Annual Research Poster Session — 2012
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shallow Crustal Composition of Mercury As Revealed by Spectral Properties and Geological Units of Two Impact Craters
Planetary and Space Science 119 (2015) 250–263 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Shallow crustal composition of Mercury as revealed by spectral properties and geological units of two impact craters Piero D’Incecco a,n, Jörn Helbert a, Mario D’Amore a, Alessandro Maturilli a, James W. Head b, Rachel L. Klima c, Noam R. Izenberg c, William E. McClintock d, Harald Hiesinger e, Sabrina Ferrari a a Institute of Planetary Research, German Aerospace Center, Rutherfordstrasse 2, D-12489 Berlin, Germany b Department of Geological Sciences, Brown University, Providence, RI 02912, USA c The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA d Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA e Westfälische Wilhelms-Universität Münster, Institut für Planetologie, Wilhelm-Klemm Str. 10, D-48149 Münster, Germany article info abstract Article history: We have performed a combined geological and spectral analysis of two impact craters on Mercury: the Received 5 March 2015 15 km diameter Waters crater (106°W; 9°S) and the 62.3 km diameter Kuiper crater (30°W; 11°S). Using Received in revised form the Mercury Dual Imaging System (MDIS) Narrow Angle Camera (NAC) dataset we defined and mapped 9 October 2015 several units for each crater and for an external reference area far from any impact related deposits. For Accepted 12 October 2015 each of these units we extracted all spectra from the MESSENGER Atmosphere and Surface Composition Available online 24 October 2015 Spectrometer (MASCS) Visible-InfraRed Spectrograph (VIRS) applying a first order photometric correc- Keywords: tion. -
Cambridge University Press 978-1-107-15445-2 — Mercury Edited by Sean C
Cambridge University Press 978-1-107-15445-2 — Mercury Edited by Sean C. Solomon , Larry R. Nittler , Brian J. Anderson Index More Information INDEX 253 Mathilde, 196 BepiColombo, 46, 109, 134, 136, 138, 279, 314, 315, 366, 403, 463, 2P/Encke, 392 487, 488, 535, 544, 546, 547, 548–562, 563, 564, 565 4 Vesta, 195, 196, 350 BELA. See BepiColombo: BepiColombo Laser Altimeter 433 Eros, 195, 196, 339 BepiColombo Laser Altimeter, 554, 557, 558 gravity assists, 555 activation energy, 409, 412 gyroscope, 556 adiabat, 38 HGA. See BepiColombo: high-gain antenna adiabatic decompression melting, 38, 60, 168, 186 high-gain antenna, 556, 560 adiabatic gradient, 96 ISA. See BepiColombo: Italian Spring Accelerometer admittance, 64, 65, 74, 271 Italian Spring Accelerometer, 549, 554, 557, 558 aerodynamic fractionation, 507, 509 Magnetospheric Orbiter Sunshield and Interface, 552, 553, 555, 560 Airy isostasy, 64 MDM. See BepiColombo: Mercury Dust Monitor Al. See aluminum Mercury Dust Monitor, 554, 560–561 Al exosphere. See aluminum exosphere Mercury flybys, 555 albedo, 192, 198 Mercury Gamma-ray and Neutron Spectrometer, 554, 558 compared with other bodies, 196 Mercury Imaging X-ray Spectrometer, 558 Alfvén Mach number, 430, 433, 442, 463 Mercury Magnetospheric Orbiter, 552, 553, 554, 555, 556, 557, aluminum, 36, 38, 147, 177, 178–184, 185, 186, 209, 559–561 210 Mercury Orbiter Radio Science Experiment, 554, 556–558 aluminum exosphere, 371, 399–400, 403, 423–424 Mercury Planetary Orbiter, 366, 549, 550, 551, 552, 553, 554, 555, ground-based observations, 423 556–559, 560, 562 andesite, 179, 182, 183 Mercury Plasma Particle Experiment, 554, 561 Andrade creep function, 100 Mercury Sodium Atmospheric Spectral Imager, 554, 561 Andrade rheological model, 100 Mercury Thermal Infrared Spectrometer, 366, 554, 557–558 anorthosite, 30, 210 Mercury Transfer Module, 552, 553, 555, 561–562 anticline, 70, 251 MERTIS. -
The Universe Contents 3 HD 149026 B
