Nervous System Pt 3

Total Page:16

File Type:pdf, Size:1020Kb

Nervous System Pt 3 Write this down… Homework 2 Study Guide (Synapses) Due at the beginning of lab this week Front and back TASS M&W 1-2pm Willamette Hall 204 Thought Question… When you have one of your mandibular teeth worked on at the dentist and he gives you a shot to deaden half of your mouth, what division of the nervous system is being affected by the lidocaine? What do you think it’s mode of action is? Hint: Remember Physio-EX in lab? Is it affecting a cranial or spinal nerve? The Nervous System THE CENTRAL NERVOUS SYSTEM, T H E B R A I N Introduction Integration Memory Learning Sensation and perception Neural Tissue - Definitions White matter versus Gray matter Fiber Bundles Nerves versus Tracts Nerve Cell Bodies Nucleus versus Ganglion White and Gray Matter Central cavity surrounded by a gray matter core External white matter composed of myelinated fiber tracts Brain has additional areas of gray matter not present in spinal cord Central cavity Cortex of gray matter Migratory Inner gray pattern of matter neurons Cerebrum Outer white Cerebellum matter Gray matter Region of cerebellum Central cavity Inner gray matter Outer white matter Gray matter Brain stem Central cavity Outer white matter Inner gray matter Spinal cord Copyright © 2010 Pearson Education, Inc. Figure 12.4 Brain Similar pattern with additional areas of gray matter The Brain Conscious perception Internal regulation Average adult male 3.5 lbs Same brain mass Average adult female 3.2 lbs to body mass ratio! Brain Regions 4 Adult brain regions 1. Cerebral hemispheres (cerebrum) 2. Diencephalon 3. Cerebellum 4. Brain stem (midbrain, pons, and medulla) Brain Regions Figure 12.3d Ventricles Four major regions are connected by ventricles and aqueducts Figure 12.5 Ventricles Filled with cerebrospinal fluid Lined by ependymal cells Continuous with one another Cerebrum Cerebral hemispheres form superior part of brain About %80 of brain mass 3 tissue layers Superficial cortex, gray matter Internal white matter Basal nuclei, islands of gray matter Anterior Longitudinal Frontal lobe fissure Cerebral veins and arteries Parietal covered by lobe arachnoid mater Left cerebral Right cerebral hemisphere hemisphere Occipital lobe (c) Posterior Figure 12.6c Cerebral Cortex Surface layer of cerebrum ―Executive Suite‖ Convolutions Gyri – elevated ridges Sulci – shallow grooves Fissures – deep grooves, separate larger regions of the brain Cerebrum Fissures divide cerebral hemispheres into 4 lobes Functional Areas of the Cerebral Cortex The three types of functional areas are: Motor areas—control voluntary movement Sensory areas—conscious awareness of sensation Association areas—integrate diverse information Contralateral orientation Hemispheres are functionally specialized Conscious behavior involves the entire cortex Cerebral Motor Activity Motor areas Central sulcus Sensory areas and related Primary motor cortex association areas Premotor cortex Primary somatosensory cortex Frontal eye field Somatic Somatosensory sensation association cortex Broca’s area Gustatory cortex (outlined by dashes) Taste (in insula) Prefrontal cortex Working memory Wernicke’s area for spatial tasks (outlined by dashes) Executive area for task management Working memory for Primary visual cortex object-recall tasks Vision Solving complex, Visual multitask problems association area Auditory association area Hearing Primary auditory cortex (a) Lateral view, left cerebral hemisphere Primary motor cortex Motor association cortex Primary sensory cortex Sensory association cortex Multimodal association cortex Figure 12.8a Primary Motor Cortex Large pyramidal cells of the precentral gyrus Long axons pyramidal (corticospinal) tracts Allows conscious control of precise, skilled, voluntary movements Motor homunculi: upside-down caricatures representing the motor innervation of body regions Motor Homunculus Somatotopy of precentral Posterior gyrus (primary motor cortex) Motor Motor map in Anterior precentral gyrus Toes Jaw Tongue Primary motor cortex Swallowing (precentral gyrus) Figure 12.9 Premotor Cortex Anterior to the precentral gyrus (primary motor cortex) Controls learned, repetitious, or patterned motor skills Coordinates simultaneous or sequential actions Involved in the planning of movements that depend on sensory feedback Broca’s Area Anterior to the inferior region of