Guidelines for Pharmacists Performing Clinical Interventions

Total Page:16

File Type:pdf, Size:1020Kb

Guidelines for Pharmacists Performing Clinical Interventions Guidelines for pharmacists performing clinical interventions PSA Committed to better health © Pharmaceutical Society of Australia Ltd. 2018 This publication contains material that has been provided by the Pharmaceutical Society of Australia (PSA), and may contain material provided by the Commonwealth and third parties. Copyright in material provided by the Commonwealth or third parties belong to them. PSA owns the copyright in the publication as a whole and all material in the publication that has been developed by PSA. In relation to PSA owned material, no part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cwth), or the written permission of PSA. Requests and inquiries regarding permission to use PSA material should be addressed to: Pharmaceutical Society of Australia, PO Box 42, Deakin West ACT 2600. If you would like to use material that has been provided by the Commonwealth or third parties, contact them directly. Disclaimer Neither the PSA, nor any person associated with the preparation of this document, accepts liability for any loss which a user of this document may suffer as a result of reliance on the document and, in particular, for: • use of the Guidelines for a purpose for which they were not intended • any errors or omissions in the Guidelines • any inaccuracy in the information or data on which the Guidelines are based or which is contained in them • any interpretations or opinions stated in, or which may be inferred from, the Guidelines. Notification of any inaccuracy or ambiguity found in this document should be made without delay in order that the issue may be investigated and appropriate action taken. Please forward your notification to: Program Delivery Unit, Pharmaceutical Society of Australia, PO Box 42, Deakin West, ACT 2600. ISBN: 978-0-908185-14-6 Title: Guidelines for pharmacists performing clinical interventions Date of Publication: December 2018 (updated January 2019) Date of Endorsement by PSA Board: December 2018 Publisher: Pharmaceutical Society of Australia 2 Guidelines for pharmacists performing clinical interventions I © Pharmaceutical Society of Australia Ltd. Contents Executive summary 4 Introduction 5 Scope 6 Terminology 7 Clinical interventions overview 8 Clinical interventions as part of medicines management 9 Relevance to funded programs 10 Performing clinical interventions 10 Patient privacy 10 Consent 10 Training 10 Policies and procedures 11 Documentation 11 Staff responsibilities 11 Identifying and addressing medication-related problems 11 Communicating and collaborating with other healthcare providers 12 Communicating with patients 13 Follow-up 13 Documentation 13 Methods of documentation 14 Patient history (clinical) notes 14 Recording medication-related problems 14 Recording recommendations 20 Monitoring and evaluation 23 Appendix 1 - PROMISe projects 24 Appendix 2 - Guide for documenting clinical notes (SOAP notes) 25 SOAP notes 25 Example 25 Appendix 3 - Referral letter template 26 Appendix 4 - Clinical intervention template 27 Appendix 5 - DOCUMENT MRP and recommendation classification codes 28 References 29 Guidelines for pharmacists performing clinical interventions I © Pharmaceutical Society of Australia Ltd. 3 Executive summary Although pharmacists routinely undertake clinical interventions This will help pharmacists to: as part of their professional duty of care, they may not • identify, classify and document medication-related problems consistently document these interventions, or document them at (MRPs) and clinical interventions in a professional manner all. In addition, some pharmacists may not always recognise that • ensure that all important information is recorded effectively their decisions and actions constitute clinical interventions. and systematically These guidelines provide information and guidance to assist • use documented clinical interventions to communicate with pharmacists to meet their professional responsibilities, exercise