History . 64 Antarctica . 136 Utopia Planitia . 209 Umbriel . 286 Comets . 338 In Popular Culture . 66 Great Barrier Reef . 138 Vastitas Borealis . 210 Oberon . 287 Borrelly . 340 The Amazon Rainforest . 140 Titania . 288 C/1861 G1 Thatcher . 341 Universe Mercury . 68 Ngorongoro Conservation Jupiter . 212 Shepherd Moons . 289 Churyamov- Orientation . 72 Area . 142 Orientation . 216 Gerasimenko . 342 Contents Magnetosphere . 73 Great Wall of China . 144 Atmosphere . .217 Neptune . 290 Hale-Bopp . 343 History . 74 History . 218 Orientation . 294 y Halle . 344 BepiColombo Mission . 76 The Moon . 146 Great Red Spot . 222 Magnetosphere . 295 Hartley 2 . 345 In Popular Culture . 77 Orientation . 150 Ring System . 224 History . 296 ONIS . 346 Caloris Planitia . 79 History . 152 Surface . 225 In Popular Culture . 299 ’Oumuamua . 347 In Popular Culture . 156 Shoemaker-Levy 9 . 348 Foreword . 6 Pantheon Fossae . 80 Clouds . 226 Surface/Atmosphere 301 Raditladi Basin . 81 Apollo 11 . 158 Oceans . 227 s Ring . 302 Swift-Tuttle . 349 Orbital Gateway . 160 Tempel 1 . 350 Introduction to the Rachmaninoff Crater . 82 Magnetosphere . 228 Proteus . 303 Universe . 8 Caloris Montes . 83 Lunar Eclipses . .161 Juno Mission . 230 Triton . 304 Tempel-Tuttle . 351 Scale of the Universe . 10 Sea of Tranquility . 163 Io . 232 Nereid . 306 Wild 2 . 352 Modern Observing Venus . 84 South Pole-Aitken Europa . 234 Other Moons . 308 Crater . 164 Methods . .12 Orientation . 88 Ganymede . 236 Oort Cloud . 353 Copernicus Crater . 165 Today’s Telescopes . 14. Atmosphere . 90 Callisto . 238 Non-Planetary Solar System Montes Apenninus . 166 How to Use This Book 16 History . 91 Objects . 310 Exoplanets . 354 Oceanus Procellarum .167 Naming Conventions . 18 In Popular Culture . -
Mercury's Low-Reflectance Material: Constraints from Hollows
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Mercury’s low-reflectance material: Constraints from hollows Rebecca Thomas, Brian Hynek, David Rothery, Susan Conway To cite this version: Rebecca Thomas, Brian Hynek, David Rothery, Susan Conway. Mercury’s low-reflectance material: Constraints from hollows. Icarus, Elsevier, 2016, 277, pp.455-465. 10.1016/j.icarus.2016.05.036. hal-02271739 HAL Id: hal-02271739 https://hal.archives-ouvertes.fr/hal-02271739 Submitted on 27 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Mercury’s Low-Reflectance Material: Constraints from Hollows Rebecca J. Thomas , Brian M. Hynek , David A. Rothery , Susan J. Conway PII: S0019-1035(16)30246-9 DOI: 10.1016/j.icarus.2016.05.036 Reference: YICAR 12084 To appear in: Icarus Received date: 23 February 2016 Revised date: 9 May 2016 Accepted date: 24 May 2016 Please cite this article as: Rebecca J. Thomas , Brian M. Hynek , David A. Rothery , Susan J. Conway , Mercury’s Low-Reflectance Material: Constraints from Hollows, Icarus (2016), doi: 10.1016/j.icarus.2016.05.036 This is a PDF file of an unedited manuscript that has been accepted for publication. -
IAU Mercurian Nomenclature
Appendix 1 IAU Mercurian Nomenclature 1. IAU Nomenclature Rules Since its inception in Brussels in 1919 [1], the International Astronomical Union (IAU) has gradually developed a planetary nomenclature system that has evolved from a purely classically based system into a quite so- phisticated attempt to broaden the cultural base of the names approved for planetary bodies and surface features. At present, name selection is guided by 11 rules (quoted verbatim below) in addition to conventions decided upon by nomenclature task groups for individual Solar System bodies. The general rules are as follows1: 1. Nomenclature is a tool and the first consideration should be to make it simple, clear, and unambiguous. 2. In general, official names will not be given to features whose longest di- mensions are less than 100 metres, although exceptions may be made for smaller features having exceptional scientific interest. 3. The number of names chosen for each body should be kept to a minimum. Features should be named only when they have special scientific inter- est, and when the naming of such features is useful to the scientific and cartographic communities at large. 4. Duplication of the same surface feature name on two or more bodies, and of the same name for satellites and minor planets, is discouraged. Duplications may be allowed when names are especially appropriate and the chances for confusion are very small. 5. Individual names chosen for each body should be expressed in the language of origin. Transliteration for various alphabets should be given, but there will be no translation from one language to another. -
