A Radix-10 Combinational Multiplier

Total Page:16

File Type:pdf, Size:1020Kb

A Radix-10 Combinational Multiplier A Radix-10 Combinational Multiplier Tomas´ Lang and Alberto Nannarelli∗ Dept. of Electrical Engineering and Computer Science, University of California, Irvine, USA ∗Dept. of Informatics & Math. Modelling, Technical University of Denmark, Kongens Lyngby, Denmark Abstract— In this work, we present a combinational decimal where for decimal operands r =10, yi ∈ [0, 9] and x is a multiply unit which can be pipelined to reach the desired n-digit BCD vector. We consider in the following n =16. throughput. With respect to previous implementations of decimal To avoid complicated multiples of x,werecode multiplication, the proposed unit is combinational (parallel) and = + ∈{0 5 10} ∈{−2 1 0 1 2} not sequential, has a simpler recoding of the operands which yi yHi yLi with yH , , and yL , , , , reduces the number of partial product precomputations and as indicated in Table I. With this recoding, we need to precom- uses counters to eliminate the need of the decimal equivalent pute only the multiples 5x and 2x, while 10x is obtained by of a 4:2 adder. The results of the implementation show that left-shifting x one digit. The negative values −x and −2x the combinational decimal multiplier offers a good compromise are represented in radix-10 radix-complement. Each partial between latency and area when compared to other decimal multiply units and to binary double-precision multipliers. product xyi is positive and sign extension is not necessary. The partial products are accumulated by using an adder tree, I. INTRODUCTION and the multiplication is completed by a carry-save to BCD Hardware implementations of decimal arithmetic units have conversion, as shown in Fig. 1. recently gained importance because they provide higher ac- A. Precomputation of 2x and 5x curacy in financial applications [1]. In this work, we present a combinational decimal multiplier which can be pipelined to The multiplication by 2 is straightforward. Each digit is reach the desired throughput. The multiply unit is organized as multiplied by 2 and the carry is propagated to the next digit. follows: the multiplier is recoded; the partial products are kept The carry does not propagate any further. 5 2 in a redundant format; the partial product are accumulated by In [5] the multiples x and x are used for decimal 5 a tree of redundant adders and the final product is obtained multiplication and division. However, the generation of x is by converting the carry-save tree’s outputs into binary-coded performed with a carry propagation over the whole number. decimal (BCD) format. We now present the algorithm we use for the precomputation 5 With respect to previous implementations of radix-10 multi- of x without carry propagation. =5 =10 2 pliers such as the ones in [2], [3] and [4], our design is different To obtain g x x/ we perform the following two in the following aspects: 1) the multiplier is combinational steps: =10 (parallel) and not sequential; 2) we recode only the multiplier (1) e x (shift left one digit) = 2 while in [4] both operands are recoded in -5 to +5; 3) in (2) g e/ : the partial product generation only multiples of 5 and 2 are To perform this operation we divide by two each digit of e. 2 required; 4) the accumulation of partial products is done in a However, since ei/ has a fractional part when ei is odd, we tree of radix-10 carry-save adders and counters while in the have sequential unit of [4] signed-digit adders are used. ei/2=fi + hi+1/2 fi =0,...,4 and hi =0, 1 We present the standard cells implementation of the mul- gi = fi +5hi gi =0,...,9 tiplier and compare its latency with those of the schemes That is, the algorithm to produce g =5x is presented in [2] and [3]. Moreover, we compare the delay and =1 the area of the decimal combinational multiplier with those hi+1 if ei (or xi+1) odd = 2 = 2 obtained by the implementation of a binary (radix-4) double- fi ei/ xi+1/ = +5 precision multiplier. gi fi hi II. MULTIPLIER ARCHITECTURE For the multiplication p = x · y, we assume that both the yi yH yL yi yH yL multiplicand x and the multiplier y are sign-and-magnitude 0 00 5 50 1 01 6 51 n-digit fractional numbers in BCD format normalized in 2 02 7 52 [0.1, 1.0). The multiplication shift-and-add algorithm is based 3 5-2 8 10 -2 on the identity 4 5-1 9 10 -1 n−1 TABLE I i RECODING OF DIGITS OF y. p = x · y = xyir i=0 1­4244­0785­0/06/$20.00 313 X Yi XY n*4 16 16 4 9’s complement precompute 5X precompute 2X shift − left 1 digit Partial 9’s complement Product recoder Generation 10x 5x Precomputations 0 precomputations __ _ 4 Partial−Product generation 2x x x 2x −2 −10 1 2 5:1−digit mux Adder 0 (n+1)*4 Tree 10 5 0 2 3:1−digit mux (n+1)*4 carry−save −> BCD 1 radix−10 carry−save adder cin 32 (n+1)*4 n+1 xy xy P i S i C Fig. 1. Scheme of the multiplier. Fig. 2. Partial product generation. n − 1 ... 