the premotor area Present in one hemisphere (usually the left) A motor speech area that directs muscles of the tongue Is active as one prepares to speak Frontal Eye Field Anterior to the premotor cortex and superior to Broca’s area Controls voluntary eye movements Cerebral Motor Activity Motor areas Central sulcus Sensory areas and related Primary motor cortex association areas Premotor cortex Primary somatosensory cortex Frontal eye field Somatic Somatosensory sensation association cortex Broca’s area Gustatory cortex (outlined by dashes) Taste (in insula) Prefrontal cortex Working memory Wernicke’s area for spatial tasks (outlined by dashes) Executive area for task management Working memory for Primary visual cortex object-recall tasks Vision Solving complex, Visual multitask problems association area Auditory association area Hearing Primary auditory cortex (a) Lateral view, left cerebral hemisphere Primary motor cortex Motor association cortex Primary sensory cortex Sensory association cortex Multimodal association cortex Figure 12.8a Cerebral Vascular Accident (Stroke) Types Ischemic stroke Hemorrhagic stroke Result Tissue death called an infarct Effects are determined by where and how large an area is involved Stroke cont. Stroke cont. Cerebral Sensory Activity Sensory areas and related Motor areas Central sulcus Primary motor cortex association areas Premotor cortex Primary somatosensory cortex Frontal eye field Somatic Somatosensory sensation association cortex Broca’s area Gustatory cortex (outlined by dashes) Taste (in insula) Prefrontal cortex Working memory Wernicke’s area for spatial tasks (outlined by dashes) Executive area for task management Working memory for Primary visual cortex object-recall tasks Vision Solving complex, Visual multitask problems association area Auditory association area Hearing Primary auditory cortex (a) Lateral view, left cerebral hemisphere Primary motor cortex Motor association cortex Primary sensory cortex Sensory association cortex Multimodal association cortex Figure 12.8a Cerebral Sensory Activity Widely dispersed Parietal, temporal, and occipital lobes Concerned with conscious awareness of sensation Primary Somatosensory Cortex In the postcentral gyri, parietal lobe Stimuli from skin, skeletal muscles, and joints Capable of spatial discrimination: identification of body region being stimulated Posterior Sensory Anterior Sensory map in postcentral gyrus Genitals Primary somato- sensory cortex Intra- (postcentral gyrus) abdominal Copyright © 2010 Pearson Education, Inc. Figure 12.9 Somatosensory Association Cortex Posterior to the primary somatosensory cortex Integrates sensory input from primary somatosensory cortex Integrates and analyzes inputs such as: temperature, size, texture, and relationship of parts of objects being felt Keys in pocket Visual Areas Primary Visual Cortex Occipital lobe Receives visual information from the retinas Visual Association Area Surrounds the primary visual cortex Uses past visual experiences to interpret visual stimuli (e.g., color, form, and movement) Complex processing involves entire posterior half of the hemispheres Auditory Areas Primary Auditory Cortex Temporal lobes Interprets information from inner ear (pitch, loudness, and location) Auditory Association Area Located posterior to the primary auditory cortex Stores memories of sounds and permits perception of sounds Cerebral Sensory Activity Sensory areas and related Motor areas Central sulcus Primary motor cortex association areas Premotor cortex Primary somatosensory cortex Frontal eye field Somatic Somatosensory sensation association cortex Broca’s area Gustatory cortex (outlined by dashes) Taste (in insula) Prefrontal cortex Working memory Wernicke’s area for spatial tasks (outlined by dashes) Executive area for task management Working memory for Primary visual cortex object-recall tasks Vision Solving complex, Visual multitask problems association area Auditory association area Hearing Primary auditory cortex (a) Lateral view, left cerebral hemisphere Primary motor cortex Motor association cortex Primary sensory cortex Sensory association cortex Multimodal association cortex Figure 12.8a Association Areas Receive inputs from multiple sensory areas Send outputs to multiple areas, including the premotor cortex Allow us to give meaning to information received, store it as memory, compare it to previous experience, and