The Evolution of Angiosperms

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Angiosperms See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/311541611 Systematics and Evolution of Menyanthaceae and the Floating-Leaved Genus Nymphoides Article · January 2010 CITATIONS READS 0 212 1 author: Nicholas P. Tippery University of Wisconsin - Whitewater 92 PUBLICATIONS 645 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Aquatic plant systematics View project Molecular taxonomy of Hyrcanian Alnus using nuclear ribosomal ITS and chloroplast trnH-psbA DNA barcode markers View project All content following this page was uploaded by Nicholas P. Tippery on 11 July 2017. The user has requested enhancement of the downloaded file. Systematics and Evolution of Menyanthaceae and the Floating-Leaved Genus Nymphoides Nicholas Peter Tippery, Ph.D. University of Connecticut, 2010 Menyanthaceae (70 species) are a family of aquatic and wetland plants that occur worldwide. This diverse group contains different growth habits (emergent and floating-leaved), reproductive systems (heterostyly, homostyly, gynodioecy and dioecy), floral and seed morphologies, and inflorescence architectures. In this study, I have evaluated the phylogenetic relationships, taxonomy, biogeography, and morphological character evolution for over half of the approximately 50 Nymphoides species, plus all species in related genera within the family. In Chapter 1 I investigated generic relationships across Menyanthaceae and found that the contemporary circumscription of Villarsia included three paraphyletic lineages that graded toward a monophyletic Nymphoides. Biogeographical reconstruction supported an Australian origin for the family and also for all of the major clades, with dispersal events corresponding to the boreal sister taxa Menyanthes and Nephrophyllidium, and the South African Villarsia clade. Chapter 2 is a study of the genus Nymphoides that examined all Australian species of the genus and synthesized for the first time the morphological data for all the species worldwide. Morphological data analysis indicated several relationships, including the grouping of species with similar inflorescence habits. Molecular phylogenetic analyses supported a similar division, but species resolution was thoroughly incongruent on trees derived from nuclear (nrITS) or chloroplast (matK/trnK) data, suggesting widespread hybridization during the diversification of the genus. In Chapter 3 I studied the Nymphoides inflorescence architecture, which comprises three types: expanded (pairs of flowers separated by internodes), condensed (single floating leaves each supporting a cluster of flowers), and a morphology unique to N. peltata (pairs of leaves supporting clusters of flowers). I determined that these quite different inflorescence types likely were derived from a common blueprint, from which they deviate only by their relative elongation of internodes or expansion of bracts into foliage leaves. In Chapter 4 I examined the life history and reproductive potential of N. peltata, a Eurasian native that is naturalized in North America. Populations of N. peltata are able to produce abundant fruits with highly germinable seeds, but the plants are genetically identical throughout their naturalized range, possibly the result of inbreeding while in cultivation. Nicholas Peter Tippery – University of Connecticut, 2010 Systematics and Evolution of Menyanthaceae and the Floating-Leaved Genus Nymphoides Nicholas Peter Tippery B.A., University of Dallas, 2000 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Connecticut 2010 Copyright by Nicholas Peter Tippery 2010 i APPROVAL PAGE Doctor of Philosophy Dissertation Systematics and Evolution of Menyanthaceae and the Floating-Leaved Genus Nymphoides Presented by Nicholas Peter Tippery, B.A. Major Advisor ___________________________________________________ Donald H. Les Associate Advisor ________________________________________________ Gregory J. Anderson Associate Advisor ________________________________________________ Cynthia S. Jones University of Connecticut 2010 ii Dedicated to my father, Kevin Tippery, who introduced me to the beauty and perpetual wonder of nature, who taught me to persevere through adversity, who encouraged me to be active and enjoy life, and who always supported me in whatever I did. iii ACKNOWLEDGEMENTS I could not have gotten even close to the point of finishing my Ph.D. without the continuing support of so many people. I am grateful foremost to my advisor Don Les, who was my guide through the graduate school experience, who taught me by example and by gentle correction, who provided me with laboratory resources whenever I could not support myself, and who generously included me on his research to help me become well published. I thank also my advisory commitee, who helped to round out my education with their phenomenal experience in their respective areas of expertise. Greg Anderson, whose friendliness knows no equal, was always encouraging and supportive, and he was a valuable resource for helping me think through pollination biology and reproductive system evolutionary concerns. Cindi Jones, who knows all the inner workings of plant anatomy and morphology, was very generous with her time and resources in allowing me to add the morphological component to my dissertation, and her enthusiasm continues to inspire me. I had a number of professional acquatintances who helped to further my development as a scientist. I could not thank Surrey Jacobs enough for sharing two months of his life with me and instructing me in everything from Australian customs to good plant pressing technique. Surrey