10 B. Partial Product Generation xyHi xxxx ... xxxx xxxx xyLi xxxx ... xxxx xxxx The recoding of Table I produces two n-digit terms for xyiS ssss ... ssss ssss each partial product (PP). Table II shows an example of xyiC c ... cb multiplication (4×4 digits). Negative numbers are represented b=1if yLi < 0 in radix-10 complement and are implemented by doing the The scheme for the generation of a partial product is shown 9’s complement of the BCD digit and adding a 1 in the least- in Fig. 2. significant position. To reduce the delay of the additions, we perform the C. Partial Product Accumulation addition xyi = xyHi + xyLi carry save and use a radix-10 carry-save representation of the partial products The carry-free accumulation of the partial products is done using radix-10 carry-save adders (CSA), which add a carry- save operand plus another BCD operand to produce a carry- xyiS ∈ [0, 9] xyi = xyHi + xyLi = save result (see Fig. 3). xyiC ∈ [0, 1] For 16-digit operands, we obtain 16 carry-save partial products. Because the radix-10 CSA reduces two BCD digits That is, the addition to produce a partial product results in and one carry bit to one BCD digit and one carry bit, by arranging in a first-level of the tree the xyiSs and by using 8 CSAs, we leave the carries (xyiC s) of 8 partial products not x : 1963× accounted for. This is shown in Fig. 4. y : 8145= xy0 :5x 9815 These carry vectors are added by using an array of carry- 0 0000 counters (CC). A digit counter of this array adds 8 carries of xy :5x 1 9815 the same weight and produces a decimal digit. That is, −x -1963 xy : x 2 1963 ∈ [0 1] 0 0000 inputs 8 m-bit vectors Ci cj , xy3 :10x 19630 output 1 m-digit vector Zzj ∈ [0, 8] −2x -3926 15988635 asshowninFig.5. TABLE II By arranging the radix-10 carry-save adders and the carry- EXAMPLE OF MULTIPLICATION (4 × 4 DIGITS). counters as in Fig. 6, we can accumulate the partial products in a 6-level tree. 314 ABD C i n*4 n*4 n m m r−10 CSA r−10 CC n*4 n m*4 S C Z n − 1 ... 10 m − 1 m − 2 ... 210 A aaaa ... aaaa aaaa C1 cc... ccc B bbbb ... bbbb bbbb C2 cc... ccc D d ... dd C3 cc... ccc S ssss ... ssss ssss C4 cc... ccc C c ... c0 C5 cc... ccc C6 cc... ccc n Fig. 3. -digit radix-10 CSA. C7 cc... ccc C8 cc... ccc Z zzzz zzzz ... zzzz zzzz zzzz Fig. 5. m-digit radix-10 counter. The adder can be divided into three stages. Like in radix-2, the first stage of the unit produces p and g defined as 1 if ai + di =9 1 if ai + di =10 pi = gi = 0 otherwise 0 otherwise In parallel, the following operations are computed (modulo 10) s0i = ai + di10 i =0, 1,...,2n − 1 s1i = ai + di +110 A second stage consists of a parallel prefix structure to compute the carries ci from the psandgs and a final stage selects the precomputed digits of s0 or s1 according to the specific carry bit ci s0i if ci =0 si = i =0, 1,...,2n − 1 s1i if ci =1 This adding scheme can be generalized to a BCD carry- propagate adder by first applying a simplified radix-10 CSA1 which reduces the two BCD vectors to a radix-10 carry-save representation. Then, the above presented converter is used to Fig. 4. Array for partial products. Solid circles indicate BCD digits, hollow complete the carry-propagate addition. circles indicate bits. III. IMPLEMENTATION AND COMPARISONS The 16-digit radix-10 combinational multiplier (Fig. 1) has D. Radix-10 carry-save to BCD converter been synthesized using the STM 90 nm CMOS standard cells The final carry-propagating addition consists in converting library [6] and Synopsys Design Compiler. The synthesized 2 65 0 3 2 the radix-10 carry-save representation into the BCD one. This unit has a critical path of . ns and an area of . mm 68 000 can be done with a simplified radix-10 CPA in which the input equivalent to the area of about , NAND-2 gates (Ta- is just a value in radix-10 carry-save representation.