decide on action to take Multimodal Association Areas Multimodal Association Areas Three areas Prefrontal Cortex Posterior Association Area (not discussed here) Limbic Association Area Cerebral Association Activity Sensory areas and related Motor areas Central sulcus Primary motor cortex association areas Premotor cortex Primary somatosensory cortex Frontal eye field Somatic Somatosensory sensation association cortex Broca’s area Gustatory cortex (outlined by dashes) Taste (in insula) Prefrontal cortex Working memory Wernicke’s area for spatial tasks (outlined by dashes) Executive area for task management Working memory for Primary visual cortex object-recall tasks Vision Solving complex, Visual
Recommended publications
  • The Reversal Sign Daniel Gaete,1 Antonio Lopez-Rueda2
    Images in… BMJ Case Reports: first published as 10.1136/bcr-2014-204419 on 16 May 2014. Downloaded from The reversal sign Daniel Gaete,1 Antonio Lopez-Rueda2 1Clinica Alemana de Santiago, DESCRIPTION Santiago, Chile A 75-year-old man with a history of chronic 2Hospital Clinic i Provincial de Barcelona, Barcelona, Spain obstructive pulmonary disease was found in cardio- pulmonary arrest. After successful resuscitation the Correspondence to patient was transferred to our institution. On Antonio Lopez-Rueda, arrival, a non-enhanced brain CT was performed to [email protected] assess brain damage, which showed signs of diffuse Accepted 18 April 2014 cerebral oedema, with effacement of the cerebral sulci, sulcal hyperdensity and decreased attenuation of deep and cortical grey matter which appears hypodense in comparison to the white matter, a finding referred to as the ‘reversal sign’ (figures 1 and 2). These injuries were secondary to global brain ischaemia. In less than 8 h, the patient devel- oped multiple organ dysfunction syndrome and was pronounced dead. Cardiopulmonary arrest may lead to diffuse hypoxic ischaemic brain injury. Initially, unen- hanced brain CT may show subtle hypodensity of Figure 2 Coronal reformatted image of the same the basal ganglia and insular cortex, with efface- patient showing the reversal sign, which is also present ment of the basal cisterns. When diffuse brain in the cerebellum. oedema develops, the findings become more obvious, with effacement of the sulci and cisterns, The reversal sign reflects a diffuse hypoxic and loss of the grey matter–white matter differenti- ischaemic cerebral injury, with irreversible brain ation.
    [Show full text]
  • Network Architecture of the Cerebral Nuclei (Basal Ganglia) Association and Commissural Connectome
    Network architecture of the cerebral nuclei (basal ganglia) association and commissural connectome Larry W. Swansona,1, Olaf Spornsb, and Joel D. Hahna aDepartment of Biological Sciences, University of Southern California, Los Angeles, CA 90089; and bDepartment of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405 Contributed by Larry W. Swanson, August 10, 2016 (sent for review July 18, 2016; reviewed by Ann M. Graybiel and Liqun Luo) The cerebral nuclei form the ventral division of the cerebral hemi- same basic strategy and methodology applied to the rat cerebral sphere and are thought to play an important role in neural systems cortical association macroconnectome (10) but with additional an- controlling somatic movement and motivation. Network analysis alytical approaches and curation tools. In this approach a macro- was used to define global architectural features of intrinsic cerebral connection is defined as a monosynaptic axonal (directed, from/to) nuclei circuitry in one hemisphere (association connections) and connection between two nervous system gray matter regions or between hemispheres (commissural connections). The analysis was between a gray matter region and another part of the body (such as based on more than 4,000 reports of histologically defined axonal a muscle) (11, 12). All 45 gray matter regions of the cerebral nuclei connections involving all 45 gray matter regions of the rat cerebral on each side of the brain were included in the analysis. The goal of nuclei and revealed the existence of four asymmetrically intercon- this analysis was to provide global, high-level, design principles of nected modules. The modules form four topographically distinct intrinsic cerebral nuclei circuitry as a framework for more detailed research at the meso-, micro-, and nanolevels of analysis (13).