other healthcare providers and/or patients, where required. professional judgement and manage risks associated with The guidelines do not replace the need for pharmacists to performing clinical interventions. They provide information exercise professional discretion and judgement when performing and advice to pharmacists on professional issues related to these tasks in their own practice environment. The guidelines performing clinical interventions. do not include clinical information or detailed legislative requirements. Pharmacists must at all times comply with relevant Commonwealth, state and territory legislation, as well as relevant standards, codes and rules. 4 Guidelines for pharmacists performing clinical interventions I © Pharmaceutical Society of Australia Ltd. Introduction A clinical intervention may be defined as “any professional activity Performing, documenting and classifying MRPs and clinical by the pharmacist directed towards improving the quality use interventions are important for several reasons, including: of medicines and resulting in a recommendation for a change • facilitating better health outcomes for patients in the patient’s medication therapy, means of administration or • improving communication between pharmacists and other 1 medication-taking behaviour”. healthcare providers involved in the patient’s care, and the Pharmacists routinely provide clinical interventions to improve patient themselves the health outcomes of patients. Clinical interventions are • supporting a learning and quality improvement culture with provided to prevent or address MRPs related to both prescription evidence to support a professional practice portfolio and non-prescription medicines. • developing tools that encourage pharmacists to provide and record more clinical interventions An MRP is defined in the literature as “an event or circumstance • providing a basis for quality audits and peer review involving drug treatment that actually or potentially interferes with the patient experiencing an optimum outcome of medical • permitting analysis of the data for pharmacovigilance, care”. Terms used to describe an MRP or subtype include economic review or other purposes drug-related problem, medication error, adverse drug event, • adequately recording details for potentially litigious situations. 2–5 adherence issue and adverse drug reaction. Researchers involved in the series of Pharmacy Recording of MRPs are a major burden on the Australian healthcare system5,6: Medication Incidents and Services electronically (PROMISe) projects7 (see Appendix 1), conducted with funding provided • Of all hospital admissions, an estimated 2–3% are medication under the Fourth Community Pharmacy Agreement, developed related. Up to three-quarters of these are considered potentially preventable, equating to 230,000 hospital and refined a classification system, termed the DOCUMENT admissions with an annual cost of $1.2 billion. classification system, for MRPs. This system is used in pharmacies Medication-related hospital admissions are greater in across Australia. the population aged 65 years and over, at 20–30% of all It is important to review these guidelines in conjunction with admissions. relevant Professional Practice Standards,8 particularly: • Within residential aged care, the prevalence of potentially inappropriate medicine use in residents has been estimated • Standard 1—Fundamental Pharmacy Practice as 40–50%. Other studies have found that more than 90% of • Standard 3—Dispensing and Other Supply Arrangements residents had at least one MRP, with an average of three or four • Standard 8—Counselling. per person. Pharmacists should also be familiar with Australian Standard • In the community, studies have found that around 10% of AS85000:2017 (Quality Care Community Pharmacy Standard),9 patients seeing a general practitioner (GP) had had an adverse medication event in the previous 6 months. Of these, 11–12% specifically: were severe, and approximately 5% required hospitalisation. • 5.1—Compliance with Legal and Professional Obligations These studies have highlighted