Recommended publications
  • Title Studies on Hardware Algorithms for Arithmetic Operations
    Studies on Hardware Algorithms for Arithmetic Operations Title with a Redundant Binary Representation( Dissertation_全文 ) Author(s) Takagi, Naofumi Citation Kyoto University (京都大学) Issue Date 1988-01-23 URL http://dx.doi.org/10.14989/doctor.r6406 Right Type Thesis or Dissertation Textversion author Kyoto University Studies on Hardware Algorithms for Arithmetic Operations with a Redundant Binary Representation Naofumi TAKAGI Department of Information Science Faculty of Engineering Kyoto University August 1987 Studies on Hardware Algorithms for Arithmetic Operations with a Redundant Binary Representation Naofumi Takagi Abstract Arithmetic has played important roles in human civilization, especially in the area of science, engineering and technology. With recent advances of IC (Integrated Circuit) technology, more and more sophisticated arithmetic processors have become standard hardware for high-performance digital computing systems. It is desired to develop high-speed multipliers, dividers and other specialized arithmetic circuits suitable for VLSI (Very Large Scale Integrated circuit) implementation. In order to develop such high-performance arithmetic circuits, it is important to design hardware algorithms for these operations, i.e., algorithms suitable for hardware implementation. The design of hardware algorithms for arithmetic operations has become a very attractive research subject. In this thesis, new hardware algorithms for multiplication, division, square root extraction and computations of several elementary functions are proposed. In these algorithms a redundant binary representation which has radix 2 and a digit set {l,O,l} is used for internal computation. In the redundant binary number system, addition can be performed in a constant time i independent of the word length of the operands. The hardware algorithms proposed in this thesis achieve high-speed computation by using this property.
    [Show full text]
  • Compressor Based 32-32 Bit Vedic Multiplier Using Reversible Logic
    IAETSD JOURNAL FOR ADVANCED RESEARCH IN APPLIED SCIENCES. ISSN NO: 2394-8442 COMPRESSOR BASED 32-32 BIT VEDIC MULTIPLIER USING REVERSIBLE LOGIC KAVALI USMAVATHI *, PROF. NAVEEN RATHEE** * PG SCHOLAR, Department of VLSI System Design, Bharat Institute of Engineering and Technology ** Professor, Department of Electronics and Communication Engineering at Bharat Institute of Engineering and Technology, TS, India. ABSTRACT: Vedic arithmetic is the name arithmetic and algebraic operations which given to the antiquated Indian arrangement are accepted by worldwide. The origin of of arithmetic that was rediscovered in the Vedic mathematics is from Vedas and to early twentieth century from antiquated more specific Atharva Veda which deals Indian figures (Vedas). This paper proposes with Engineering branches, Mathematics, the plan of fast Vedic Multiplier utilizing the sculpture, Medicine and all other sciences procedures of Vedic Mathematics that have which are ruling today’s world. Vedic been altered to improve execution. A fast mathematics, which simplifies arithmetic processor depends enormously on the and algebraic operations, can be multiplier as it is one of the key equipment implemented both in decimal and binary obstructs in most computerized flag number systems. It is an ancient technique, preparing frameworks just as when all is which simplifies multiplication, division, said in done processors. Vedic Mathematics complex numbers, squares, cubes, square has an exceptional strategy of estimations roots and cube roots. Recurring decimals based on 16 Sutras. This paper presents and auxiliary fractions can be handled by think about on rapid 32x32 piece Vedic Vedic mathematics. This made possible to multiplier design which is very not quite the solve many Engineering applications, Signal same as the Traditional technique for processing Applications, DFT’s, FFT’s and augmentation like include and move.
