Gobiodon Citrinus, One of the "Coral Gobies" Most Popular Text & Photos: José María Cid Ruiz

Total Page:16

File Type:pdf, Size:1020Kb

Gobiodon Citrinus, One of the Gobiodon citrinus, one of the "coral gobies" most popular Text & photos: José María Cid Ruiz The genus Gobiodon (Perciformes, Gobiidae), comprises 31 species 1 of small gobies distributed over wide tropical areas of the Indian and Pacific oceans. They are small species (between 3 and 6.5 cm in total length), with arac"ve"v e co- lour paerns. These gobies typically live aachedhe d to brbran-an- ches and nooks of different corals both "hard"ha rd" (e.g. AcAcropo-ropo- ra spp ) as 'so#' (e.g. Sarcophyton sppsp p.).),, which rarely leave. Like all gobies, these specieses have merged its pelvic fins, ini n this way transformeded intoi nt o an organ of aachment, which allows them to remainr em ain strongly adhered to the surfacesurfac e of the coral, eevenve n in areas of strong current. They aarere sseden-ed en - tary fifishessh es with limited radius of ac%on,ac%o n, whichw hi ch basicallb as ic al lyy con-c on - sisistsst s in goingg oing ("jumping" rather thant ha n swimming)sw im mi ng ) fromfr om a ccoralor al branchbr an ch tot o anotheran other sec%on. TheseThes e gobiesgo bi es rarelyr ar el y leave its co- ral hostho st forf or venturingv en tu ri ng intoint o openop en waters.w at er s. TheyT he y are knoknownwn po- pularlypu la rl y as "coral"c or al gobies".g ob ies". is located in placespl ac as far apart as in northern and southern Japan, Samoa, Micronesia and AustraliaAu st ra (both south and north, in the Great Barrier Reef). G. citrinus present a small sizesi ze (6.5( 6. cm the larger specimens). Juveniles have bright yellowish tones (with some dar- GobiodonGo bi odon ccitrinus,it ri nu s, bbiologyio lo gy aandnd aacclima•za•oncc li ma •za•on to aquariumaquarium ker variaons according to geographic origin of the populaon in ques%on). With the age Onee of the speciess pe ci es mostm os t commonlyco mm only keptk ep t in aquariuma qu arium is GoGo-- their color darkens. In aquarium, some%mes they show a pale colour, due to any lack of biodonon citrinusc it ri nu s (Rüppell,(R üp pe ll, 1838).18 38 ). It is a species with largel ar ge dis- carotenoids in the diet, which does not provide the yellow pigment. tribu%onon areasa reas including:i nc lu di ng: southernso ut he rn Red Sea (Eritrea,(Er it re Ethio- The species show no appreciable sexual dimorphism with a naked eye. In nature, found pia) , the en%ren% re easte as t coastco ast of AfricaA fr ic a borderedbord er ed by the Indian in pairs or small groups. Ocean to Mozambique.oz am bi qu e. Addi%onally,Addi%onally , in the Pacific Ocean, it Gobiodon citrinus, oneo ne ofo f the "coral gobies" most popular 1 All rights reserved: ©José María Cid 2014 Field studies 2 have shown that these groups are led by a specimen that stands by their larger sizeze (a male) and several somewhat smaller specimensec im ens (all females). The species produces a toxicto xi c mucus 3 that covers its body and protectss themth em from being eaten by large predatory fishsh species. As already men"oned,ne d, its ac"vity is concentrated around coral hosth os t in which they live (mainly of the genus AcroporaAc ro pora ), rarely venturing into openo pe n wa-wa - tersrs (it( it iiss a species that has absolutelyabsol ut el y no swims wi m bladder).bl ad de r) . It isi s debated whether itsit s rela"onshipre la "o ns hi p withwi th thet he coralc or al isi s a symbiosissy mb io si s (arguing(a rg ui ng thatt ha t repelsre pe ls speciessp ec ie s whosewh os e feedfe ed isi s based on coralc or al polypsp ol yps and alsoal so wasw as verifiedv er ifi ed thatt ha t in thet he stomachsto ma ch contents of some speciess pe ci es ofo f thisth is genusg en us theret he re was filamentous algaeal ga e whichwhic h wouldwo ul d haveha ve injuredi nj ur ed tot o theth e coral). But othershe rs authorsautho rs believeb el ie ve thatt ha t it is a mildmi ld formf or m of pa- rasi"sm"s m (due tot o theyth ey foundf ou nd remainsr em ains ofo f coralco ra l polyps anda nd coralc or al mucusm uc us in itsit s stomachst om ach contents). Its bathymetricym etric distribu"ondi st ri bu "on4 rangesra ng es ffromrom 2 to 20 meters. Addi"onally, keep in mind that this is a vulnerable