A Dissertation Entitled TRIP13 AAA-Atpase Promotes Spindle

Total Page:16

File Type:pdf, Size:1020Kb

A Dissertation Entitled TRIP13 AAA-Atpase Promotes Spindle A Dissertation Entitled TRIP13 AAA-ATPase Promotes Spindle Assembly Checkpoint Activation through Coordinating with MAD1 at Unattached Kinetochores By Christopher E. Arnst Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biology __________________________________________ Dr. Song-Tao Liu, Committee Chair __________________________________________ Dr. William Taylor, Committee Member __________________________________________ Dr. Qian Chen, Committee Member __________________________________________ Dr. Donald Ronning, Committee Member __________________________________________ Dr. Ajith Karunarathne, Committee Member __________________________________________ Dr. Cyndee Gruden, Dean College of Graduate Studies University of Toledo August 2019 Copyright 2019, Christopher E. Arnst This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of TRIP13 AAA-ATPase Promotes Spindle Assembly Checkpoint Activation through Coordinating with MAD1 at Unattached Kinetochores By Christopher E. Arnst Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biology The University of Toledo August 2019 During mitosis, cells must ensure proper separation of the genome into daughter cells. Failure to evenly divide chromosomes into the daughter cells results in aneuploidy and chromosomal instability (CIN). CIN is common in aggressive cancers as it directly promotes genetic heterogeneity and can lead to oncogenic signaling in cells. To maintain genomic integrity during mitosis, cells employ a signal transduction pathway termed the Spindle Assembly Checkpoint (SAC). SAC signaling delays chromosome segregation until all chromosomal kinetochores are properly bound by microtubules from spindle poles. At the molecular level, the SAC is amplified by unattached kinetochores. These unattached kinetochores prevent premature chromosome segregation by driving the production of the Mitotic Checkpoint Complex (MCC). Kinetochore-produced MCC diffuses into the cytoplasm where it binds to and inhibits the Anaphase Promoting Complex/ Cyclosome (APC/C), an E3 ubiquitin ligase that targets securin and cyclin B for degradation by the proteasome. When the spindle is properly assembled and iii chromosomes are bi-oriented, the SAC must be silenced to allow for anaphase onset and cell division. SAC silencing requires disassembling cytoplasmic MCC and preventing further MCC assembly at kinetochores. Our lab was the first to identify a novel SAC silencing role for Thyroid Hormone Receptor Interacting Protein 13 (TRIP13). TRIP13 is an AAA-ATPase that partners with its adaptor p31comet to disassemble cytosolic MCC by extracting and inactivating the key MCC subunit Mitotic Arrest Deficient 2 (MAD2). MCC disassembly allows for APC/C activation and the metaphase-to-anaphase transition. Despite the bona -fide SAC silencing role of TRIP13 and p31comet, both proteins localize to unattached kinetochores during SAC activation in prometaphase. TRIP13 has also been directly implicated in SAC activation in recent publications. These data seem incongruent with the established roles of TRIP13 and p31comet in SAC silencing. The disparity led us to hypothesize that TRIP13 and p31comet play a different role at unattached kinetochores during prometaphase to help activate the SAC. Here we used RNAi and CRISPR based auxin inducible degron (AID) tagging to show that TRIP13 but not p31comet supports SAC activation through promoting kinetochore localization of the MCC subunit MAD2 during prometaphase. We also identified the SAC components that contribute to TRIP13 kinetochore localization. Lastly, we identified novel interactions between TRIP13 and SAC proteins including MAD1 that delineate a kinetochore specific mechanism for TRIP13 dependent SAC activation. iv Table of Contents Abstract .............................................................................................................................. iii Table of Contents .................................................................................................................v List of Tables ................................................................................................................... viii List of Figures .................................................................................................................... ix List of Abbreviations ........................................................................................................ xii List of Symbols ................................................................................................................ xiv 1. Overview and Significance ......................................................................................1 1.1 Introduction to Cell Division and Cell Cycle Checkpoints ..............................1 1.2 The Spindle Assembly Checkpoint ...................................................................6 1.3 Centromeres and Kinetochores .........................................................................9 1.4 Molecular Components of SAC Activation ....................................................11 1.5 Mechanism of MCC Assembly .......................................................................17 1.6 Additional SAC Components .........................................................................19 1.7 Regulation of SAC by Mitotic Kinases ..........................................................20 1.8 Molecular Components of SAC Silencing ......................................................21 1.9 The Role of TRIP13 and p31comet in SAC Silencing ......................................24 v 1.10 TRIP13 Functions as a SAC Activator ..........................................................32 1.11 Evolutionary Divergence of TRIP13-p31comet and SAC Signaling ...............32 1.12 Central Hypothesis for TRIP13 but not p31comet in SAC Activation .............34 2. Materials and Methods ...........................................................................................36 3. TRIP13 but not p31comet Activates the Spindle Assembly Checkpoint .................42 3.1 Introduction .....................................................................................................42 3.2 Results .............................................................................................................42 4. TRIP13 ATPase Activity and MAD2 Rescues Mitotic Arrest Defect After TRIP13 Depletion ..................................................................................................49 4.1 Introduction .....................................................................................................49 4.2 Results .............................................................................................................50 5. Determining the Requirements for TRIP13 and p31comet Kinetochore Localization during SAC Activation ..........................................................................................55 5.1 Introduction .....................................................................................................55 5.2 Results .............................................................................................................56 6. TRIP13 Coordinates with MAD1 during SAC Activation ....................................65 6.1 Introduction .....................................................................................................65 6.2 Results .............................................................................................................66 7. Discussion ..............................................................................................................73 References ..........................................................................................................................79 Appendix A OTSSP167 Prevents Mitotic Arrest through Inhibiting CPC Kinase Aurora B .........116 B Attribution of Data ......................................................................................................125 vi C Constructs Generated for the Lab ................................................................................126 vii List of Tables C.1 DNA Constructs Generated for the Lab .................................................................126 C.2 Antibodies ..............................................................................................................134 C.3 RNAi Constructs ....................................................................................................135 C.4 Primers Generated for the Lab ...............................................................................136 viii List of Figures 1-1 The Cell Cycle is Divided into Distinct Phases ...........................................................2 1-2 Temporal Cyclin-CDK Expression Drives Cell Cycle Progression ............................3 1-3 Mitotic Signaling Coordinates Genome Division .......................................................4 1-4 Unattached Kinetochores Promote SAC Signaling .....................................................7 1-5 Centromere Regions of Chromosomes Recruit Kinetochores ...................................11 1-6 MAD2 Adopts either Open or Closed Conformation ................................................12 1-7 MAD1-MAD2 Tetramer Converts MAD2 from Open to Closed Conformation
Recommended publications
  • TANGO1 Builds a Machine for Collagen Export by Recruiting And
    RESEARCH ARTICLE TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes Ishier Raote1,2†, Maria Ortega-Bellido1,2†, Anto´ nio JM Santos1,2‡, Ombretta Foresti1,2, Chong Zhang3, Maria F Garcia-Parajo4,5, Felix Campelo4, Vivek Malhotra1,2,5* 1Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain; 2Universitat Pompeu Fabra, Barcelona, Spain; 3SIMBIOsys Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; 4ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain; 5Institucio Catalana de Recerca i Estudis Avanc¸ats, Barcelona, Spain Abstract Collagen export from the endoplasmic reticulum (ER) requires TANGO1, COPII coats, and retrograde fusion of ERGIC membranes. How do these components come together to produce a transport carrier commensurate with the bulky cargo collagen? TANGO1 is known to form a ring that corrals COPII coats, and we show here how this ring or fence is assembled. Our data reveal that a TANGO1 ring is organized by its radial interaction with COPII, and lateral interactions with *For correspondence: cTAGE5, TANGO1-short or itself. Of particular interest is the finding that TANGO1 recruits ERGIC [email protected] membranes for collagen export via the NRZ (NBAS/RINT1/ZW10) tether complex. Therefore, †These authors contributed TANGO1 couples retrograde membrane flow to anterograde cargo transport. Without the NRZ equally to this work complex, the TANGO1 ring does not assemble, suggesting its role in nucleating or stabilising this Present address: ‡Division of process. Thus, coordinated capture of COPII coats, cTAGE5, TANGO1-short, and tethers by Hematology, Department of TANGO1 assembles a collagen export machine at the ER.