    [Show full text]
  • Design and Implementation of Floating Point Multiplier for Better Timing Performance
    ISSN: 2278 – 1323 International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 1, Issue 7, September 2012 Design and Implementation of Floating Point Multiplier for Better Timing Performance B.Sreenivasa Ganesh1,J.E.N.Abhilash2, G. Rajesh Kumar3 SwarnandhraCollege of Engineering& Technology1,2, Vishnu Institute of Technology3 Abstract— IEEE Standard 754 floating point is the p0 = a0b0, p1 = a0b1 + a1b0, p2 = a0b2 + a1b1 + a2b0 + most common representation today for real numbers on carry(p1), etc. This circuit operates only with positive computers. This paper gives a brief overview of IEEE (unsigned) inputs, also producing a positive floating point and its representation. This paper describes (unsigned) output. a single precision floating point multiplier for better timing performance. The main object of this paper is to reduce the power consumption and to increase the speed of execution by implementing certain algorithm for multiplying two floating point numbers. In order to design this VHDL is the hardware description language is used and targeted on a Xilinx Spartan-3 FPGA. The implementation’s tradeoffs are area speed and accuracy. This multiplier also handles overflow and underflow cases. For high accuracy of the results normalization is also applied. By the use of pipelining process this multiplier is very good at speed and accuracy compared with the previous multipliers. This pipelined architecture is described in VHDL and is implemented on Xilinx Spartan 3 FPGA. Timing performance is measured with Xilinx Timing Analyzer. Timing performance is compared with standard multipliers. Fig 1 Binary Multiplication Index Terms— Floating This unsigned multiplier is useful in the point,multiplication,VHDL,Spartan-3 FPGA, Pipelined multiplication of mantissa part of floating point architecture, Timing Analyzer, IEEE Standard 754 numbers.
    [Show full text]
  • New Realization and Implementation Booth Multiplier
    Farheen Sultana et al, International Journal of Computer Science and Mobile Computing, Vol.5 Issue.7, July- 2016, pg. 304-311 Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IMPACT FACTOR: 5.258 IJCSMC, Vol. 5, Issue. 7, July 2016, pg.304 – 311 NEW REALIZATION AND IMPLEMENTATION BOOTH MULTIPLIER Farheen Sultana A.Venkat Reddy M. Tech, PG Student Associate Professor [email protected] [email protected] Abstract— In this paper, we proposed a new architecture of multiplier-and-accumulator (MAC) for high-speed arithmetic. By combining multiplication with accumulation and devising a hybrid type of carry save adder (CSA), the performance was improved. Since the accumulator that has the largest delay in MAC was merged into CSA, the overall performance was elevated. The proposed CSA tree uses 1’s-complement-based radix-2 modified Booth’s algorithm (MBA) and has the modified array for the sign extension in order to increase the bit density of the operands. The CSA propagates the carries to the least significant bits of the partial products and generates the least significant bits in advance to decrease the number of the input bits of the final adder. Also, the proposed MAC accumulates the intermediate results in the type of sum and carry bits instead of the output of the final adder, which made it possible to optimize the pipeline scheme to improve the performance. The proposed architecture was synthesized with and performance of the entire calculation. Because the multiplier requires the longest delay among the basic operational blocks in digital system, the critical path is determined by the multiplier, in general.