the need for improved detection • 5.2—Supply of Medicines, Medical Devices, and Poisons and prevention of MRPs within the community and aged care • 5.3—The Supply of Complex Compounded Products (if offered) facilities, before a GP visit, or hospital attendance or admission, is • 5.4—Delivery of Health Programs and Services. necessary. (These are equivalent to Elements 1, 2 and 3 of the Quality Care A clinical intervention is the process of a pharmacist identifying Pharmacy Program (QCPP) requirements.10) a potential MRP and making a recommendation in an attempt These guidelines provide pharmacies with a procedure to to prevent or resolve the MRP. It is intended that clinical appropriately adhere to requirement 5.2.8 of the Australian interventions will complement other professional services such Standard (“maintaining and following a system for the as in-pharmacy MedsCheck services, Staged Supply, Home identification, managing, recording, analysis and reporting of Medicines Reviews, Residential Medication Management (i) clinical interventions and (ii) adverse drug reactions”), which is Reviews, pharmacist vaccination services and the provision of equivalent to mandatory requirement 2.9 for accreditation under Dose Administration Aids. the QCPP.10 Guidelines for pharmacists performing clinical interventions I © Pharmaceutical Society of Australia Ltd. 5 Scope These guidelines focus on the best-practice process for Pharmacists
Recommended publications
  • (12) United States Patent (10) Patent No.: US 7,074,961 B2 Wang Et Al
    US007074961B2 (12) United States Patent (10) Patent No.: US 7,074,961 B2 Wang et al. (45) Date of Patent: Jul. 11, 2006 (54) ANTIDEPRESSANTS AND THEIR 6.211,171 B1 4/2001 Sawynok et al. ANALOGUES AS LONG-ACTING LOCAL 6,545,057 B1 4/2003 Wang et al. ANESTHETCS AND ANALGESCS 2001/0036943 A1 11/2001 Coe et al. (75) Inventors: Ging Kuo Wang, Westwood, MA (US); FOREIGN PATENT DOCUMENTS Peter Gerner, Weston, MA (US); Donald K. Verrecchia, Winchester, MA CH 534124 A 2, 1973 (US) WO WO95/17903 A1 7, 1995 WO WO95/1818.6 A1 7, 1995 (73) Assignee: The Brigham and Women's Hospital, WO WO 99.59.598 A1 11, 1999 Inc., Boston, MA (US) WO WO O2/060870 A2 8, 2002 (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 U.S.C. 154(b) by 451 days. Luo et al., Xenobiotica, vol. 25, No. 3, pp. 291-301, 1995.* (21) Appl. No.: 10/117,708 Ehlert et al., The Interaction of Amitriptyline, Doxepin, Imipramine and Their N-Methyl Quaternary Ammonium (22) Filed: Apr. 4, 2002 Derivatives with Subtypes of Muscarinic Receptors in Brain (65) Prior Publication Data and Heart, The Journal of Pharmacology and Experimental Therapeutics, Apr. 1990, vol. 253, No. 1, pp. 13–19. US 2003/00968.05 A1 May 22, 2003 Gerner, P., et al., Anesthesiology (2002) 96:1435–42. Related U.S. Application Dat e pplication Uata Khan, M.A., et al., Anesthesiology (2002) 96:109–16. (63) stripps'965,138, filed on Sep.
    [Show full text]
  • Curriculum Vitae: Daniel J
    CURRICULUM VITAE: DANIEL J. WALLACE, M.D., F.A.C.P., M.A.C.R. Up to date as of January 1, 2019 Personal: Address: 8750 Wilshire Blvd, Suite 350 Beverly Hills, CA 90211 Phone: (310) 652-0010 FAX: (310) 360-6219 E mail: [email protected] Education: University of Southern California, 2/67-6/70, BA Medicine, 1971. University of Southern California, 9/70-6/74, M.D, 1974. Postgraduate Training: 7/74-6/75 Medical Intern, Rhode Island (Brown University) Hospital, Providence, RI. 7/75-6/77 Medical Resident, Cedars-Sinai Medical Center, Los Angeles, CA. 7/77-6/79 Rheumatology Fellow, UCLA School of Medicine, Los Angeles, CA. Medical Boards and Licensure: Diplomate, National Board of Medical Examiners, 1975. Board Certified, American Board of Internal Medicine, 1978. Board Certified, Rheumatology subspecialty, 1982. California License: #G-30533. Present Appointments: Medical Director, Wallace Rheumatic Study Center Attune Health Affiliate, Beverly Hills, CA 90211 Attending Physician, Cedars-Sinai Medical Center, Los Angeles, 1979- Clinical Professor of Medicine, David Geffen School of Medicine at UCLA, 1995- Professor of Medicine, Cedars-Sinai Medical Center, 2012- Expert Reviewer, Medical Board of California, 2007- Associate Director, Rheumatology Fellowship Program, Cedars-Sinai Medical Center, 2010- Board of Governors, Cedars-Sinai Medical Center, 2016- Member, Medical Policy Committee, United Rheumatology, 2017- Honorary Appointments: Fellow, American College of Physicians (FACP) Fellow, American College of Rheumatology (FACR)