species when compe"ng with others species for food, since they rarely go to mid -waters in search of food. Therefore, it is very appropriate its ma- When planning itsit s maintenancema in te nance in cap"vity,c ap we intenance on aquariums dedicated to invertebrates, reef aquariums, aquariums with small and must remember ththatat tthishi s is a plank"vorousp la spe- quiet benthic species or directly keep them in specific aquariums targeted to its reproduc"on. cies and as such, requiresqu ir es a frequent feeding in small amounts. Some individuals may refuse to Regarding the size of the aquarium and despite its modest size and peaceful behavior towards accept frozen food ( Artemia, Mysis, Daphnia ) or others species, do not underes"mate its intraspecific aggressivity, because is common in small flake and requires a period of adaptaon of seve- aquariums, watch aggressions by ge$ng the best territories with corals placed strategically. ral weeks, during which you mix these foods with live crustaceans ( Artemia salina mainly). Gobiodon citrinus, one of the "coral gobies" most popular 2 All rights reserved: ©José María Cid 2014 Aquariums of 150 liters can accommodate a couple or a threesome properly. The aquarium should contem- plate living coral, preferably genus Acropora , or coral skeletons or ar!ficial corals, definitely an environment and a relief that reflect their natural habitat. Breeding in cap•vity G.citrinus is a hermaphrodi!c species. In nature, when a group loose its lider male, one of the females (generally the biggest) evolves into a male and starts lead the group again. This feature of their biology is useful for breeding in cap!vity, because if we acquirree a pair or trio, once well acclimated to the aquarium,ua ri um, iitt is highly likely that one of the specimens evolvee vo lve ttoo male, while the others remain as females.em al es. The reproduc!ve paern thatt ha t I have followed for this species was based on placingp la ci ng two groups of 6 speci- mens in two specificec ifi c aquariumsaq ua ri um s 30030 0 and 400 l respec-resp ec - !vely. The evolu!onvo lu !on of bothb ot h groupsgr ou ps wasw as similar,s im il ar , beingbe in g CohabitaonCo ha bi ta!on was stable in both groups over severalsever al montm hs without any casual!es took place. formed a$er ababoutout a momonthnt h a coupleco up le ini n bothbo th tankstan ks However, it was no!ceable certain level of sstresstr es in specimens living on the periphery of terri- (largest specimensme ns with brightbr ig ht colorful:c ol or fu l: reddishr ed di sh head tories defended in each aquarium by ononee of the couples. and lemon yellow tonest on es ono n flanks).fla nk s) . BothBo th couplesc ou pl es con-c on - - In aquarium, if they are well acclimatedac cl im and their quality of life is high, it is not uncommon to trol a preferen!al area,re a, wwherehere ttheyhe y ininteractte ra ct ttogether.og et he r. watch spawnings. My two couplesco began to make their first spawnings at about the same !me, The rela!onship betweenee n the componentsco mp on en ts ofo f eachea ch fourfo ur monthsm onths aer thet he ini!ali ni forma!on of the two groups. The species spawns on a branch of pair is large tolerance. Fromro m the epicenterep ic en te r of theirt he ir tte-e- ththee liliveve or arar!ficial!fi ci al coral which is the center of their territory. The female deposits the eggs in rritories, each pair is projectedte d to pursuep ur su e otherothe r speci-ec i- rows of cicircularrc ul outline, in an area that has previously been cleaned by the male. The male then mens, but in all cases were notno t long oro r obsessiveob se ssive perpe r-- prproceedsoc ee ds to fer!lize the eggs and cares about its surveillance un!l hatching. secu!on, as have been observeded in ototherhe r species.sp ecies. Gobiodon citrinus, one of the "coral gobies"ob ie s" mostm os t poppopuularla r 3 All rights reserved: ©José María Cid 2014 In my tanks despite the abundant corals and rocks providedde d (perhaps due to a failure in choosing the elements over the bo!om), they have o#en done the spawnings on the walls of the aquarium. Usuallyua ll y they have chosen li!le bit visi-vis i- ble and accessible locaons next to the centerce nt er of thetheirir territory (they have co- me to spawn on the curved glass of thet he heater).