    [Show full text]
  • Design of Carry Select Adder with Binary Excess Converter and Brent
    Design of Carry Select Adder with Binary Excess Converter and Brent Kung Adder Using Verilog HDL Andoju Naveen Kumar Dr.D.Subba Rao, Ph.D M.Tech (VLSI & Embedded System), Associate Professor & HOD, Siddhartha Institute of Engineering and Technology. Siddhartha Institute of Engineering and Technology. Abstract: Keywords: A binary multiplier is an electronic circuit; mostly Brent Kung (BK) adder, Ripple Carry Adder (RCA), used in digital electronics, such as a computer, to Regular Linear Brent Kung Carry Select Adder, multiply two binary numbers. It is built using binary Modified Linear BK Carry Select Adder, Regular adders. In this paper, a high speed and low power Square Root (SQRT) BK CSA and Modified SQRT 16×16 Vedic Multiplier is designed by using low BK CSA; Vedic Multiplier. power and high speed carry select adder. Carry Select Adder (CSA) architectures are proposed using parallel I. INTRODUCTION: prefix adders. Instead of using dual Ripple Carry An adder is a digital circuit that performs addition of Adders (RCA), parallel prefix adder i.e., Brent Kung numbers. In many computers and other kinds of (BK) adder is used to design Regular Linear CSA. processors, adders are used not only in the arithmetic Adders are the basic building blocks in digital logic unit, but also in other parts of the processor, integrated circuit based designs. Ripple Carry Adder where they are used to calculate addresses, table (RCA) gives the most compact design but takes longer indices, and similar operations. Addition usually computation time. The time critical applications use impacts widely the overall performance of digital Carry Look-ahead scheme (CLA) to derive fast results systems and an arithmetic function.
    [Show full text]
  • And Full Subtractor
    DIGITAL TECHNICS Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COMBINATIONAL LOGIC DESIGN: ARITHMETICS (THROUGH EXAMPLES) 2nd (Autumn) term 2018/2019 COMBINATIONAL LOGIC DESIGN: EXAMPLES AND CASE STUDIES • Arithmetic circuits – General aspects, and elementary circuits – Addition/subtraction – BCD arithmetics – Multipliers – Division 1 ARITHMETIC CIRCUITS • Excellent Examples of Combinational Logic Design • Time vs. Space Trade-offs – Doing things fast may require more logic and thus more space – Example: carry lookahead logic • Arithmetic and Logic Units – General-purpose building blocks – Critical components of processor datapaths – Used within most computer instructions ARITHMETIC CIRCUITS: BASIC BUILDING BLOCKS Below I will discuss those combinational logic building blocks that can be used to perform addition and subtraction operations on binary numbers. Addition and subtraction are the two most commonly used arithmetic operations, as the other two, namely multiplication and division, are respectively the processes of repeated addition and repeated subtraction. We will begin with the basic building blocks that form the basis of all hardware used to perform the aforesaid arithmetic operations on binary numbers. These include half-adder, full adder, half-subtractor, full subtractor and controlled inverter. 2 HALF-ADDER AND FULL-ADDER Half-adder This circuit needs 2 binary inputs and 2 binary outputs. The input variables designate the augend and addend bits: the output variables produce the sum and carry. Full-adder Is a combinational circuit that forms the arithmetic sum of 3 bits. Consists of 3 inputs and 2 outputs. When all input bits are 0, the output is 0. The output S equal to 1 when only one input is equal to 1 or when all 3 inputs are equal to 1.
    [Show full text]
  • Implementation of Sequential Decimal Multiplier
    IMPLEMENTATION OF SEQUENTIAL DECIMAL MULTIPLIER A Thesis Submitted in Fulfillment of the Requirement for the Award of the Degree of MASTER OF TECHNOLOGY in VLSI Design Submitted By SONAL GUPTA 601562024 Under Supervision of Ms. Sakshi Assistant Professor, ECED ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT THAPAR UNIVERSITY, PATIALA, PUNJAB JUNE, 2017 Powered by TCPDF (www.tcpdf.org) Scanned by CamScanner ACKNOWLEDGEMENT It is my proud privilege to acknowledge and extend my gratitude to several persons who helped me directly or indirectly in completion of this report. I express my heart full indebtedness and owe a deep sense of gratitude to my teacher and my faculty guide Ms. Sakshi, Assistant Professor, ECED, for her sincere guidance and support with encouragement to go ahead. I am also thankful to Dr. Alpana Agarwal, Associate Professor and Head, ECED, for providing me with the adequate infrastructure for carrying out the work. I am also thankful to Dr. Hemdutt Joshi, Associate Professor and P.G. Coordinator, ECED, and Dr. Anil Arora, Assistant Professor and Program Coordinator, ECED, for the motivation and inspiration and that triggered me for the work. The study has indeed helped me to explore knowledge and avenues related to my topic and I am sure it will help me in my future. Sonal Gupta Roll No.- 601562024 iv ABSTRACT Multiplication is the most important operation among all the four arithmetic operations during the last decade in various fields which is in the top list of research. Decimal multiplication is gaining very high popularity in recent years in the fields like analysis of finance, banking, income tax department, insurance and many more such fields.