    [Show full text]
  • Testosterone, Myocardial Function, and Mortality
    Heart Failure Reviews https://doi.org/10.1007/s10741-018-9721-0 Testosterone, myocardial function, and mortality Vittorio Emanuele Bianchi1 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract The cardiovascular system is particularly sensitive to androgens, but some controversies exist regarding the effect of testosterone on the heart. While among anabolic abusers, cases of sudden cardiac death have been described, recently it was reported that low serum level of testosterone was correlated with increased risk of cardiovascular diseases (CVD) and mortality rate. This review aims to evaluate the effect of testosterone on myocardial tissue function, coronary artery disease (CAD), and death. Low testosterone level is associated with increased incidence of CAD and mortality. Testosterone administration in hypogonadal elderly men and women has a positive effect on cardiovascular function and improved clinical outcomes and survival time. Although at supraphysiologic doses, androgen may have a toxic effect, and at physiological levels, testosterone is safe and exerts a beneficial effect on myocardial function including mechanisms at cellular and mitochondrial level. The interaction with free testosterone and estradiol should be considered. Further studies are necessary to better understand the interaction mechanisms for an optimal androgen therapy in CVD. Keywords Testosterone . Coronary artery disease . Heart failure . Cardiovascular disease . Cardiomyocytes . Cardiac mitochondria . Cardiovascular mortality Introduction essential role [20]. Asymptomatic hypogonadism is observed in men 30–79 years old with an incidence of about 5.6% [21] The effects of testosterone on myocardial function have gen- and is more relevant in aging subjects. In recent years, pre- erated a great deal of discussion in the literature but remain scriptions for testosterone replacement therapy have increased controversial.
    [Show full text]
  • Genome-Wide Identification of Brain Mirnas in Response to High
    Zhao et al. BMC Molecular Biol (2019) 20:3 https://doi.org/10.1186/s12867-019-0120-4 BMC Molecular Biology RESEARCH ARTICLE Open Access Genome‑wide identifcation of brain miRNAs in response to high‑intensity intermittent swimming training in Rattus norvegicus by deep sequencing Yanhong Zhao1*†, Anmin Zhang2,3*†, Yanfang Wang4, Shuping Hu3, Ruiping Zhang2 and Shuaiwei Qian2 Abstract Background: Physical exercise can improve brain function by altering brain gene expression. The expression mecha- nisms underlying the brain’s response to exercise still remain unknown. miRNAs as vital regulators of gene expres- sion may be involved in regulation of brain genes in response to exercise. However, as yet, very little is known about exercise-responsive miRNAs in brain. Results: We constructed two comparative small RNA libraries of rat brain from a high-intensity intermittent swim- ming training (HIST) group and a normal control (NC) group. Using deep sequencing and bioinformatics analysis, we identifed 2109 (1700 from HIST, 1691 from NC) known and 55 (50 from HIST, 28 from NC) novel candidate miRNAs. Among them, 34 miRNAs were identifed as signifcantly diferentially expressed in response to HIST, 16 were up- regulated and 18 were down-regulated. The results showed that all members of mir-200 family were strongly up- regulated, implying mir-200 family may play very important roles in HIST response mechanisms of rat brain. A total of 955 potential target genes of these 34 exercise-responsive miRNAs were identifed from rat genes. Most of them are directly involved in the development and regulatory function of brain or nerve.