    [Show full text]
  • Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection
    Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection This guide is for middle and high school students participating in AIMS Anatomy of the Human Brain and Sheep Brain Dissections. Programs will be presented by an AIMS Anatomy Specialist. In this activity students will become more familiar with the anatomical structures of the human brain by observing, studying, and examining human specimens. The primary focus is on the anatomy, function, and pathology. Those students participating in Sheep Brain Dissections will have the opportunity to dissect and compare anatomical structures. At the end of this document, you will find anatomical diagrams, vocabulary review, and pre/post tests for your students. The following topics will be covered: 1. The neurons and supporting cells of the nervous system 2. Organization of the nervous system (the central and peripheral nervous systems) 4. Protective coverings of the brain 5. Brain Anatomy, including cerebral hemispheres, cerebellum and brain stem 6. Spinal Cord Anatomy 7. Cranial and spinal nerves Objectives: The student will be able to: 1. Define the selected terms associated with the human brain and spinal cord; 2. Identify the protective structures of the brain; 3. Identify the four lobes of the brain; 4. Explain the correlation between brain surface area, structure and brain function. 5. Discuss common neurological disorders and treatments. 6. Describe the effects of drug and alcohol on the brain. 7. Correctly label a diagram of the human brain National Science Education
    [Show full text]
  • Histological Underpinnings of Grey Matter Changes in Fibromyalgia Investigated Using Multimodal Brain Imaging
    1090 • The Journal of Neuroscience, February 1, 2017 • 37(5):1090–1101 Neurobiology of Disease Histological Underpinnings of Grey Matter Changes in Fibromyalgia Investigated Using Multimodal Brain Imaging X Florence B. Pomares,1,2 Thomas Funck,3 Natasha A. Feier,1 XSteven Roy,1 X Alexandre Daigle-Martel,4 XMarta Ceko,5 Sridar Narayanan,3 XDavid Araujo,3 Alexander Thiel,6,7 Nikola Stikov,4,8 Mary-Ann Fitzcharles,9,10 and Petra Schweinhardt1,2,6,11 1Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 0C7, Canada, 2Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada, 3McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada, 4Institute for Biomedical Engineering, E´cole Polytechnique, Montreal, Quebec H3T 1J4, Canada, 5Institute of Cognitive Science, University of Colorado, Boulder, Colorado 80309, 6Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec H3A 0C7, Canada, 7Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada, 8Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada, 9Division of Rheumatology, McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada, 10Alan Edwards Pain Management Unit, McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada, and 11Interdisciplinary Spinal Research, Department of Chiropractic Medicine, University Hospital Balgrist, 8008 Zurich, Switzerland Chronic pain patients present with cortical gray matter alterations, observed with anatomical magnetic resonance (MR) imaging. Reduced regional gray matter volumes are often interpreted to reflect neurodegeneration, but studies investigating the cellular origin of gray matter changesarelacking.Weusedmultimodalimagingtocompare26postmenopausalwomenwithfibromyalgiawith25healthycontrols(agerange: 50–75 years) to test whether regional gray matter volume decreases in chronic pain are associated with compromised neuronal integrity.
    [Show full text]
  • Basic Brain Anatomy
    Chapter 2 Basic Brain Anatomy Where this icon appears, visit The Brain http://go.jblearning.com/ManascoCWS to view the corresponding video. The average weight of an adult human brain is about 3 pounds. That is about the weight of a single small To understand how a part of the brain is disordered by cantaloupe or six grapefruits. If a human brain was damage or disease, speech-language pathologists must placed on a tray, it would look like a pretty unim- first know a few facts about the anatomy of the brain pressive mass of gray lumpy tissue (Luria, 1973). In in general and how a normal and healthy brain func- fact, for most of history the brain was thought to be tions. Readers can use the anatomy presented here as an utterly useless piece of flesh housed in the skull. a reference, review, and jumping off point to under- The Egyptians believed that the heart was the seat standing the consequences of damage to the structures of human intelligence, and as such, the brain was discussed. This chapter begins with the big picture promptly removed during mummification. In his and works down into the specifics of brain anatomy. essay On Sleep and Sleeplessness, Aristotle argued that the brain is a complex cooling mechanism for our bodies that works primarily to help cool and The Central Nervous condense water vapors rising in our bodies (Aristo- tle, republished 2011). He also established a strong System argument in this same essay for why infants should not drink wine. The basis for this argument was that The nervous system is divided into two major sec- infants already have Central nervous tions: the central nervous system and the peripheral too much moisture system The brain and nervous system.