    [Show full text]
  • Introduction of the Residue Number Arithmetic Logic Unit with Brief Computational Complexity Analysis (Rez-9 Soft Processor)
    Introduction of the Residue Number Arithmetic Logic Unit With Brief Computational Complexity Analysis (Rez-9 soft processor) White Paper By Eric B. Olsen Excerpted from “General Arithmetic in Residues” By Eric B. Olsen (Release TBD) Original release in confidence 11/12/2012 Rev 1.1 (12/5/12) Rev 1.2 (1/22/14) Rev 1.3 (5/27/14) Rev 1.4 (11/29/15) Rev 1.45(12/2/15) Condensed Abstract: Digital System Research has pioneered the mathematics and design for a new class of computing machine using residue numbers. Unlike prior art, the new breakthrough provides methods and apparatus for general purpose computation using several new residue based fractional representations. The result is that fractional arithmetic may be performed without carry. Additionally, fractional operations such as addition, subtraction and multiplication of a fraction by an integer occur in a single clock period, regardless of word size. Fractional multiplication is of the order , where equals the number of residues. More significantly, complex operations, such as sum of products, may be performed in an extended format, where fractional products are performed and summed using single clock instructions, regardless of word width, and where a normalization operation with an execution time of the order is performed as a final step. Rev 1.45 1 Table of Contents FOREWORD (REVISED) ............................................................................................................................................ 3 NOTICE TO THE READER .........................................................................................................................................
    [Show full text]
  • A Digital IINS for Aerial Vehicl
    © Muhammad Ijaz 2015 iii Dedicated to my beloved parents, siblings, wife and children iv ACKNOWLEDGMENTS First and foremost, all praise is due to Allah, subhanahu-wa-ta’ala, Almighty who gave me the opportunity, courage and patience to complete MS degree at King Fahd University of Petroleum and Minerals, and guided me in every aspect of this work to complete it successfully. May the peace and many blessings of Allah be upon His beloved prophet, Muhammad (S.A.W) whose love is part of our Imaan. Acknowledgement is due to King Fahd University of Petroleum and Minerals for its financial support and providing world class academic facilities and extra-curricular activities. I would like to express, with deep and indebted sense of gratitude, my deep appreciation and sincere thanks to my thesis advisor, Dr. Alaaeldin Abdul Monem Amin for his generous support, guidance, continuous encouragement and every possible cooperation throughout my research and preparation of thesis documentation. Working with him, indeed, was a pleasant and learning experience, which I thoroughly enjoyed. I would also like to extend my sincere thanks and gratitude to other committee members, Dr. Moustafa Elshafei and Dr. Mohammad Y. Mahmoud for their valuable advice and support, suggestions, and critical remarks which helped improve this work. I would also like to thank Mr. Yazan Muhammad Al-Rawashdeh for his help and support. I am grateful to all the faculty and staff of the Computer Engineering department, who has in one way or the other enriched my academic and research experience at KFUPM. I owe a deep sense of gratefulness to my numerous friends and colleagues whose presence and v moral support made my entire stay at KFUPM enjoyable and fruitful.
    [Show full text]
  • State Graphs Introduction • Serial Adder • Multiplier • Divider STATE
    www.getmyuni.com In this section we cover the following: • State graphs introduction • Serial Adder • Multiplier • Divider STATE GRAPHS FOR CONTROL NETWORKS What are the conditions for having a proper state graph? • If an arc is named XiXj/ZpZq then • if given inputs (XiXj) are 1( & other inputs would be don’t care), • then the specified outputs (ZpZq) are 1 (& the other outputs are zero). • If we have 4 inputs X1,X2,X3,X4 and 4 outputs Z1,Z2,Z3,Z4 then the label X1X4’/Z1Z3 is equivalent to 1- - 0/1010. (- is don’t care) • If we label an arc I, then the arc is traversed when I =1. • To have a completely specified proper state graph in which the next state is uniquely defined for every input combination the following conditions must be satisfied: 1. If Xi and Xj are any pair of input labels on arcs exiting state Sk, then XiXj=0 if i # j. This condition ensures that at most one condition is satisfied at any given point of time. 2. If n arcs exit state Sk and the n arcs have input labels X1,X2,….Xn then X1+X2+…..Xn =1. This ensures that at least one condition is satisfied. www.getmyuni.com A few examples illustrating the nomenclature in state graphs is presented in figures below. Fig. Partial state graph showing that conditions 1 &2 are satisfied for state Sk. Fig. a Fig. Partial State Graph (Fig. a above) and its state table row for Sk. www.getmyuni.com Serial adder with Accumulator Question: Illustrate the design of a control circuit for a serial adder with Accumulator Definition: A Control circuit in a digital system is a sequential network that outputs a sequence of control signals.