    [Show full text]
  • Growth Cone Responses to Growth and Chemotropic Factors
    European Journal of Neuroscience European Journal of Neuroscience, Vol. 28, pp. 268–278, 2008 doi:10.1111/j.1460-9568.2008.06327.x Growth cone responses to growth and chemotropic factors Staci D. Sanford,1 Jesse C. Gatlin,1,* Tomas Ho¨kfelt2 and Karl H. Pfenninger1 1Departments of Pediatrics, and of Cell and Developmental Biology, and Neuroscience Program, University of Colorado School of Medicine, and University of Colorado Cancer Center, Aurora, CO 80045, USA 2Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden Keywords: attractants, axonal pathfinding, growth cone, growth promotion, neuropeptides, repellents Abstract During nervous system development axons reach their target areas under the influence of numerous guidance cues that affect rate and direction of growth. This report addresses the unsettled question of whether and to what extent growth velocity and turning responses (attraction, repulsion) are interdependent. We exposed individual growth cones of fetal rat dorsal root ganglion neurons in culture asymmetrically to gradients of seven different factors and recorded their growth rates and turning angles. Growth cones exhibited divergent patterns of turning and growth responses. For example, hepatocyte growth factor (HGF), insulin-like growth factor-1 (IGF-1) and thrombin all promoted growth, but HGF was a powerful attractant, thrombin a potent repellent and IGF-1 did not elicit turning. Galanin and neuropeptide Y also affected growth and ⁄ or turning differentially. Finally, nerve growth factor in the culture
    [Show full text]
  • BDNF Genotype Modulates Resting Functional Connectivity in Children
    ORIGINAL RESEARCH ARTICLE published: 24 November 2009 HUMAN NEUROSCIENCE doi: 10.3389/neuro.09.055.2009 BDNF genotype modulates resting functional connectivity in children Moriah E. Thomason1*, Daniel J. Yoo1, Gary H. Glover 2 and Ian H. Gotlib1 1 Department of Psychology, Stanford University, Stanford, CA, USA 2 Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA Edited by: A specifi c polymorphism of the brain-derived neurotrophic factor (BDNF) gene is associated Elizabeth D. O’Hare, University of with alterations in brain anatomy and memory; its relevance to the functional connectivity of California at Berkeley, USA brain networks, however, is unclear. Given that altered hippocampal function and structure Reviewed by: Damien Fair, Oregon Health and has been found in adults who carry the methionine (met) allele of the BDNF gene and the Science University, USA molecular studies elucidating the role of BDNF in neurogenesis and synapse formation, we Naftali Raz, Wayne State University, examined the association between BDNF gene variants and neural resting connectivity in USA children and adolescents. We observed a reduction in hippocampal and parahippocampal to *Correspondence: cortical connectivity in met-allele carriers within both default-mode and executive networks. Moriah E. Thomason, Department of Psychology, Stanford University, Jordan In contrast, we observed increased connectivity to amygdala, insula and striatal regions in Hall, Bldg. 420, Stanford, met-carriers, within the paralimbic network. Because of the known association between the CA 94305-2130, USA. BDNF gene and neuropsychiatric disorder, this latter fi nding of greater connectivity in circuits e-mail: [email protected] important for emotion processing may indicate a new neural mechanism through which these gene-related psychiatric differences are manifest.