    [Show full text]
  • Biallelic TRIP13 Mutations Predispose to Wilms Tumor and Chromosome Missegregation
    Europe PMC Funders Group Author Manuscript Nat Genet. Author manuscript; available in PMC 2017 July 01. Published in final edited form as: Nat Genet. 2017 July ; 49(7): 1148–1151. doi:10.1038/ng.3883. Europe PMC Funders Author Manuscripts Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation Shawn Yost#1, Bas de Wolf#2, Sandra Hanks#1, Anna Zachariou1, Chiara Marcozzi3,4, Matthew Clarke1, Richarda de Voer2, Banafsheh Etemad2, Esther Uijttewaal2, Emma Ramsay1, Harriet Wylie1, Anna Elliott1, Susan Picton5, Audrey Smith6, Sarah Smithson7, Sheila Seal1, Elise Ruark1, Gunnar Houge8, Jonathan Pines3,4, Geert J.P.L. Kops2,9,10,+, and Nazneen Rahman1,11,+ 1Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG, UK 2Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 3The Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK 4Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK 5Children's and Adolescent Oncology and Haematology Unit, Leeds General Infirmary, Leeds, LS1 3EX, UK 6Yorkshire Regional Clinical Genetics Service, Chapel Allerton Hospital, Chapeltown Road, Leeds, LS7 4SA, UK 7Clinical Genetics Service, St Michael's Hospital, Southwell Street, Bristol, BS2 8EG, UK 8Center for Medical Genetics, Haukeland University Hospital, N-5021 Bergen, Norway 9Cancer Genomics Netherlands, Utrecht, The Netherlands 10Center for Molecular 11 Europe PMC Funders Author Manuscripts Medicine, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, UK SM2 5PT, UK # These authors contributed equally to this work.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Identifying the Contributions and Mechanisms of P31comet and TRIP13 Function During Mitotic
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Identifying the Contributions and Mechanisms of p31comet and TRIP13 Function During Mitotic Checkpoint Silencing A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Biology by Kimia Candice Mashouf Committee in charge: Professor Don Cleveland, Chair Professor Gen-sheng Feng, Co-chair Professor Samara Reck-Peterson 2016 Copyright Kimia Candice Mashouf, 2016 All rights reserved The Thesis of Kimia Candice Mashouf is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair _____________________________________________________________________ Chair University of California, San Diego 2016 iii TABLE OF CONTENTS Signature Page……………………………………………………………………………….. iii Table of Contents…………………………………………………………………………….. iv List of Figures…………………………………………………………………………………. v Acknowledgments…………………………………………………………………..………... vi Abstract of Thesis…….…………………………………………………………………….... vii Chapter 1: Introduction………………………………………………………………….…… 1 Chapter 2: Materials and Methods…………………………………………………….…… 6 Chapter 3: Results…………………………………………………………………………... 10 Chapter 4: Discussion………………………………………………………………………. 16 Appendix……………………………………………………………………………………… 19 References…………………………………………………………………………………… 20 iv LIST OF FIGURES Figure 1: Kinetochore Activation of the checkpoint through hierarchical checkpoint protein recruitment………………………………………….…………………... 2 Figure 2: Disassembly Approach to Identify the functions of TRIP13 and p31 comet on the the
    [Show full text]
  • Identification of Conserved Genes Triggering Puberty in European Sea
    Blázquez et al. BMC Genomics (2017) 18:441 DOI 10.1186/s12864-017-3823-2 RESEARCHARTICLE Open Access Identification of conserved genes triggering puberty in European sea bass males (Dicentrarchus labrax) by microarray expression profiling Mercedes Blázquez1,2* , Paula Medina1,2,3, Berta Crespo1,4, Ana Gómez1 and Silvia Zanuy1* Abstract Background: Spermatogenesisisacomplexprocesscharacterized by the activation and/or repression of a number of genes in a spatio-temporal manner. Pubertal development in males starts with the onset of the first spermatogenesis and implies the division of primary spermatogonia and their subsequent entry into meiosis. This study is aimed at the characterization of genes involved in the onset of puberty in European sea bass, and constitutes the first transcriptomic approach focused on meiosis in this species. Results: European sea bass testes collected at the onset of puberty (first successful reproduction) were grouped in stage I (resting stage), and stage II (proliferative stage). Transition from stage I to stage II was marked by an increase of 11ketotestosterone (11KT), the main fish androgen, whereas the transcriptomic study resulted in 315 genes differentially expressed between the two stages. The onset of puberty induced 1) an up-regulation of genes involved in cell proliferation, cell cycle and meiosis progression, 2) changes in genes related with reproduction and growth, and 3) a down-regulation of genes included in the retinoic acid (RA) signalling pathway. The analysis of GO-terms and biological pathways showed that cell cycle, cell division, cellular metabolic processes, and reproduction were affected, consistent with the early events that occur during the onset of puberty.