took my poorly conceived plan to collect Nymphoides across Australia and turned it into a workable project that became rousingly successful. Surrey and Betty Jacobs made Australia a second home for me, and I am forever grateful to have met and shared time with them. Surrey‘s friends and colleagues also helped greatly to make our trip more successful and enjoyable. I thank especially John and Marion Clarkson for opening their home to us, and I was privileged also to meet Helen Aston, Janice and Roger Carolin, Geoff Sainty, Lance Smith, and Karen Wilson while in Australia. Walter Pagels was a steady source of plant material, knowlege and inquiry about Menyanthaceae, and I continue to try to repay him for helping to get me started. I relied heavily on the information gained from herbarium loans, for which I thank the curators of iv the CONN herbarium, Andrew Doran and Bob Capers, and the directors and staff of the many herbaria that kindly sent loans for my research. The graduate students of the UConn EEB Department were my constant support, both emotionally and academically. I enjoyed having made so many kind friends here, and I hope to carry them with me through the rest of my life. I could scarcely name them all, and I deeply regret that I cannot list everyone here, but some people who were particularly helpful include Lori Benoit, Jessica Budke, Jane Carlson, Karolina Fučíková, Laura Forrest, Geert Goemans, Chris Martine, Hilary McManus, Michael Moody, Brigid O‘Donnell, Rachel Prunier, Krissa Skogen, Frank Smith, Kathryn Theiss, Dan Vanderpool, Juan Carlos Villarreal, Amy Weiss, and Norm Wickett. Without these and so many other inspirational people, I would have abandoned hope long ago. In addition to fellow EEB graduate students, I had many friends help me through their personal support, many of whom only tangentially knew what sort of research I was pursuing. These include Dan and Mary Bernier, Russ Bird, Kate and Matt Gilmore, Jeff Kotz, Kate O‘Sullivan, Nicole and Pete Palumbo, Marissa Prosser, Anna and Scott Russell, Emily Simmons, and Liz Werle. I thank them for keeping me grounded and helping me to have fun in the midst of my most serious times. My family has always been there to support me, and they helped me to become the kind of person who could successfully finish a Ph.D. My mom Kitty has always been the rock of our family, keeping us on the straight and narrow, motivating us to be better people, and always presenting a positive outlook on life. My sister Janie is always optimistic and supportive, and there is nothing she wouldn‘t do to help out a friend. My brother Chris helped to raise me by his example, and he was the constant companion of my youth whom I could always rely on to laugh at my jokes. In our adult years, he has continued to support me, and I treasure the time I have been able to spend with him, his wife Allison, and their lovely children. v During the majority of my time at UConn, I have been privileged to have the love and companionship of my girlfriend Megan Johnston. She has helped me to see the end goal through the whole long process of graduate school, and she has made my experience vastly more enjoyable. Megan has supported my role as a graduate student far and above what should be expected of any partner, and at times she was an even stronger motivator than I was for my own work. Her patient support was really one of the major reasons why I was able to finish. vi TABLE OF CONTENTS Chapter 1: Systematics of Menyanthaceae Abstract................................................................................................................................1 Introduction..........................................................................................................................1 Materials and
Recommended publications
  • Crested Floating Heart, Nymphoides Cristata
    FDACS-02020 Pest Alert Pest Alert Published 1-October-2014 Florida Department of Agriculture and Consumer Services Division of Plant Industry Nymphoides cristata, Crested Floating Heart, a Recently Listed State Noxious Weed Patti J. Anderson, [email protected], Botanist, Florida Department of Agriculture and Consumer Services, Division of Plant Industry Marc S. Frank, Botanist, Florida Department of Agriculture and Consumer Services, Division of Plant Industry INTRODUCTION: The perennial, emergent aquatic plant, Nymphoides cristata (Roxb.) Kuntze (Menyanthaceae), has been added to the Florida Noxious Weed and Invasive Species List. This plant was proposed for listing and evidence was presented to the Noxious Weed Review Committee. Numerous ecological studies and weed assessments by the USDA and the University of Florida provided information. Invasive plant managers with the Florida Fish and Wildlife Conservation Commission (FWC) and South Florida Water Management District are currently trying to control the spread of this plant. Crested floating heart is an aggressive pest plant that develops dense mats and quickly covers lakes and ponds.This species is documented as naturalized in eight counties in Florida and is also listed by the Florida Exotic Pest Plant Council as an invasive species that has altered natural plant communities. The committee found that the species exhibited the following invasive characteristics: • vegetative reproduction from plant fragments, bulbils and tubers • rapid colonization of fresh water bodies • persistent roots, rhizomes and leaf fragments make control extremely difficult • easily spread by boat traffic Mats of N. cristata reduce or eliminate the light required by native plant species below the water surface, and thereby eliminate these plants from the water column.