    [Show full text]
  • Phase II Study of Dehydroepiandrosterone in Androgen Receptor-Positive Metastatic Breast Cancer
    Published Ahead of Print on December 27, 2018 as 10.1634/theoncologist.2018-0243. Clinical Trial Results Phase II Study of Dehydroepiandrosterone in Androgen Receptor-Positive Metastatic Breast Cancer a b c c c b ELISABETTA PIETRI, ILARIA MASSA, SARA BRAVACCINI, SARA RAVAIOLI, MARIA MADDALENA TUMEDEI, ELISABETTA PETRACCI, d a e f g h i CATERINA DONATI, ALESSIO SCHIRONE, FEDERICO PIACENTINI, LORENZO GIANNI, MARIO NICOLINI, ENRICO CAMPADELLI, ALESSANDRA GENNARI, j j b b c a a ALESSANDRO SABA, BEATRICE CAMPI, LINDA VALMORRI, DANIELE ANDREIS, FRANCESCO FABBRI, DINO AMADORI, ANDREA ROCCA aDepartment of Medical Oncology, bUnit of Biostatistics and Clinical Trials, cBiosciences Laboratory, and dOncology Pharmacy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy; eDivision of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; fDepartment of Oncology, Infermi Hospital, Rimini, Italy; gOncology Day Hospital Unit, Cervesi Hospital, Cattolica, Italy; hOncology Unit, Faenza Hospital, Faenza, Italy; iMedical Oncology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy; jDepartment of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy Downloaded from TRIAL INFORMATION http://theoncologist.alphamedpress.org/ • ClinicalTrials.gov Identifier: NCT02000375 • Principal Investigator: Elisabetta Pietri • Sponsor(s): None • IRB Approved: Yes LESSONS LEARNED • The androgen receptor (AR) is present in most breast cancers (BC), but its exploitation as a therapeutic target has been limited. • This study explored the activity of dehydroepiandrosterone (DHEA), a precursor being transformed into androgens within BC cells, in combination with an aromatase inhibitor (to block DHEA conversion into estrogens), in a two-stage phase II study in patients with AR-positive/estrogen receptor-positive/human epidermal growth receptor 2-negative metastatic BC.
    [Show full text]
  • Permeability Due to Drug Binding Kinetics and Reactivation Among
    Differential Risk of Tuberculosis Reactivation among Anti-TNF Therapies Is Due to Drug Binding Kinetics and Permeability This information is current as of September 26, 2021. Mohammad Fallahi-Sichani, JoAnne L. Flynn, Jennifer J. Linderman and Denise E. Kirschner J Immunol 2012; 188:3169-3178; Prepublished online 29 February 2012; doi: 10.4049/jimmunol.1103298 Downloaded from http://www.jimmunol.org/content/188/7/3169 Supplementary http://www.jimmunol.org/content/suppl/2012/02/29/jimmunol.110329 http://www.jimmunol.org/ Material 8.DC1 References This article cites 59 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/188/7/3169.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Differential Risk of Tuberculosis Reactivation among Anti-TNF Therapies Is Due to Drug Binding Kinetics and Permeability Mohammad Fallahi-Sichani,*,1 JoAnne L.
    [Show full text]
  • The Role of the Small Gtpase Rap in Drosophila R7 Photoreceptor Specification
    The role of the small GTPase Rap in Drosophila R7 photoreceptor specification Yannis Emmanuel Mavromatakis and Andrew Tomlinson1 Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032 Edited* by Richard Axel, Columbia University, New York, NY, and approved January 25, 2012 (received for review September 13, 2011) The Drosophila R7 photoreceptor provides an excellent model sys- and R7 precursors differ dramatically in their levels of RTK tem with which to study how cells receive and “decode” signals signaling: it is mild in the former and robust in the latter. that specify cell fate. R7 is specified by the combined actions of the RTK signaling typically activates the small GTPase Ras, which receptor tyrosine kinase (RTK) and Notch (N) signaling pathways. recruits Raf to the plasma membrane and initiates the phos- These pathways interact in a complex manner that includes antag- phorylation cascade that leads to the translocation of MAPK to onistic effects on photoreceptor specification: RTK promotes the the nucleus. Rap is another member of the Ras GTPase super- photoreceptor fate, whereas N inhibits. Although other photore- family; it was initially considered a Ras antagonist because it sup- ceptors are subject to only mild N activation, R7 experiences a high- pressed Ki-Ras oncogenesis (17) and inhibited Ras-dependent level N signal. To counter this effect and to ensure that the cell is activation of MAPK (18). Roughened is a dominant mutant of specified as a photoreceptor, a high RTK signal is transduced in the Drosophila rap in which R7 photoreceptors are frequently absent cell.