    [Show full text]
  • 01 05 Lateral Surface of the Brain-NOTES.Pdf
    Lateral Surface of the Brain Medical Neuroscience | Tutorial Notes Lateral Surface of the Brain 1 MAP TO NEUROSCIENCE CORE CONCEPTS NCC1. The brain is the body's most complex organ. LEARNING OBJECTIVES After study of the assigned learning materials, the student will: 1. Demonstrate the four paired lobes of the cerebral cortex and describe the boundaries of each. 2. Sketch the major features of each cerebral lobe, as seen from the lateral view, identifying major gyri and sulci that characterize each lobe. NARRATIVE by Leonard E. WHITE and Nell B. CANT Duke Institute for Brain Sciences Department of Neurobiology Duke University School of Medicine Overview When you view the lateral aspect of a human brain specimen (see Figures A3A and A102), three structures are usually visible: the cerebral hemispheres, the cerebellum, and part of the brainstem (although the brainstem is not visible in the specimen photographed in lateral view for Fig. 1 below). The spinal cord has usually been severed (but we’ll consider the spinal cord later), and the rest of the subdivisions are hidden from lateral view by the hemispheres. The diencephalon and the rest of the brainstem are visible on the medial surface of a brain that has been cut in the midsagittal plane. Parts of all of the subdivisions are also visible from the ventral surface of the whole brain. Over the next several tutorials, you will find video demonstrations (from the brain anatomy lab) and photographs (in the tutorial notes) of these brain surfaces, and sufficient detail in the narrative to appreciate the overall organization of the parts of the brain that are visible from each perspective.
    [Show full text]
  • The Human Brain Hemisphere Controls the Left Side of the Body and the Left What Makes the Human Brain Unique Is Its Size
    About the brain Cerebrum (also known as the The brain is made up of around 100 billion nerve cells - each one cerebral cortex or forebrain) is connected to another 10,000. This means that, in total, we The cerebrum is the largest part of the brain. It is split in to two have around 1,000 trillion connections in our brains. (This would ‘halves’ of roughly equal size called hemispheres. The two be written as 1,000,000,000,000,000). These are ultimately hemispheres, the left and right, are joined together by a bundle responsible for who we are. Our brains control the decisions we of nerve fibres called the corpus callosum. The right make, the way we learn, move, and how we feel. The human brain hemisphere controls the left side of the body and the left What makes the human brain unique is its size. Our brains have a hemisphere controls the right side of the body. The cerebrum is larger cerebral cortex, or cerebrum, relative to the rest of the The human brain is the centre of our nervous further divided in to four lobes: frontal, parietal, occipital, and brain than any other animal. (See the Cerebrum section of this temporal, which have different functions. system. It is the most complex organ in our fact sheet for further information.) This enables us to have abilities The frontal lobe body and is responsible for everything we do - such as complex language, problem-solving and self-control. The frontal lobe is located at the front of the brain.
