of the genus Nitrospina have exclusively been found in marine environments. In the brine–seawater interface layer of Atlantis II Deep (Red Sea), Nitrospina-like bacteria constitute up to one-third of the bacterial 16S ribosomal RNA (rRNA) gene sequences. This is much higher compared with that reported in other marine habitats (~10% of all bacteria), and was unexpected because no NOB culture has been observed to grow above 4.0% salinity, presumably due to the low net energy gained from their metabolism that is insufficient for both growth and osmoregulation. Using phylogenetics, single-cell genomics and metagenomic fragment recruitment approaches, we document here that these Nitrospina-like bacteria, designated as Candidatus Nitromaritima RS, are not only highly diverged from the type species Nitrospina gracilis (pairwise genome identity of 69%) but are also ubiquitous in the deeper, highly saline interface layers (up to 11.2% salinity) with temperatures of up to 52 °C. Comparative pan-genome analyses revealed that less than half of the predicted proteome of Ca. Nitromaritima RS is shared with N.
    [Show full text]
  • 270. E. B.: Two Kinds of Lithotrophs Missing in Nature, Zeitschrift Für Allgemeine Mikrobiologie 17 (1977), 491-493
    270. E. B.: Two Kinds of Lithotrophs Missing in Nature, Zeitschrift für Allgemeine Mikrobiologie 17 (1977), 491-493. Zeitschrift für Allg. Mikrobiologie 1977 491-493 (Institut für Physikalische Chemie, Universität Wien) Two kinds of lithotrophs missing in nature E. BRODA (Eingegangen am 14. 9.1976) Two groups of lithotrophic bacteria, the existence of which may be expected on evolutionary and thermodynamical grounds, have not yet been detected: (A) photosynthetic, anaerobic, am- monia bacteria, analogous to coloured sulphur bacteria, and (B) chemosynthetic bacteria that oxidize ammonia to nitrogen with O2 or nitrate as oxidant. The versatility of the prokaryotes in their energy metabolism has long astonished microbiologists. The bacteria have developed processes, i.e., enzymes, for the utili- zation of a wide range indeed of exergonic reactions. Attention is now drawn to further processes in energy metabolism which on the basis of considerations on the evolution of the bioenergetic processes (BRODA I975a) may be expected to have existed, or to exist, but which have not yet been found. Two kinds of "lithotrophic" bacteria with such mechanisms will now be predicted. Lithotrophs are bacteria that use in- organic reductants in their energy metabolism (FROl\fAGEOT and SENEZ 1960); all autotrophs must be lithotrophs, though the reverse need not be true. The two bac- teria here predicted would generate dinitrogen (N2). The nitrifying bacteria make adenosine triphosphate, ATP, through oxidative phos- phorylation coupled to the aerobic oxidation of ammonia, a highly exergonic process. Thus, in nitrification Nitrosomonas produces nitrite, and Nitrobacter makes nitrate. The redox reactions are: NHt + 1.5 O2 = H 20 + NO;- + 2 H+; = - 65 kcal (1) NO;- + 0.5 O2 = NO;-; = - 18 kcal (2) The negativity of the free enthalpy change, is the precondition for the produc- tion of ATP and, consequently, for the endergonic reduction of CO 2 to biomass.
    [Show full text]
  • Isolation and Selection of Nitrifying Bacteria with High Biofilm Formation for Treatment of Ammonium Polluted Aquaculture Water
    J. Viet. Env. 2016, Vol. 8, No. 1, pp. 33-40 DOI: 10.13141/jve.vol8.no1.pp33-40 Isolation and selection of nitrifying bacteria with high biofilm formation for treatment of ammonium polluted aquaculture water Phân lập và tuyển chọn vi khuẩn nitrate hóa hình thành màng sinh học để xử lý nước nuôi trồng thủy sản bị ô nhiễm ammonium Research article Hoang, Phuong Ha*1 ; Nguyen, Hong Thu1 ; Tran, Trung Thanh1 ; Tran, Thanh Tung2 ; Do, Lan Phuong3 ; Le, Thi Nhi Cong1 1Institute of Biotechnology, Vietnam Academy of Science and Technology, 2University of Science and Technology of Hanoi, 3Vietnam Academy of Traditional Medicine A biofilm is any group of microorganisms in which cells stick to each other and adhere to a surface by excreting a matrix of extracellular polymeric substances (EPS). The chemoautotrophic nitrifying bacteria hardly form biofilms due to their extremely low growth rate; however, biofilm formation of nitrifying bacteria trends to attach in carrier by extracellular polysaccharides that facilitate mutual adhesion, the forming biofilm is also beneficial in nitrogen removal in biological filter systems, es- pecially in aquaculture water treatment systems. The microbial activity within bio-carrier is a key factor in the performance of biofilm reactor. Selection the nitrifier bacteria that biofilm formation and immobilization on the carrier for application in ammonium polluted water treatment technolo- gies, especially in aquaculture is our research objective. Therefore, in this study, ten and six strains of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) respectively were iso- lated from six different aquaculture water samples collected from Quang Ninh and Soc Trang.
