Frost-Flat Fungi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Squamanita Odorata (Agaricales, Basidiomycota), New Mycoparasitic Fungus for Poland
Polish Botanical Journal 61(1): 181–186, 2016 DOI: 10.1515/pbj-2016-0008 SQUAMANITA ODORATA (AGARICALES, BASIDIOMYCOTA), NEW MYCOPARASITIC FUNGUS FOR POLAND Marek Halama Abstract. The rare and interesting fungus Squamanita odorata (Cool) Imbach, a parasite on Hebeloma species, is reported for the first time from Poland, briefly described and illustrated based on Polish specimens. Its taxonomy, ecology and distribution are discussed. Key words: Coolia, distribution, fungicolous fungi, mycoparasites, Poland, Squamanita Marek Halama, Museum of Natural History, Wrocław University, Sienkiewicza 21, 50-335 Wrocław, Poland; e-mail: [email protected] Introduction The genus Squamanita Imbach is one of the most nita paradoxa (Smith & Singer) Bas, a parasite enigmatic genera of the known fungi. All described on Cystoderma, was reported by Z. Domański species of the genus probably are biotrophs that from one locality in the Lasy Łochowskie forest parasitize and take over the basidiomata of other near Wyszków (valley of the Lower Bug River, agaricoid fungi, including Amanita Pers., Cysto- E Poland) in September 1973 (Domański 1997; derma Fayod, Galerina Earle, Hebeloma (Fr.) cf. Wojewoda 2003). This collection was made P. Kumm., Inocybe (Fr.) Fr., Kuehneromyces Singer in a young forest of Pinus sylvestris L., where & A.H. Sm., Phaeolepiota Konrad & Maubl. and S. paradoxa was found growing on the ground, possibly Mycena (Pers.) Roussel. As a result the among grass, on the edge of the forest. Recently, host is completely suppressed or only more or less another species, Squamanita odorata (Cool) Im- recognizable, and the Squamanita basidioma is bach, was found in northern Poland (Fig. 1). -
Mycoparasitism Between Squamanita Paradoxa and Cystoderma Amianthinum (Cystodermateae, Agaricales)
Mycoscience (2010) 51:456–461 DOI 10.1007/s10267-010-0052-9 SHORT COMMUNICATION Mycoparasitism between Squamanita paradoxa and Cystoderma amianthinum (Cystodermateae, Agaricales) P. Brandon Matheny • Gareth W. Griffith Received: 1 January 2010 / Accepted: 23 March 2010 / Published online: 13 April 2010 Ó The Mycological Society of Japan and Springer 2010 Abstract Circumstantial evidence, mostly morphological from basidiocarps or parasitized galls or tissue of other and ecological, points to ten different mushroom host agarics. On occasion, chimeric fruitbodies appear obvious, species for up to fifteen species of the mycoparasitic genus as in S. paradoxa (A.H. Sm. & Singer) Bas (Fig. 1), but for Squamanita. Here, molecular evidence confirms Cysto- other species, the hosts are unknown (Table 1). It appears derma amianthinum as the host for S. paradoxa, a spo- that in all cases, galls induced by Squamanita mycelium radically occurring and rarely collected mycoparasite with contain chlamydospores, and the term protocarpic tuber has extreme host specificity. This is only the second study to been replaced by the term cecidiocarp (Bas and Thoen use molecular techniques to reveal or confirm the identity 1998). Hosts of Squamanita include distantly related of a cecidiocarp of Squamanita species. Phylogenetic species of Agaricales, such as Galerina Earle, Inocybe (Fr.) analysis of combined nuclear ribosomal RNA genes sug- Fr., Hebeloma (Fr.) P. Kumm., Kuehneromyces Singer & gests the monophyly of Squamanita, Cystoderma, and A.H. Sm., and Amanita Pers. However, Squamanita also Phaeolepiota, a clade referred to as the tribe Cystoder- parasitizes species of Phaeolepiota Maire ex Konrad & mateae. If true, S. paradoxa and C. amianthinum would Maubl. -
BGBM Annual Report 2017–2019