    [Show full text]
  • Design of a Binary Multiplier for Unsigned Numbers
    WESTERN UNIVERSTT FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ES434a: Advanced Digital Systems Lab 3 Binary Multiplier for Unsigned Numbers In class a serial-parallel multiplier and an array multiplier were described (sections 4.8 and 4.9, pg 210-219 “Digital Systems Design Using VHDL (Second Edition)”). Comparing these two designs reveals the following: The serial-parallel multiplier requires fewer components to implement then the array multiplier. For an N-bit by N-bit multiplier the circuit complexity increases linearly with N for a serial-parallel multiplier, whereas the circuit complexity increases by N2 for array multiplier. An array multiplier is significantly faster than a serial-parallel multiplier. This is due to the fact that many clock cycles are required to manipulate the control unit of the serial-parallel multiplier. The goal of this assignment is to design 9-bit by 9-bit multiplier for unsigned numbers. The proposed design will encompass the attributes of both the serial-parallel multiplier and the array multiplier. Your design will have the following components: 1. Three array multipliers capable of multiplying two 3-bit numbers (see figure 4.29, pg 217 of textbook). 2. One adder capable of adding two N-bit by N-bit numbers including a carry in. The output of the adder has N-bits for the sum and a carry out bit. Determine the minimum number of N required by the adder for the overall circuit to work. 3. 21-bit shift register. Before starting the multiplication, bits 0 to 8 will be used to hold the multiplier and bits 9 to 17 are used as the accumulator.
    [Show full text]
  • DITE Lecture Slides
    Combinational Logic Design Arithmetic Functions and Circuits Overview ◼ Binary Addition ◼ Half Adder ◼ Full Adder ◼ Ripple Carry Adder ◼ Carry Look-ahead Adder ◼ Binary Subtraction ◼ Binary Subtractor ◼ Binary Adder-Subtractor ◼ Subtraction with Complements ◼ Complements (2’s complement and 1’s complement) ◼ Binary Adder-Subtractor ◼ Signed Binary Numbers ◼ Signed Numbers ◼ Signed Addition/Subtraction ◼ Overflow Problem ◼ Binary Multipliers ◼ Other Arithmetic Functions Fall 2021 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 2 1-bit Addition ◼ Performs the addition of two binary bits. ◼ Four possible operations: ◼ 0+0=0 ◼ 0+1=1 ◼ 1+0=1 ◼ 1+1=10 ◼ Circuit implementation requires 2 outputs; one to indicate the sum and another to indicate the carry. Fall 2021 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 3 Half Adder ◼ Performs 1-bit addition. Truth Table A B S C ◼ Inputs: A0, B0 0 0 0 1 ◼ Outputs: S0, C1 0 0 0 0 ◼ Index indicates significance, 0 1 1 0 0 is for LSB and 1 is for the next higher significant bit. 1 0 1 0 ◼ Boolean equations: 1 1 0 1 ◼ S0 = A0B0’+A0’B0 = A0 B0 ◼ C1 = A0B0 Fall 2021 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 4 Half Adder (cont.) ◼ S0 = A0B0’+A0’B0 = A0 B0 ◼ C1 = A0B0 Block Diagram Logic Diagram A0 B0 A 0 S 1 bit 0 C B0 1 half adder C1 S0 Fall 2021 Fundamentals of Digital Systems Design by Todor Stefanov, Leiden University 5 n-bit Addition ◼ Design an n-bit binary adder which performs the addition of two n-bit binary numbers and generates a n-bit sum and a carry out.
    [Show full text]