    [Show full text]
  • The Mechanisms of the Spindle Assembly Checkpoint and Mitotic Cell Death
    The Mechanisms of the Spindle Assembly Checkpoint and Mitotic Cell Death Jianquan Li Thesis submitted to Newcastle University in candidature for the degree of Doctor of Philosophy Institute for Cell and Molecular Bioscience Newcastle University October 2018 Abstract The spindle assembly checkpoint (SAC) monitors the chromosomes and kinetochore– microtubule attachment to prevent premature anaphase onset (Lara-Gonzalez et al., 2012), and this ensures the fidelity of cell division. The mitotic checkpoint complex (MCC), the core SAC effector, contains two sub-complexes, CDC20-MAD2 and BUBR1-BUB3 (Sudakin et al., 2001). However, the exact mechanism underlying the assembly of the MCC regarding when, where and how still is not fully addressed. It is believed that the formation of the CDC20-MAD2 sub-complex is an initial and essential step in MCC assembly (Sudakin et al., 2001), thus the assembly of the MCC can be depicted by the observation of the formation of the CDC20-MAD2 complex (Fraschini et al., 2001, Meraldi et al., 2004, Poddar et al., 2005). Using the Duolink based in situ proximity ligation assay (PLA), the lab has previously used individual cell analysis to show the temporal and spatial in vivo formation of the CDC20-MAD2 complex throughout the cell cycle in HeLa cells and existence of a specific prophase form of the CDC20-MAD2 complex (Li et al., 2017). In this study, we provide evidences showing that the profile of the assembly of the CDC20-MAD2 complex revealed by using the PLA can genuinely reflect the dynamic in vivo interaction of these two proteins in individual cells.
    [Show full text]
  • Kinetochores, Microtubules, and Spindle Assembly Checkpoint
    Review Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling 1 1,2,3 Carlos Sacristan and Geert J.P.L. Kops 1 Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands 2 Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands 3 Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands Error-free chromosome segregation relies on stable and cell division. The messenger is the SAC (also known as connections between kinetochores and spindle microtu- the mitotic checkpoint) (Figure 1). bules. The spindle assembly checkpoint (SAC) monitors The transition to anaphase is triggered by the E3 ubiqui- such connections and relays their absence to the cell tin ligase APC/C, which tags inhibitors of mitotic exit cycle machinery to delay cell division. The molecular (CYCLIN B) and of sister chromatid disjunction (SECURIN) network at kinetochores that is responsible for microtu- for proteasomal degradation [2]. The SAC has a one-track bule binding is integrated with the core components mind, inhibiting APC/C as long as incorrectly attached of the SAC signaling system. Molecular-mechanistic chromosomes persist. It goes about this in the most straight- understanding of how the SAC is coupled to the kineto- forward way possible: it assembles a direct and diffusible chore–microtubule interface has advanced significantly inhibitor of APC/C at kinetochores that are not connected in recent years. The latest insights not only provide a to spindle microtubules. This inhibitor is named the striking view of the dynamics and regulation of SAC mitotic checkpoint complex (MCC) (Figure 1).