NETWORKING FOR DIVERSITY Annual Report 2017 – 2019 2017 – BGBM BGBM Annual Report 2017 – 2019 Cover image: Research into global biodiversity and its significance for humanity is impossible without networks. The topic of networking can be understood in different ways: in the natural world, with the life processes within an organism – visible in the network of the veins of a leaf or in the genetic diversity in populations of plants – networking takes place by means of pollen, via pollinators or the wind. In the world of research, individual objects, such as a particular plant, are networked with the data obtained from them. Networking is also crucial if this data is to be effective as a knowledge base for solving global issues of the future: collaboration between scientific experts within and across disciplines and with stakeholders at regional, national and international level. Contents Foreword 5 Organisation 56 A network for plants 6 Facts and figures 57 Staff, visiting scientists, doctoral students 57 Key events of 2017 – 2019 10 Affiliated and unsalaried scientists, volunteers 58 BGBM publications 59 When diversity goes online 16 Species newly described by BGBM authors 78 Families and genera newly described by BGBM authors 82 On the quest for diversity 20 Online resources and databases 83 Externally funded projects 87 Invisible diversity 24 Hosted scientific events 2017 – 2019 92 Collections 93 Humboldt 2.0 30 Library 96 BGBM Press: publications 97 Between East and West 36 Botanical Museum 99 Press and public relations 101 At the service of science 40 Visitor numbers 102 Budget 103 A research museum 44 Publication information 104 Hands-on science 50 Our symbol, the corncockle 52 4 5 Foreword BGBM Annual Report 2017 – 2019 We are facing vital challenges. -
Major Clades of Agaricales: a Multilocus Phylogenetic Overview
Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J. -
How Many Fungi Make Sclerotia?
fungal ecology xxx (2014) 1e10 available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/funeco Short Communication How many fungi make sclerotia? Matthew E. SMITHa,*, Terry W. HENKELb, Jeffrey A. ROLLINSa aUniversity of Florida, Department of Plant Pathology, Gainesville, FL 32611-0680, USA bHumboldt State University of Florida, Department of Biological Sciences, Arcata, CA 95521, USA article info abstract Article history: Most fungi produce some type of durable microscopic structure such as a spore that is Received 25 April 2014 important for dispersal and/or survival under adverse conditions, but many species also Revision received 23 July 2014 produce dense aggregations of tissue called sclerotia. These structures help fungi to survive Accepted 28 July 2014 challenging conditions such as freezing, desiccation, microbial attack, or the absence of a Available online - host. During studies of hypogeous fungi we encountered morphologically distinct sclerotia Corresponding editor: in nature that were not linked with a known fungus. These observations suggested that Dr. Jean Lodge many unrelated fungi with diverse trophic modes may form sclerotia, but that these structures have been overlooked. To identify the phylogenetic affiliations and trophic Keywords: modes of sclerotium-forming fungi, we conducted a literature review and sequenced DNA Chemical defense from fresh sclerotium collections. We found that sclerotium-forming fungi are ecologically Ectomycorrhizal diverse and phylogenetically dispersed among 85 genera in 20 orders of Dikarya, suggesting Plant pathogens that the ability to form sclerotia probably evolved 14 different times in fungi. Saprotrophic ª 2014 Elsevier Ltd and The British Mycological Society. All rights reserved. Sclerotium Fungi are among the most diverse lineages of eukaryotes with features such as a hyphal thallus, non-flagellated cells, and an estimated 5.1 million species (Blackwell, 2011). -
30518002 Miolo.Indd
Hoehnea 36(2): 339-348, 1 tab., 3 fi g., 2009 339 Cystoderma, Cystodermella and Ripartitella in Atlantic Forest, São Paulo State, Brazil Marina Capelari1,2 and Tatiane Asai1 Received: 29.01.2009; accepted: 28.05.2009 ABSTRACT - (Cystoderma, Cystodermella and Ripartitella in Atlantic Forest, São Paulo State, Brazil). This paper reports on the genera Cystoderma, Cystodermella and Ripartitella from Atlantic Rainforest, Southeast Brazil. They are represented by Cystoderma chocoanum, Cystodermella contusifolia, C. sipariana and Ripartitella brasiliensis. Cystoderma chocoanum is reported for the fi rst time outside the type locality (Colombia) and its relationship with others species of Cystoderma, based on nLSU rDNA sequences, is discussed. Key words: Basidiomycota, diversity, molecular analysis, taxonomy RESUMO - (Cystoderma, Cystodermella e Ripartitella em Mata Atlântica, São Paulo, Brasil). Este trabalho reporta a ocorrência dos gêneros