Recommended publications
  • Angelfish Centropyge Acanthops Flameback Angel Md Centropyge
    Angelfish Centropyge acanthops Flameback angel md Centropyge bicolor Bicolor angel nice md Centropyge eibli Eibli dwarf angel md Centropyge flavipectoralis Yellowfin dwarf angel md Centropyge flavissima Lemonpeel angel md Centropyge loriculus Flame angel ml Centropyge loriculus Flame angel Buy 3 ml Pomocanthus semicirculatus Koran angel juv. md Pomocanthus semicirculatus Koran angel juv. ml Anthias Pseudanthias squamipinnis Lyretail anthias Maldives md Pseudanthias squamipinnis Lyretail anthias Male - Maldives lg Batfish Platax tiera Tiera batfish lg Blenny Ecsenius bicolor Bicolor blenny md Ecsenius midas Gold midas blenny md Ecsenius midas Gold midas blenny lg Salarias fasciatus Sailfin blenny md Salarias fasciatus Sailfin blenny Buy 5 md Butterfly Chaetodon auriga Threadfin butterfly xl Chaetodon lunula Racoon butterfly md Chaetodon melannotus Black-backed butterfly lg Heniochus acuminatus Black and white heniochus md Heniochus singularis Singular heniochus ml Cardinal Pterapogon kauderni Banggai cardinal md Pterapogon kauderni Banggai cardinal Buy 5 md Catfish Plotosus anguillaris Striped catfsih sm Clown - Tank raised Amphiprion clarkii Clarkii clown Tank raised md Amphiprion frenatus Tomato clown Tank raised md Amphiprion ocellaris Ocellaris clown Tank raised sm Amphiprion ocellaris Ocellaris clown Buy 10 sm Amphiprion ocellaris Ocellaris clown true blackTank raised md Amphiprion ocellaris Ocellaris clown true blackBuy 5 md Amphiprion ocellaris Ocellaris clown true blackTank raised lg Amphiprion ocellaris Ocellaris clown black Tankice
    [Show full text]
  • The Importance of Live Coral Habitat for Reef Fishes and Its Role in Key Ecological Processes
    ResearchOnline@JCU This file is part of the following reference: Coker, Darren J. (2012) The importance of live coral habitat for reef fishes and its role in key ecological processes. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/23714/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/23714/ THE IMPORTANCE OF LIVE CORAL HABITAT FOR REEF FISHES AND ITS ROLE IN KEY ECOLOGICAL PROCESSES Thesis submitted by Darren J. Coker (B.Sc, GDipResMeth) May 2012 For the degree of Doctor of Philosophy In the ARC Centre of Excellence for Coral Reef Studies and AIMS@JCU James Cook University Townsville, Queensland, Australia Statement of access I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and via the Australian Digital Thesis Network for use elsewhere. I understand that as an unpublished work this thesis has significant protection under the Copyright Act and I do not wish to put any further restrictions upon access to this thesis. Signature Date ii Statement of sources Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at my university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.