    [Show full text]
  • Product Name: ZW10 Peptide Polyclonal Antibody, ALEXA FLUOR® 594 Conjugated Catalog No
    Product Name: ZW10 peptide Polyclonal Antibody, ALEXA FLUOR® 594 Conjugated Catalog No. : TAP01-98062R-A594 Intended Use: For Research Use Only. Not for used in diagnostic procedures. Size 100ul Concentration 1ug/ul Gene ID 9183 ISO Type Rabbit IgG Clone N/A Immunogen Range Conjugation ALEXA FLUOR® 594 Subcellular Locations Applications IF(IHC-P) Cross Reactive Species Human, Mouse, Rat Source KLH conjugated synthetic peptide derived from mouse ZW10 Applications with IF(IHC-P)(1:50-200) Dilutions Purification Purified by Protein A. Background The mitotic checkpoint ensures that chromosomes are divided equally between daughter cells and is a primary mechanism preventing the chromosome instability often seen in aneuploid human tumors. This gene encodes a protein that is one of many involved in mechanisms to ensure proper chromosome segregation during cell division. The encoded protein binds to centromeres during the prophase, metaphase, and early anaphase cell division stages and to kinetochore microtubules during metaphase. It is part of the MIS12 complex, which may be fundamental for kinetochore formation and proper chromosome segregation during mitosis. In mitotic human cells ZW10 resides in a complex with Rod and Zwilch, whereas another ZW10 partner, Zwint-1, is part of a separate complex ofstructural kinetochore components including Mis12 and Ndc80-Hec1. Zwint-1 is critical for recruiting ZW10 to unattached kinetochores. Depletion from human cells demonstrates that the ZW10 complex is essential for stable binding of a Mad1-Mad2 complex tounattached kinetochores. Thus, ZW10 functions as a linker between the core structural elements of the outer kinetochore and components that catalyze generation of the mitotic checkpoint-derived "stop anaphase" inhibitor.
    [Show full text]
  • 32-5283: Recombinant Human ZW10 Interacting Kinetochore Protein
    9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 32-5283: Recombinant Human ZW10 Interacting Kinetochore Protein Alternative ZW10 Interacting Kinetochore Protein,ZWINT,ZW10 Interactor,HZwint-1,KNTC2AP,ZWINT1,Human ZW10 Name : Interacting Protein-1,ZW10 Interactor Kinetochore Protein zwint-1,Zwint-1,ZW10-Interacting Protein 1. Description Source : Escherichia Coli. ZWINT Human Recombinant produced in E.coli is a single, non-glycosylated polypeptide chain containing 253 amino acids (1-230) and having a molecular mass of 27.9 kDa (Molecular size on SDS-PAGE will appear higher).ZWINT is fused to a 23 amino acid His-tag at N-terminus & purified by proprietary chromatographic techniques. ZW10 Interacting Kinetochore Protein (ZWINT) is involved in kinetochore function. ZWINT is part of the MIS12 complex, which is essential for kinetochore formation and spindle checkpoint activity. ZWINT is localized to the cytoplasm during interphase and to kinetochores from late prophase to anaphase. ZWINT interacts with ZW10 (Zeste White 10) and regulates the association between ZW10 and kinetochores. ZWINT gene defects are linked with the pathogenesis of Roberts's syndrome, an autosomal recessive disorder characterized by growth retardation due to premature chromosome separation. Product Info Amount : 10 µg Purification : Greater than 85.0% as determined by SDS-PAGE. The ZWINT solution (0.25mg/ml) contains 20mM Tris-HCl buffer (pH 8.0), 0.15M NaCl, 20% Content : glycerol and 1mM DTT. Store at 4°C if entire vial will be used within 2-4 weeks. Store, frozen at -20°C for longer periods of Storage condition : time.
    [Show full text]
  • Team Publications Biology of Centrosomes and Genetic Instability
    Team Publications Biology of centrosomes and genetic instability Year of publication 2001 E Wojcik, R Basto, M Serr, F Scaërou, R Karess, T Hays (2001 Nov 21) Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nature cell biology : 1001-7 Summary We describe the dynamics of kinetochore dynein-dynactin in living Drosophila embryos and examine the effect of mutant dynein on the metaphase checkpoint. A functional conjugate of dynamitin with green fluorescent protein accumulates rapidly at prometaphase kinetochores, and subsequently migrates off kinetochores towards the poles during late prometaphase and metaphase. This behaviour is seen for several metaphase checkpoint proteins, including Rough deal (Rod). In neuroblasts, hypomorphic dynein mutants accumulate in metaphase and block the normal redistribution of Rod from kinetochores to microtubules. By transporting checkpoint proteins away from correctly attached kinetochores, dynein might contribute to shutting off the metaphase checkpoint, allowing anaphase to ensue. R Basto, R Gomes, R E Karess (2001 Jan 9) Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila. Nature cell biology : 939-43 Summary The metaphase-anaphase transition during mitosis is carefully regulated in order to assure high-fidelity transmission of genetic information to the daughter cells. A surveillance mechanism known as the metaphase checkpoint (or spindle-assembly checkpoint) monitors the attachment of kinetochores to the spindle microtubules, and inhibits anaphase onset until all chromosomes have achieved a proper bipolar orientation on the spindle. Defects in this checkpoint lead to premature anaphase onset, and consequently to greatly increased rates of aneuploidy. Here we show that the Drosophila kinetochore components Rough deal (Rod) and Zeste-White 10 (Zw10) are required for the proper functioning of the metaphase checkpoint in flies.