Cystoderma, Cystodermella e Ripartitella para Mata Atlântica, São Paulo, Brasil. Foram registrados Cystoderma chocoanum, Cystodermella contusifolia, C. sipariana e Ripartitella brasiliensis. Cystoderma chocoanum é registrada pela primeira vez fora da localidade tipo (Colômbia) e sua relação com outras espécies de Cystoderma, baseadas em seqüências de nLSU DNAr, é discutida. Palavras-chave: análise molecular, Basidiomycota, diversidade, taxonomia Introduction stipitate. Singer (1949) considered only one species in the genus, reducing R. squamosidisca to synonym The species from genus Cystoderma Fayod was of R. brasiliensis (Speg.) Singer. The late species separated in two distinct genera, Cystoderma s. str. was based on Pleurotus brasiliensis Speg. collected and Cystodermella by Harmaja (2002), considering in Apiaí, São Paulo State, by Puiggari (Spegazzini the amyloidity of basidiospores; previously unused 1889). Later, R. sipariana (Dennis) Dennis (Dennis differences or tendencies present in the genus, 1970), R. -
Version 1.1 Standardized Inventory Methodologies for Components Of
Version 1.1 Standardized Inventory Methodologies For Components Of British Columbia's Biodiversity: MACROFUNGI (including the phyla Ascomycota and Basidiomycota) Prepared by the Ministry of Environment, Lands and Parks Resources Inventory Branch for the Terrestrial Ecosystem Task Force, Resources Inventory Committee JANUARY 1997 © The Province of British Columbia Published by the Resources Inventory Committee Canadian Cataloguing in Publication Data Main entry under title: Standardized inventory methodologies for components of British Columbia’s biodiversity. Macrofungi : (including the phyla Ascomycota and Basidiomycota [computer file] Compiled by the Elements Working Group of the Terrestrial Ecosystem Task Force under the auspices of the Resources Inventory Committee. Cf. Pref. Available through the Internet. Issued also in printed format on demand. Includes bibliographical references: p. ISBN 0-7726-3255-3 1. Fungi - British Columbia - Inventories - Handbooks, manuals, etc. I. BC Environment. Resources Inventory Branch. II. Resources Inventory Committee (Canada). Terrestrial Ecosystems Task Force. Elements Working Group. III. Title: Macrofungi. QK605.7.B7S72 1997 579.5’09711 C97-960140-1 Additional Copies of this publication can be purchased from: Superior Reproductions Ltd. #200 - 1112 West Pender Street Vancouver, BC V6E 2S1 Tel: (604) 683-2181 Fax: (604) 683-2189 Digital Copies are available on the Internet at: http://www.for.gov.bc.ca/ric PREFACE This manual presents standardized methodologies for inventory of macrofungi in British Columbia at three levels of inventory intensity: presence/not detected (possible), relative abundance, and absolute abundance. The manual was compiled by the Elements Working Group of the Terrestrial Ecosystem Task Force, under the auspices of the Resources Inventory Committee (RIC). The objectives of the working group are to develop inventory methodologies that will lead to the collection of comparable, defensible, and useful inventory and monitoring data for the species component of biodiversity. -
Download Download
LITERATURE UPDATE FOR TEXAS FLESHY BASIDIOMYCOTA WITH NEW VOUCHERED RECORDS FOR SOUTHEAST TEXAS David P. Lewis Clark L. Ovrebo N. Jay Justice 262 CR 3062 Department of Biology 16055 Michelle Drive Newton, Texas 75966, U.S.A. University of Central Oklahoma Alexander, Arkansas 72002, U.S.A. [email protected] Edmond, Oklahoma 73034, U.S.A. [email protected] [email protected] ABSTRACT This is a second paper documenting the literature records for Texas fleshy basidiomycetous fungi and includes both older literature and recently published papers. We report 80 literature articles which include 14 new taxa described from Texas. We also report on 120 new records of fleshy basdiomycetous fungi collected primarily from southeast Texas. RESUMEN Este es un segundo artículo que documenta el registro de nuevas especies de hongos carnosos basidiomicetos, incluyendo artículos antiguos y recientes. Reportamos 80 artículos científicamente relacionados con estas especies que incluyen 14 taxones con holotipos en Texas. Así mismo, reportamos unos 120 nuevos registros de hongos carnosos basidiomicetos recolectados primordialmente