    [Show full text]
  • Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China
    KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 21 Supplement, 63-72, July 2009 Received : April 17, 2009 ISSN: 1225-8598 Revised : June 15, 2009 Accepted : July 13, 2009 Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China By Han-Lin Wu, Jun-Sheng Zhong1,* and I-Shiung Chen2 Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 1Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 2Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan ABSTRACT The taxonomic research based on extensive investigations and specimen collections throughout all varieties of freshwater and marine habitats of Chinese waters, including mainland China, Hong Kong and Taiwan, which involved accounting the vast number of collected specimens, data and literature (both within and outside China) were carried out over the last 40 years. There are totally 361 recorded species of gobioid fishes belonging to 113 genera, 5 subfamilies, and 9 families. This gobioid fauna of China comprises 16.2% of 2211 known living gobioid species of the world. This report repre- sents a summary of previous researches on the suborder Gobioidei. A recently diagnosed subfamily, Polyspondylogobiinae, were assigned from the type genus and type species: Polyspondylogobius sinen- sis Kimura & Wu, 1994 which collected around the Pearl River Delta with high extremity of vertebral count up to 52-54. The undated comprehensive checklist of gobioid fishes in China will be provided in this paper. Key words : Gobioid fish, fish taxonomy, species checklist, China, Hong Kong, Taiwan INTRODUCTION benthic perciforms: gobioid fishes to evolve and active- ly radiate. The fishes of suborder Gobioidei belong to the largest The gobioid fishes in China have long received little group of those in present living Perciformes.
    [Show full text]
  • Postsettlement Movement Patterns and Homing in a Coral-Associated Fish
    Behavioral Ecology doi:10.1093/beheco/arn118 Advance Access publication 24 September 2008 Postsettlement movement patterns and homing in a coral-associated fish Marlene Walla and Ju¨rgen Herlerb aDepartment of Marine Biology and bDepartment of Theoretical Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria Downloaded from https://academic.oup.com/beheco/article/20/1/87/213766 by guest on 25 September 2021 Coral-associated gobies are highly specialized reef fishes with high host-coral fidelity. Flexibility in habitat choice, however, is important to compensate for potential habitat alteration or loss, but detailed information about the postsettlement movement behavior of such gobies is lacking. We examined movement patterns in Gobiodon histrio, both under natural conditions and during subsequent field experiments, involving breeding pair or partner removal from 3 of the 4 investigation plots. Additionally, we investigated homing behavior, and 2 aquaria experiments were designed to assess home coral and partner recognition of adult fish taken from breeding pairs. Under natural conditions, the movement rate was high for single adults, whereas breeding pairs showed high home-coral fidelity. Manipulations revealed little change of natural patterns except in single adults, which slightly decreased their movement rate in the breeding pair removal plot. In the homing experiment, 17% of tested fish returned to their home coral even after displacement of 4 m, and homing success was much higher at shorter distances (100% at 0.5 m, 53% at 2.25 m). In the aquarium, G. histrio exhibited higher recognition of its home-coral colony (75%) than of its breeding pair partner (60%).