    [Show full text]
  • Function of Cerebral Cortex
    FUNCTION OF CEREBRAL CORTEX Course: Neuropsychology CC-6 (M.A PSYCHOLOGY SEM II); Unit I By Dr. Priyanka Kumari Assistant Professor Institute of Psychological Research and Service Patna University Contact No.7654991023; E-mail- [email protected] The cerebral cortex—the thin outer covering of the brain-is the part of the brain responsible for our ability to reason, plan, remember, and imagine. Cerebral Cortex accounts for our impressive capacity to process and transform information. The cerebral cortex is only about one-eighth of an inch thick, but it contains billions of neurons, each connected to thousands of others. The predominance of cell bodies gives the cortex a brownish gray colour. Because of its appearance, the cortex is often referred to as gray matter. Beneath the cortex are myelin-sheathed axons connecting the neurons of the cortex with those of other parts of the brain. The large concentrations of myelin make this tissue look whitish and opaque, and hence it is often referred to as white matter. The cortex is divided into two nearly symmetrical halves, the cerebral hemispheres . Thus, many of the structures of the cerebral cortex appear in both the left and right cerebral hemispheres. The two hemispheres appear to be somewhat specialized in the functions they perform. The cerebral hemispheres are folded into many ridges and grooves, which greatly increase their surface area. Each hemisphere is usually described, on the basis of the largest of these grooves or fissures, as being divided into four distinct regions or lobes. The four lobes are: • Frontal, • Parietal, • Occipital, and • Temporal.
    [Show full text]
  • OBSERVATIONS on PARTIAL REMOVAL of the POST-CENTRAL GYRUS for PAIN by WALPOLE LEWIN and C
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.15.3.143 on 1 August 1952. Downloaded from J. Neurol. Neurosurg. Psychiat., 1952, 15, 143. OBSERVATIONS ON PARTIAL REMOVAL OF THE POST-CENTRAL GYRUS FOR PAIN BY WALPOLE LEWIN and C. G. PHILLIPS From the Nuffield Department ofSurgery and the University Laboratory ofPhysiology, Oxford The role of the cerebral cortex in the conscious one case where stimulation of the sensory cortex appreciation of pain has interested neurologists for produced pain in the phantom leg. many years. Head and Holmes (1911) considered In this paper we wish to record three cases in that pain entered consciousness at thalamic level, which partial resection of the post-central gyrus and more recently Penfleld (1947) stated that was undertaken for the relief of pain. In the first 6. .no removal of cortex anywhere can prevent patient the pain developed during an unusual, pain from being felt and only very rarely does a prolonged, sensory painful aura in traumatic patient use the word pain to describe the result of epilepsy, the second patient had intractable pain in cortical stimulation ", and, he goes on, " it is a phantom foot, and the third had a painful thigh obvious therefore that the pathway of pain conduc- stump. In all three, electrical stimulation of the Protected by copyright. tion reaches the thalamus and consciousness appropriate area of the post-central gyrus repro- without essential conduction to the cortex ". duced the pain complained of by the patient and Adrian (1941) found that no impulses reached the relief followed the removal of this area of cortex.
    [Show full text]
  • Translingual Neural Stimulation with the Portable Neuromodulation
    Translingual Neural Stimulation With the Portable Neuromodulation Stimulator (PoNS®) Induces Structural Changes Leading to Functional Recovery In Patients With Mild-To-Moderate Traumatic Brain Injury Authors: Jiancheng Hou,1 Arman Kulkarni,2 Neelima Tellapragada,1 Veena Nair,1 Yuri Danilov,3 Kurt Kaczmarek,3 Beth Meyerand,2 Mitchell Tyler,2,3 *Vivek Prabhakaran1 1. Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA 2. Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA 3. Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA *Correspondence to [email protected] Disclosure: Dr Tyler, Dr Danilov, and Dr Kaczmarek are co-founders of Advanced Neurorehabilitation, LLC, which holds the intellectual property rights to the PoNS® technology. Dr Tyler is a board member of NeuroHabilitation Corporation, a wholly- owned subsidiary of Helius Medical Technologies, and owns stock in the corporation. The other authors have declared no conflicts of interest. Acknowledgements: Professional medical writing and editorial assistance were provided by Kelly M. Fahrbach, Ashfield Healthcare Communications, part of UDG Healthcare plc, funded by Helius Medical Technologies. Dr Tyler, Dr Kaczmarek, Dr Danilov, Dr Hou, and Dr Prabhakaran were being supported by NHC-TBI-PoNS-RT001. Dr Hou, Dr Kulkarni, Dr Nair, Dr Tellapragada, and Dr Prabhakaran were being supported by R01AI138647. Dr Hou and Dr Prabhakaran were being supported by P01AI132132, R01NS105646. Dr Kulkarni was being supported by the Clinical & Translational Science Award programme of the National Center for Research Resources, NCATS grant 1UL1RR025011. Dr Meyerand, Dr Prabhakaran, Dr Nair was being supported by U01NS093650.