Analysis of MESSENGER High-Resolution Images of Mercury's
PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Analysis of MESSENGER high-resolution images 10.1002/2016JE005070 of Mercury's hollows and implications Key Points: for hollow formation • Average depth of 2518 hollows in 552 high-resolution images of Mercury is David T. Blewett1, Amanda C. Stadermann2, Hannah C. Susorney3, Carolyn M. Ernst1, Zhiyong Xiao4,5, 24 ± 16 m 1 1 1 6 1 • Hollows enlarge by scarp retreat and Nancy L. Chabot , Brett W. Denevi , Scott L. Murchie , Francis M. McCubbin , Mallory J. Kinczyk , 7 8,9 cease to deepen when a devolatilized Jeffrey J. Gillis-Davis , and Sean C. Solomon lag becomes thick enough to prevent further volatile loss 1Planetary Exploration Group, The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA, • Carbon could be lost from Mercury's 2Department of Earth and Planetary Sciences, Washington University, St. Louis, Missouri, USA, 3Department of Earth and surface via ion sputtering or Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland, USA, 4China University of Geosciences, Wuhan, conversion of graphite to methane by 5 6 proton bombardment China, Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway, NASA Johnson Space Center, Houston, Texas, USA, 7Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, Hawaii, USA, 8Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA, 9Department of Terrestrial Magnetism, Carnegie Supporting Information: Institution of Washington, Washington, District of Columbia, USA • Supporting Information S1 • Data Set S1 • Data Set S2 Abstract High-resolution images from MESSENGER provide morphological information on the nature and Correspondence to: origin of Mercury's hollows, small depressions that likely formed when a volatile constituent was lost from the D. -
Caloris Impact Basin: Exterior Geomorphology, Stratigraphy, Morphometry, Radial Sculpture, and Smooth Plains Deposits
Earth and Planetary Science Letters 285 (2009) 297–308 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits Caleb I. Fassett a,⁎, James W. Head a, David T. Blewett b, Clark R. Chapman c, James L. Dickson a, Scott L. Murchie b, Sean C. Solomon d, Thomas R. Watters e a Department of Geological Sciences, Brown University, 324 Brook Street, Box 1846, Providence, RI 02912, USA b Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA c Southwest Research Institute, 1050 Walnut St. (Suite 300), Boulder, CO 80302, USA d Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015, USA e Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC 20013, USA article info abstract Article history: The Mariner 10 flybys revealed the eastern third of the Caloris basin and demonstrated its importance as a Accepted 15 May 2009 chronostratigraphic marker for the geological history of Mercury. Uncertain after that mission were the size Available online 24 June 2009 of the basin, the full distribution of materials deposited or modified during the impact process, and the stratigraphic and age relationships between Caloris and surrounding terrain. Images obtained during Keywords: MESSENGER's January 2008 flyby of Mercury revealed that the Caloris basin is ∼15% larger than previously Mercury estimated and moderately elliptical (∼1525 by ∼1315 km). Basin-related sculpture and secondary craters are MESSENGER fi fi Caloris basin dispersed widely in areas surrounding the basin, con rming the widespread signi cance of this event as a stratigraphy stratigraphic marker. -
Hollows on Mercury: Materials and Mechanisms Involved in Their Formation Rebecca Thomas, David Rothery, Susan Conway, Mahesh Anand