    [Show full text]
  • Gobiodon Winterbottomi, a New Goby (Actinopterygii: Perciformes: Gobiidae) from Iriomote-Jima Island, the Ryukyu Islands, Japan
    Bull. Natl. Mus. Nat. Sci., Ser. A, Suppl. 6, pp. 59–65, March 30, 2012 Gobiodon winterbottomi, a New Goby (Actinopterygii: Perciformes: Gobiidae) from Iriomote-jima Island, the Ryukyu Islands, Japan Toshiyuki Suzuki1, Korechika Yano2 and Hiroshi Senou3 1 Kawanishi-midoridai Senior High School, 1–8 Kouyoudai, Kawanishi, Hyogo 666–0115, Japan E-mail: [email protected] 2 Dive Service Yano, 537 Uehara, Taketomi-cho, Okinawa 907–1541, Japan 3 Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara, Kanagawa 250–0031, Japan E-mail: [email protected] Abstract The gobiid ¿sh Gobiodon winterbottomi is described as a new species from three spec- imens (19.0–32.9 mm SL) collected from Echinopora lamellose, the plate-shaped coral of the fam- ily Faviidae, in 5 m depth on the reef slope off Iriomote-jima Island, the Ryukyu Islands, Japan. It is characterized by the following in combination: the jaw teeth subequal in shape and size; lack of post-symphysial canine teeth; lack of an interopercle-isthmus groove; a narrow gill opening; lack of elongated dorsal-¿n spines; large second dorsal, anal and pelvic ¿ns; 15 or 16 pectoral-¿n rays; and head, body and ¿ns gray, absence of stripes or other markings when fresh or alive. Key words: Gobiodon winterbottomi, new species, Gobiidae, Ryukyu Islands, Japan. Gobiodon Bleeker, 1856 is an Indo-Paci¿c Sawada and Arai, 1972 (validity questionable), gobiid ¿sh genus, comprising often colorful, Gobiodon axillaris De Viz, 1884, Gobiodon bro- tropical species living in obligate commensal chus (Harold and Winterbottom, 1999), Gobio- association with reef-building corals.
    [Show full text]
  • The Global Trade in Marine Ornamental Species
    From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak ACKNOWLEDGEMENTS UNEP World Conservation This report would not have been The authors would like to thank Helen Monitoring Centre possible without the participation of Corrigan for her help with the analyses 219 Huntingdon Road many colleagues from the Marine of CITES data, and Sarah Ferriss for Cambridge CB3 0DL, UK Aquarium Council, particularly assisting in assembling information Tel: +44 (0) 1223 277314 Aquilino A. Alvarez, Paul Holthus and and analysing Annex D and GMAD data Fax: +44 (0) 1223 277136 Peter Scott, and all trading companies on Hippocampus spp. We are grateful E-mail: [email protected] who made data available to us for to Neville Ash for reviewing and editing Website: www.unep-wcmc.org inclusion into GMAD. The kind earlier versions of the manuscript. Director: Mark Collins assistance of Akbar, John Brandt, Thanks also for additional John Caldwell, Lucy Conway, Emily comments to Katharina Fabricius, THE UNEP WORLD CONSERVATION Corcoran, Keith Davenport, John Daphné Fautin, Bert Hoeksema, Caroline MONITORING CENTRE is the biodiversity Dawes, MM Faugère et Gavand, Cédric Raymakers and Charles Veron; for assessment and policy implemen- Genevois, Thomas Jung, Peter Karn, providing reprints, to Alan Friedlander, tation arm of the United Nations Firoze Nathani, Manfred Menzel, Julie Hawkins, Sherry Larkin and Tom Environment Programme (UNEP), the Davide di Mohtarami, Edward Molou, Ogawa; and for providing the picture on world’s foremost intergovernmental environmental organization.
    [Show full text]
  • Patterns of Evolution in Gobies (Teleostei: Gobiidae): a Multi-Scale Phylogenetic Investigation
    PATTERNS OF EVOLUTION IN GOBIES (TELEOSTEI: GOBIIDAE): A MULTI-SCALE PHYLOGENETIC INVESTIGATION A Dissertation by LUKE MICHAEL TORNABENE BS, Hofstra University, 2007 MS, Texas A&M University-Corpus Christi, 2010 Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in MARINE BIOLOGY Texas A&M University-Corpus Christi Corpus Christi, Texas December 2014 © Luke Michael Tornabene All Rights Reserved December 2014 PATTERNS OF EVOLUTION IN GOBIES (TELEOSTEI: GOBIIDAE): A MULTI-SCALE PHYLOGENETIC INVESTIGATION A Dissertation by LUKE MICHAEL TORNABENE This dissertation meets the standards for scope and quality of Texas A&M University-Corpus Christi and is hereby approved. Frank L. Pezold, PhD Chris Bird, PhD Chair Committee Member Kevin W. Conway, PhD James D. Hogan, PhD Committee Member Committee Member Lea-Der Chen, PhD Graduate Faculty Representative December 2014 ABSTRACT The family of fishes commonly known as gobies (Teleostei: Gobiidae) is one of the most diverse lineages of vertebrates in the world. With more than 1700 species of gobies spread among more than 200 genera, gobies are the most species-rich family of marine fishes. Gobies can be found in nearly every aquatic habitat on earth, and are often the most diverse and numerically abundant fishes in tropical and subtropical habitats, especially coral reefs. Their remarkable taxonomic, morphological and ecological diversity make them an ideal model group for studying the processes driving taxonomic and phenotypic diversification in aquatic vertebrates. Unfortunately the phylogenetic relationships of many groups of gobies are poorly resolved, obscuring our understanding of the evolution of their ecological diversity. This dissertation is a multi-scale phylogenetic study that aims to clarify phylogenetic relationships across the Gobiidae and demonstrate the utility of this family for studies of macroevolution and speciation at multiple evolutionary timescales.