    [Show full text]
  • Neocortex: Consciousness Cerebellum
    Grey matter (chips) White matter (the wiring: the brain mainly talks to itself) Neocortex: consciousness Cerebellum: unconscious control of posture & movement brains 1. Golgi-stained section of cerebral cortex 2. One of Ramon y Cajal’s faithful drawings showing nerve cell diversity in the brain cajal Neuropil: perhaps 1 km2 of plasma membrane - a molecular reaction substrate for 1024 voltage- and ligand-gated ion channels. light to Glia: 3 further cell types 1. Astrocytes: trophic interface with blood, maintain blood brain barrier, buffer excitotoxic neurotransmitters, support synapses astros Oligodendrocytes: myelin insulation oligos Production persists into adulthood: radiation myelopathy 3. Microglia: resident macrophages of the CNS. Similarities and differences with Langerhans cells, the professional antigen-presenting cells of the skin. 3% of all cells, normally renewed very slowly by division and immigration. Normal Neurosyphilis microglia Most adult neurons are already produced by birth Peak synaptic density by 3 months EMBRYONIC POSTNATAL week: 0 6 12 18 24 30 36 Month: 0 6 12 18 24 30 36 Year: 4 8 12 16 20 24 Cell birth Migration 2* Neurite outgrowth Synaptogenesis Myelination 1* Synapse elimination Modified from various sources inc: Andersen SL Neurosci & Biobehav Rev 2003 Rakic P Nat Rev Neurosci 2002 Bourgeois Acta Pediatr Suppl 422 1997 timeline 1 Synaptogenesis 100% * Rat RTH D BI E A Density of synapses in T PUBERTY primary visual cortex H at different times post- 0% conception. 100% (logarithmic scale) RTH Cat BI D E A T PUBERTY H The density values equivalent 0% to 100% vary between species 100% but in Man the peak value is Macaque 6 3 RTH 350 x10 synapses per mm BI D E PUBERTY A T The peak rate of synapse H formation is at birth in the 0% macaque: extrapolating to 100% the entire cortex, this Man RTH BI amounts to around 800,000 D E synapses formed per sec.
    [Show full text]
  • Unravelling the Subfields of the Hippocampal Head Using 7-Tesla Structural MRI
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-2-2016 12:00 AM Unravelling The Subfields Of The Hippocampal Head Using 7-Tesla Structural MRI Jordan M. K. DeKraker The University of Western Ontario Supervisor Dr. Stefan Kohler̈ The University of Western Ontario Graduate Program in Psychology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Jordan M. K. DeKraker 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Cognitive Neuroscience Commons, Computational Neuroscience Commons, Nervous System Commons, Other Neuroscience and Neurobiology Commons, and the Tissues Commons Recommended Citation DeKraker, Jordan M. K., "Unravelling The Subfields Of The Hippocampal Head Using 7-Tesla Structural MRI" (2016). Electronic Thesis and Dissertation Repository. 3918. https://ir.lib.uwo.ca/etd/3918 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. ii Abstract Probing the functions of human hippocampal subfields is a promising area of research in cognitive neuroscience. However, defining subfield borders in Magnetic Resonance Imaging (MRI) is challenging. Here, we present a user-guided, semi-automated protocol for segmenting hippocampal subfields on T2-weighted images obtained with 7-Tesla MRI. The protocol takes advantage of extant knowledge about regularities in hippocampal morphology and ontogeny that have not been systematically considered in prior related work. An image feature known as the hippocampal ‘dark band’ facilitates tracking of subfield continuities, allowing for unfolding and segmentation of convoluted hippocampal tissue.
    [Show full text]