    [Show full text]
  • REVIEW Estrogens and Atherosclerosis
    R13 REVIEW Estrogens and atherosclerosis: insights from animal models and cell systems Jerzy-Roch Nofer1,2 1Center for Laboratory Medicine, University Hospital Mu¨nster, Albert Schweizer Campus 1, Geba¨ude A1, 48129 Mu¨nster, Germany 2Department of Medicine, Endocrinology, Metabolism and Geriatrics, University of Modena and Reggio Emilia, Modena, Italy (Correspondence should be addressed to J-R Nofer at Center for Laboratory Medicine, University Hospital Mu¨nster; Email: [email protected]) Abstract Estrogens not only play a pivotal role in sexual development but are also involved in several physiological processes in various tissues including vasculature. While several epidemiological studies documented an inverse relationship between plasma estrogen levels and the incidence of cardiovascular disease and related it to the inhibition of atherosclerosis, an interventional trial showed an increase in cardiovascular events among postmenopausal women on estrogen treatment. The development of atherosclerotic lesions involves complex interplay between various pro- or anti-atherogenic processes that can be effectively studied only in vivo in appropriate animal models. With the advent of genetic engineering, transgenic mouse models of atherosclerosis have supplemented classical dietary cholesterol- induced disease models such as the cholesterol-fed rabbit. In the last two decades, these models were widely applied along with in vitro cell systems to specifically investigate the influence of estrogens on the development of early and advanced atherosclerotic lesions. The present review summarizes the results of these studies and assesses their contribution toward better understanding of molecular mechanisms underlying anti- and/or pro-atherogenic effects of estrogens in humans. Journal of Molecular Endocrinology (2012) 48, R13–R29 Introduction circumstances, these hormones promote the develop- ment of atherosclerosis.
    [Show full text]
  • Network-Based Characterization of Drug-Protein Interaction Signatures
    Tabei et al. BMC Systems Biology 2019, 13(Suppl 2):39 https://doi.org/10.1186/s12918-019-0691-1 RESEARCH Open Access Network-based characterization of drug-protein interaction signatures with a space-efficient approach Yasuo Tabei1*, Masaaki Kotera2, Ryusuke Sawada3 and Yoshihiro Yamanishi3,4 From The 17th Asia Pacific Bioinformatics Conference (APBC 2019) Wuhan, China. 14–16 January 2019 Abstract Background: Characterization of drug-protein interaction networks with biological features has recently become challenging in recent pharmaceutical science toward a better understanding of polypharmacology. Results: We present a novel method for systematic analyses of the underlying features characteristic of drug-protein interaction networks, which we call “drug-protein interaction signatures” from the integration of large-scale heterogeneous data of drugs and proteins. We develop a new efficient algorithm for extracting informative drug- protein interaction signatures from the integration of large-scale heterogeneous data of drugs and proteins, which is made possible by space-efficient representations for fingerprints of drug-protein pairs and sparsity-induced classifiers. Conclusions: Our method infers a set of drug-protein interaction signatures consisting of the associations between drug chemical substructures, adverse drug reactions, protein domains, biological pathways, and pathway modules. We argue the these signatures are biologically meaningful and useful for predicting unknown drug-protein interactions and are expected to contribute to rational drug design. Keywords: Drug-protein interaction prediction, Drug discovery, Large-scale prediction Background similar drugs are expected to interact with similar pro- Target proteins of drug molecules are classified into a pri- teins, with which the similarity of drugs and proteins are mary target and off-targets.
    [Show full text]
  • Q3D(R1) Elemental Impurities
    Q3D(R1) Elemental Impurities Guidance for Industry U. S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) March 2020 ICH Revision 1 Q3D(R1) Elemental Impurities Guidance for Industry Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993-0002 Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353 Email: [email protected] https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs and/or Office of Communication, Outreach and Development Center for Biologics Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Bldg. 71, Room 3128 Silver Spring, MD 20993-0002 Phone: 800-835-4709 or 240-402-8010 Email : [email protected] https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-regulatory-information-biologics/biologics-guidances U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) March 2020 ICH Revision 1 Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION (1) ....................................................................................................... 1 II. SCOPE (2).........................................................................................................................
    [Show full text]