    [Show full text]
  • Checklist of the Shore and Epipelagic Fishes of Tonga
    ATOLL RESEARCH BULLETIN NO. 502 CHECKLIST OF THE SHORE AND EPIPEGAGIC FISHES OF TONGA BY JOHN E. RANDALL, JEFFREY T. WILLIAMS, DAVID G. SMITH, MICHEL KULBICKI, GERALD MOU THAM, PIERRE LABROSSE, MECKI KRONEN, ERIC CLUA, AND BRADLEY S. MANN ISSUEDBY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST2003 Niuafo'ov 0 }•lohi lliualoputapu ............ ~-··-···~~-·--~~.-.'!- ... ~"-"'~-- .. ~---- ...... -~---'*----·- .. '18 Fonualei ... · Tolw 1. SOUTH PACIFIC V A V A 'U GR 0 U P! . ; i 0 C.E AN 1 1 l 1 ---20 ; Nomuka l.':l , 1 ,;} NdfUKA ·oru(roLo GrOUP GRQUP 1 ~.,,,,, t j Tongatapu u \; 1 !rONGATAPU ~·Euil ! GROUP ~ 1 i ' ----- ...... J .. .,........ "' ....... Sl.~----·--····· ..... i ~ONGA l ir Capltal city J 0 110 lOOiGI~ 1 1 ___ ,·--·-1--· """"--··--···--.............. ______ ...... .. Figure 1. The Kingdom of Tonga. CHECKLIST OF THE SHORE AND EPIPELAGIC FISHES OF TONGA BY 1 2 2 JOHN E. RANDALL , JEFFREY T. WILLIAMS , DAVID G. SMITH , MICHEL 3 3 4 4 KULBICKI , GERALD MOU THAM , PIERRE LABROSSE , MEC KI KRONEN , 4 5 ERIC CLUA , and BRADLEY S. MANN ABSTRACT A checklist is given below of 1162 species of shore and epipelagic fishes belonging to 111 families that occur in the islands of Tonga, South Pacifie Ocean; 40 of these are epipelagic species. As might be expected, the fish fauna of Tonga is most similar to those of Samoa and Fiji; at least 658 species of the fishes found in Tonga are also known from Fiji and the islands of Samoa. Twelve species of shore fishes are presently known only from Tonga. Specimens of Tongan fishes are housed mainly in the fish collections of the National Museum ofNatural History, Washington D.C.; Bernice P.
    [Show full text]
  • Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
    Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S.