Hollows on Mercury: Materials and mechanisms involved in their formation Rebecca Thomas, David Rothery, Susan Conway, Mahesh Anand To cite this version: Rebecca Thomas, David Rothery, Susan Conway, Mahesh Anand. Hollows on Mercury: Ma- terials and mechanisms involved in their formation. Icarus, Elsevier, 2014, 229, pp.221-235. 10.1016/j.icarus.2013.11.018. insu-02276792 HAL Id: insu-02276792 https://hal-insu.archives-ouvertes.fr/insu-02276792 Submitted on 3 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Icarus 229 (2014) 221–235 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Hollows on Mercury: Materials and mechanisms involved in their formation ⇑ Rebecca J. Thomas a, , David A. Rothery a, Susan J. Conway a, Mahesh Anand a,b a Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK b Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK article info abstract Article history: Recent images of the surface of Mercury have revealed an unusual and intriguing landform: sub-kilome- Received 30 May 2013 tre scale, shallow, flat-floored, steep-sided rimless depressions typically surrounded by bright deposits Revised 17 October 2013 and generally occurring in impact craters. -
Constraints on Formation and Composition from Analysis of Geological Setting and Spectral Reflectance David T
JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS, VOL. 118, 1013–1032, doi:10.1029/2012JE004174, 2013 Mercury’s hollows: Constraints on formation and composition from analysis of geological setting and spectral reflectance David T. Blewett,1 William M. Vaughan,2 Zhiyong Xiao,3,4 Nancy L. Chabot,1 Brett W. Denevi,1 Carolyn M. Ernst,1 Jörn Helbert,5 Mario D’Amore,5 Alessandro Maturilli,5 James W. Head,2 and Sean C. Solomon6,7 Received 2 July 2012; revised 10 October 2012; accepted 26 November 2012; published 22 May 2013. [1] Landforms unique to Mercury, hollows are shallow, flat-floored irregular depressions notable for their relatively high reflectance and characteristic color. Here we document the range of geological settings in which hollows occur. Most are associated with impact structures (simple bowl-shaped craters to multiring basins, and ranging from Kuiperian to Calorian in age). Hollows are found in the low-reflectance material global color unit and in low-reflectance blue plains, but they appear to be absent from high-reflectance red plains. Hollows may occur preferentially on equator- or hot-pole-facing slopes, implying that their formation is linked to solar heating. Evidence suggests that hollows form because of loss of volatile material. We describe hypotheses for the origin of the volatiles and for how such loss proceeds. Intense space weathering and solar heating are likely contributors to the loss of volatiles; contact heating by melts could promote the formation of hollows in some locations. Lunar Ina-type depressions differ from hollows on Mercury in a number of characteristics, so it is unclear if they represent a good analog. -
The Tectonics of Mercury
P1: aaa Trim: 174mm × 247mm Top: 0.553in Gutter: 0.747in CUUK632-02 CUUK632-Watters ISBN: 978 0 521 76573 2 June 26, 2009 20:13 2 The tectonics of Mercury T. R. Watters Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington and F. Nimmo Department of Earth and Planetary Sciences, University of California, Santa Cruz Summary Mercury has a remarkable number of landforms that express widespread defor- mation of the planet’s crustal materials. Deformation on Mercury can be broadly described as either distributed or basin-localized. The distributed deformation on Mercury is dominantly compressional. Crustal shortening is reflected by three land- forms, lobate scarps, high-relief ridges, and wrinkle ridges. Lobate scarps are the expression of surface-breaking thrust faults and are widely distributed on Mercury. High-relief ridges are closely related to lobate scarps and appear to be formed by high-angle reverse faults. Wrinkle ridges are landforms that reflect folding and thrust faulting and are found largely in smooth plains material within and exterior to the Caloris basin. The Caloris basin has an array of basin-localized tectonic features. Basin-concentric wrinkle ridges in the interior smooth plains material are very similar to those found in lunar mascon basins. The Caloris basin also has the only clear evidence of broad-scale, extensional deformation. Extension of the interior plains materials is expressed as a complex pattern of basin-radial and basin-concentric graben. The graben crosscut the wrinkle ridges in Caloris, suggesting that they are among the youngest tectonic features on Mercury. -