    [Show full text]
  • Molecular and Microscopic Insights Into the Formation of Soil Organic Matter in a Red Pine Rhizosphere
    soils Article Molecular and Microscopic Insights into the Formation of Soil Organic Matter in a Red Pine Rhizosphere Alice C. Dohnalkova 1,* ID , Malak M. Tfaily 1, A. Peyton Smith 2 ID , Rosalie K. Chu 1, Alex R. Crump 3 ID , Colin J. Brislawn 2, Tamas Varga 1 ID , Zhenqing Shi 4, Linda S. Thomashow 5, James B. Harsh 6 and C. Kent Keller 7 1 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA; [email protected] (M.M.T.); [email protected] (R.K.C.); [email protected] (T.V.) 2 Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; [email protected] (A.P.S.); [email protected] (C.J.B.) 3 Department of Soil and Water Systems, University of Idaho, Moscow, ID 83844, USA; [email protected] 4 School of Environment and Energy, South China University of Technology, Guangdong 510006, China; [email protected] 5 USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, WA 99164, USA; [email protected] 6 Department of Crop & Soil Sciences, Washington State University, Pullman, WA 99164, USA; [email protected] 7 School of the Environment, Washington State University, Pullman, WA 99164, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-509-371-6515 Received: 15 June 2017; Accepted: 24 August 2017; Published: 26 August 2017 Abstract: Microbially-derived carbon inputs to soils play an important role in forming soil organic matter (SOM), but detailed knowledge of basic mechanisms of carbon (C) cycling, such as stabilization of organic C compounds originating from rhizodeposition, is scarce.
    [Show full text]
  • Nitrification 31
    NITROGEN IN SOILS/Nitrification 31 See also: Eutrophication; Greenhouse Gas Emis- Powlson DS (1993) Understanding the soil nitrogen cycle. sions; Isotopes in Soil and Plant Investigations; Soil Use and Management 9: 86–94. Nitrogen in Soils: Cycle; Nitrification; Plant Uptake; Powlson DS (1999) Fate of nitrogen from manufactured Symbiotic Fixation; Pollution: Groundwater fertilizers in agriculture. In: Wilson WS, Ball AS, and Hinton RH (eds) Managing Risks of Nitrates to Humans Further Reading and the Environment, pp. 42–57. Cambridge: Royal Society of Chemistry. Addiscott TM, Whitmore AP, and Powlson DS (1991) Powlson DS (1997) Integrating agricultural nutrient man- Farming, Fertilizers and the Nitrate Problem. Wallingford: agement with environmental objectives – current state CAB International. and future prospects. Proceedings No. 402. York: The Benjamin N (2000) Nitrates in the human diet – good or Fertiliser Society. bad? Annales de Zootechnologie 49: 207–216. Powlson DS, Hart PBS, Poulton PR, Johnston AE, and Catt JA et al. (1998) Strategies to decrease nitrate leaching Jenkinson DS (1986) Recovery of 15N-labelled fertilizer in the Brimstone Farm experiment, Oxfordshire, UK, applied in autumn to winter wheat at four sites in eastern 1988–1993: the effects of winter cover crops and England. Journal of Agricultural Science, Cambridge unfertilized grass leys. Plant and Soil 203: 57–69. 107: 611–620. Cheney K (1990) Effect of nitrogen fertilizer rate on soil Recous S, Fresnau C, Faurie G, and Mary B (1988) The fate nitrate nitrogen content after harvesting winter wheat. of labelled 15N urea and ammonium nitrate applied to a Journal of Agricultural Science, Cambridge 114: winter wheat crop.
    [Show full text]