    [Show full text]
  • By Rijksmuseum Van Natuurlijke Historie, Leiden in Preparing The
    RESULTS OF A REEXAMINATION OF TYPES AND SPECIMENS OF GOBIOID FISHES, WITH NOTES ON THE FISHFAUNA OF THE SURROUNDINGS OF BATAVIA by Dr. F. P. KOUMANS Rijksmuseum van Natuurlijke Historie, Leiden In preparing the volume of the Gobioidea in M. Weber and L. F. de Beaufort: The Fishes of the Indo-Australian Archipelago, several de- scribed species, collected in the Indo-Australian Archipelago or its surroundings, were not clear to me. Of a number of these the description was distinct enough to see what was meant with such a new species, but there were several species which I could not recognize from their description. Bleeker described a large number of new species, but, unfortunately, several of his descriptions are too vague to recognize the species. So many authors had described several species which proved, after comparison with Bleeker's type specimens or descriptions made after his types, to be either closely allied, or identical with species already described by Bleeker. In order to see whether the described species of authors were synonyms of already described species, or to reexamine the types in order to enlarge the descriptions, I visited several Museums and other Institutions in the United States of N. America, Honolulu, Australia, Philippines, Singapore and British India. During a stay in Batavia, I had the opportunity to make colour sketches of freshly-caught specimens and to go out and collect specimens myself. My visit to the different countries mentioned was made possible by a grant of the "Pieter Langerhuizen Lambertuszoon fonds", endowed by the "Hollandsche Maatschappij der Wetenschappen". During these visits I received great help and friendship of the staff of the Museums and Institutions, for which I am very thankful.
    [Show full text]
  • Sanganeb Atoll, Sudan a Marine National Park with Scientific Criteria for Ecologically Significant Marine Areas Abstract
    Sanganeb Atoll, Sudan A Marine National Park with Scientific Criteria for Ecologically Significant Marine Areas Abstract Sanganeb Marine National Park (SMNP) is one of the most unique reef structures in the Sudanese Red Sea whose steep slopes rise from a sea floor more than 800 m deep. It is located at approximately 30km north-east of Port Sudan city at 19° 42 N, 37° 26 E. The Atoll is characterized by steep slopes on all sides. The dominated coral reef ecosystem harbors significant populations of fauna and flora in a stable equilibrium with numerous endemic and endangered species. The reefs are distinctive of their high number of species, diverse number of habitats, and high endemism. The atoll has a diverse coral fauna with a total of 86 coral species being recorded. The total number of species of algae, polychaetes, fish, and Cnidaria has been confirmed as occurring at Sanganeb Atoll. Research activities are currently being conducted; yet several legislative decisions are needed at the national level in addition to monitoring. Introduction (To include: feature type(s) presented, geographic description, depth range, oceanography, general information data reported, availability of models) Sanganeb Atoll was declared a marine nation park in 1990. Sanganeb Marine National Park (SMNP) is one of the most unique reef structures in the Sudanese Red Sea whose steep slopes rise from a sea floor more than 800 m deep (Krupp, 1990). With the exception of the man-made structures built on the reef flat in the south, there is no dry land at SMNP (Figure 1). The Atoll is characterized by steep slopes on all sides with terraces in their upper parts and occasional spurs and pillars (Sheppard and Wells, 1988).
    [Show full text]
  • Biodiversity in the Coral Reefs
    Student Name: Class: Biodiversity in the Coral Reefs Expert Pack: Grades 9-10 Table of Contents Text #1: Coral Reefs (Video) ................................................................................................................... 12 Text #2: Top 25 Coral Reef Facts (Informational Text) ................................................................. 13 Text #3: Coral Polyps—Tiny Builders (Scientific Diagram and Informational Text) ........... 18 Text #4: Corals Dine on Microplastics (Informational Text) ...................................................... 20 Text #5: Coral Reef Biodiversity (Informational Text) .................................................................... 24 Text #6: Coral and Coral Reefs (Scientific Article) .......................................................................... 27 Text #7: Bizzare and Beautiful Coral Reef Animals (Website) .................................................... 39 Text #8: The Great Barrier Reef Food Chain (Diagram) ................................................................ 40 Text #9: Why Are Coral Reefs Important (Informational Article) .............................................. 42 Text #10: Status of and Threat to Coral Reefs (Informational Article) .................................... 46 Text #11: Crabs Play Defense, Save Corals (News Article) .......................................................... 54 Text #12: What You Can Do (Informational Article) ...................................................................... 58 Extended Reading, Text
    [Show full text]