Volcanism and Tectonism Across the Inner Solar System: an Overview
Downloaded from http://sp.lyellcollection.org/ by guest on September 23, 2021 Volcanism and tectonism across the inner solar system: an overview T. PLATZ1,2*, P. K. BYRNE3,4, M. MASSIRONI5 & H. HIESINGER6 1Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719-2395, USA 2Freie Universita¨t Berlin, Institute of Geological Sciences, Planetary Sciences & Remote Sensing, Malteserstrasse 74-100, 12249 Berlin, Germany 3Lunar and Planetary Institute, Universities Space Research Association, 3600 Bay Area Boulevard, Houston, TX 77058, USA 4Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015-1305, USA 5Dipartimento di Geoscienze, Universita’ degli Studi di Padova, via G. Gradenigo 6, 35131 Padova, Italy 6Institut fu¨r Planetologie, Westfa¨lische Wilhelms-Universita¨tMu¨nster, Wilhelm-Klemm-Strasse 10, 48149 Mu¨nster, Germany *Corresponding author (e-mail: [email protected]) Abstract: Volcanism and tectonism are the dominant endogenic means by which planetary sur- faces change. This book, in general, and this overview, in particular, aim to encompass the broad range in character of volcanism, tectonism, faulting and associated interactions observed on plane- tary bodies across the inner solar system – a region that includes Mercury, Venus, Earth, the Moon, Mars and asteroids. The diversity and breadth of landforms produced by volcanic and tectonic pro- cesses are enormous, and vary across the inventory of inner solar system bodies. As a result, the selection of prevailing landforms and their underlying formational processes that are described and highlighted in this review are but a primer to the expansive field of planetary volcanism and tectonism. In addition to this extended introductory contribution, this Special Publication features 21 dedicated research articles about volcanic and tectonic processes manifest across the inner solar system. -
Planet Mercury
Rothery David A. Rothery Planet Mercury David A. Rothery From Pale Pink Dot to Dynamic World A new and detailed picture of Mercury is emerging thanks to NASA’s MESSENGER mission that spent four years in orbit about the Sun’s innermost planet. Comprehen- sively illustrated by close-up images and other data, the author describes Mercury’s landscapes from a geological perspective: from sublimation hollows, to volcanic vents, to lava plains, to giant thrust faults. He considers what its giant core, internal structure and weird composition have to tell us about the formation and evolution of a planet so close to the Sun. This is of special significance in view of the discovery of so many exo- planets in similarly close orbits about their stars. Mercury generates its own magnetic field, like the Earth (but unlike Venus, Mars and the Moon), and the interplay between Mercury’s and the Sun’s magnetic field affects many processes on its surface and in the rich and diverse exosphere of neutral and charged particles surrounding the planet. There is much about Mercury that we still don’t understand. Accessible to the amateur, but also a handy state-of-the-art digest for students and researchers, the book shows how our knowledge of Mercury developed over the past century of ground-based, Planet fly-by and orbital observations, and looks ahead at the mysteries remaining for future 1 missions to explore. Planet Mercury Mercury From Pale Pink Dot to Dynamic World Astronomy / Astrophysics ISBN 978-3-319-12116-1 9 7 8 3 3 1 9 1 2 1 1 6 1 Planet Mercury More information about this series at http://www.springer.com/series/4097 David A.