en al sureste de Texas. PART I—MYCOLOGICAL LITERATURE ON TEXAS FLESHY BASIDIOMYCOTA Lewis and Ovrebo (2009) previously reported on literature for Texas fleshy Basidiomycota and also listed new vouchered records for Texas of that group. Presented here is an update to the listing which includes literature published since 2009 and also includes older references that we previously had not uncovered. The authors’ primary research interests center around gilled mushrooms and boletes so perhaps the list that follows is most complete for the fungi of these groups. We have, however, attempted to locate references for all fleshy basidio- mycetous fungi. -
The Fungi of Slapton Ley National Nature Reserve and Environs
THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546). -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella -
Familie Hygrophoropsidaceae
Hygrophoropsidaceae 01-09-2020 Jean Werts & Joke De Sutter Hygrophoropsidaceae • Alfabetische index • Hygrophoropsidaceae foto’s & hyperlinken • Hygrophoropsidaceae geslachten alfabetisch • Bibliografie Hygrophoropsidaceae geslachten alfabetisch • Hygrophoropsis • Leucogyrophana Geslacht Hygrophoropsis • Sporenpoeder wit. Bodembewonende saprofyten. Vruchtlichaam met viltige hoed, gevorkte en +- witte of oranje plaatjes. Hygrophoropsis aurantiaca Valse hanenkam Hygrophoropsis fuscosquamula Fijnschubbige schijncantharel Hygrophoropsis macrospora Grootsporige schijncantharel Hygrophoropsis morganii Geurende schijncantharel Hygrophorposis aurantiaca (Wulfen/Fr.) Maire Valse hanenkam bij Dennen op arme zure bodem Lode Rubberecht Blommerschot 2018/11. Hygrophoropsis aurantiaca (Wulfen/Fr.) Maire Valse hanenkam • Hoed: gewelfd tot ondiep trechtervormig, Ø 2-8 cm, fijn donzig, mat, oranjegeel, met een blekere, ingerolde rand. • Steel: 3 - 5 cm x 5 - 10 mm, vaak gebogen, oranjegeel. • Vlees: taai, gelig tot oranje. Smaak zwamachtig. Geur zwamachtig. • Lamellen: gevorkt, aflopend, oranje. • Sporenfiguur: bleekgeel. • Ecologie: bij Dennen op arme zure bodem. Augustus – december. • Bron: Fungi of Switserland volume 3. Deze soort kan men verwarren met Cantharellus cibarius, ervan eten kan darmstoornissen veroorzaken. Deze soort is zeer variabel van kleur. Hygrophoropsis aurantiaca (Wulfen/Fr.) Maire Valse hanenkam Hygrophoropsis fuscosquamula P.D.Orton Fijnschubbige schijncantharel Ieko Staal waarneming.nl Hygrophoropsis fuscosquamula P.D.Orton Fijnschubbige -
Composition and Specialization of the Lichen Functional Traits in a Primeval Forest—Does Ecosystem Organization Level Matter?
Article Composition and Specialization of the Lichen Functional Traits in a Primeval Forest—Does Ecosystem Organization Level Matter? Anna Łubek 1,*, Martin Kukwa 2 , Bogdan Jaroszewicz 3 and Patryk Czortek 3 1 Division of Environmental Biology, Institute of Biology, The Jan Kochanowski University in Kielce, Uniwersytecka 7, PL-25-406 Kielce, Poland 2 Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gda´nsk, Wita Stwosza 59, PL-80-308 Gda´nsk,Poland; [email protected] 3 Białowieza˙ Geobotanical Station, Faculty of Biology, University of Warsaw, Sportowa 19, PL-17-230 Białowieza,˙ Poland; [email protected] (B.J.); [email protected] (P.C.) * Correspondence: [email protected] Abstract: Current trends emphasize the importance of the examination of the functional composition of lichens, which may provide information on the species realized niche diversity and community assembly processes, thus enabling one to understand the specific adaptations of lichens and their interaction with the environment. We analyzed the distribution and specialization of diverse mor- phological, anatomical and chemical (lichen secondary metabolites) traits in lichen communities in a close-to-natural forest of lowland Europe. We considered these traits in relation to three levels of forest ecosystem organization: forest communities, phorophyte species and substrates, in order to recognize the specialization of functional traits to different levels of the forest complexity. Traits related to the sexual reproduction of mycobionts (i.e., ascomata types: lecanoroid apothecia, lecideoid Citation: Łubek, A.; Kukwa, M.; apothecia, arthonioid apothecia, lirellate apothecia, stalked apothecia and perithecia) and asexual Jaroszewicz, B.; Czortek, P.