    [Show full text]
  • Bipolar Spindle Attachments Affect Redistributions of ZW10, a Drosophila Centromere/Kinetochore Component Required for Accurate Chromosome Segregation Byron C
    Bipolar Spindle Attachments Affect Redistributions of ZW10, a Drosophila Centromere/Kinetochore Component Required for Accurate Chromosome Segregation Byron C. Williams,* Maurizio Gatti,* and Michael L. Goldberg* *Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703; andHstituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Universit~ di Roma "La Sapienza," 00185 Rome, Italy Abstract. Previous efforts have shown that mutations (during meiosis II). During metaphase of both divi- in the Drosophila zwlO gene cause massive chromo- sions, ZW10 appears to move from the kinetochores some missegregation during mitotic divisions in several and to spread toward the poles along what appear to be tissues. Here we demonstrate that mutations in zwlO kinetochore microtubules. Redistributions of ZWl0 at also disrupt chromosome behavior in male meiosis I metaphase require bipolar attachments of individual and meiosis II, indicating that ZW10 function is com- chromosomes or paired bivalents to the spindle. At the mon to both equational and reductional divisions. Divi- onset of anaphase I or anaphase II, ZWl0 rapidly relo- sions are apparently normal before anaphase onset, but calizes to the kinetochore regions of the separating ZW10 mutants exhibit lagging chromosomes and irreg- chromosomes. In other mutant backgrounds in which ular chromosome segregation at anaphase. Chromo- chromosomes lag during anaphase, the presence or ab- some missegregation during meiosis I of these mutants sence
    [Show full text]
  • Genome-Wide DNA Methylation Dynamics During Epigenetic
    Gómez‑Redondo et al. Clin Epigenet (2021) 13:27 https://doi.org/10.1186/s13148‑021‑01003‑x RESEARCH Open Access Genome‑wide DNA methylation dynamics during epigenetic reprogramming in the porcine germline Isabel Gómez‑Redondo1*† , Benjamín Planells1†, Sebastián Cánovas2,3, Elena Ivanova4, Gavin Kelsey4,5 and Alfonso Gutiérrez‑Adán1 Abstract Background: Prior work in mice has shown that some retrotransposed elements remain substantially methylated during DNA methylation reprogramming of germ cells. In the pig, however, information about this process is scarce. The present study was designed to examine the methylation profles of porcine germ cells during the time course of epigenetic reprogramming. Results: Sows were artifcially inseminated, and their fetuses were collected 28, 32, 36, 39, and 42 days later. At each time point, genital ridges were dissected from the mesonephros and germ cells were isolated through magnetic‑ activated cell sorting using an anti‑SSEA‑1 antibody, and recovered germ cells were subjected to whole‑genome bisulphite sequencing. Methylation levels were quantifed using SeqMonk software by performing an unbiased analysis, and persistently methylated regions (PMRs) in each sex were determined to extract those regions showing 50% or more methylation. Most genomic elements underwent a dramatic loss of methylation from day 28 to day 36, when the lowest levels were shown. By day 42, there was evidence for the initiation of genomic re‑methylation. We identifed a total of 1456 and 1122 PMRs in male and female germ cells, respectively, and large numbers of transpos‑ able elements (SINEs, LINEs, and LTRs) were found to be located within these PMRs. Twenty‑one percent of the introns located in these PMRs were found to be the frst introns of a gene, suggesting their regulatory role in the expression of these genes.
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]