    [Show full text]
  • An Updated Checklist of Aquatic Plants of Myanmar and Thailand
    Biodiversity Data Journal 2: e1019 doi: 10.3897/BDJ.2.e1019 Taxonomic paper An updated checklist of aquatic plants of Myanmar and Thailand Yu Ito†, Anders S. Barfod‡ † University of Canterbury, Christchurch, New Zealand ‡ Aarhus University, Aarhus, Denmark Corresponding author: Yu Ito ([email protected]) Academic editor: Quentin Groom Received: 04 Nov 2013 | Accepted: 29 Dec 2013 | Published: 06 Jan 2014 Citation: Ito Y, Barfod A (2014) An updated checklist of aquatic plants of Myanmar and Thailand. Biodiversity Data Journal 2: e1019. doi: 10.3897/BDJ.2.e1019 Abstract The flora of Tropical Asia is among the richest in the world, yet the actual diversity is estimated to be much higher than previously reported. Myanmar and Thailand are adjacent countries that together occupy more than the half the area of continental Tropical Asia. This geographic area is diverse ecologically, ranging from cool-temperate to tropical climates, and includes from coast, rainforests and high mountain elevations. An updated checklist of aquatic plants, which includes 78 species in 44 genera from 24 families, are presented based on floristic works. This number includes seven species, that have never been listed in the previous floras and checklists. The species (excluding non-indigenous taxa) were categorized by five geographic groups with the exception of to reflect the rich diversity of the countries' floras. Keywords Aquatic plants, flora, Myanmar, Thailand © Ito Y, Barfod A. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Mariana Conceição Menezes Flórula Das Angiospermas
    UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA CENTRO DE CIÊNCIAS AGRÁRIAS, AMBIENTAIS E BIOLÓGICAS MARIANA CONCEIÇÃO MENEZES FLÓRULA DAS ANGIOSPERMAS AQUÁTICAS E PALUSTRES DO GRUPO ASTERALES (EUASTERIDEAS II) OCORRENTES NA UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA, CRUZ DAS ALMAS, BA. Cruz das Almas 2010 MARIANA CONCEIÇÃO MENEZES FLÓRULA DAS ANGIOSPERMAS AQUÁTICAS E PALUSTRES DO GRUPO ASTERALES (EUASTERIDEAS II) OCORRENTES NA UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA, CRUZ DAS ALMAS, BA. Trabalho de Conclusão de Curso II, apresentado ao Centro de Ciências Agrárias, Ambientais e Biológicas (CCAAB) da Universidade Federal do Recôncavo da Bahia como requisito à obtenção do título de Bacharel em Ciências Biológicas. Orientadora: Lidyanne Yuriko Saleme Aona. Cruz das Almas, BA. 2010 Ficha Catalográfica M543 Menezes, Mariana Conceição. Flórula das angiospermas aquáticas e palustres do grupo asterales(Euasterideas II) ocorrentes na Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Ba. / Mariana Conceição Menezes._. Cruz das Almas - Ba, 2010. 47f.; il. Orientador: Lidyanne Yuriko Saleme Aona. Monografia (Graduação) – Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas. 1.Botânica. 2.Angiosperma – Taxonomia vegetal. I.Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas. II.Título. CDD: 581.9813 FLÓRULA DAS ANGIOSPERMAS AQUÁTICAS E PALUSTRES DO GRUPO ASTERALES (EUASTERIDEAS II) OCORRENTES NA UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA, CRUZ DAS ALMAS, BA. Mariana Conceição Menezes Banca examinadora 16/12/2010 Profa. Dra. Lidyanne Yuriko Saleme Aona (Orientadora) Universidade Federal do Recôncavo da Bahia Prof. MSc. Márcio Larceda Lopes Martins Universidade Federal do Recôncavo da Bahia Prof. MSc. Domingos Benício Oliveira Silva Cardoso Universidade Estadual de Feira de Santana Prof.
    [Show full text]
  • Aquarium Plants
    Aquarium Plants Kingdom: Plantae Conditions for Customer Ownership We hold permits allowing us to transport these organisms. To access permit conditions, click here. Never purchase living specimens without having a disposition strategy in place. Shipment of aquatic plants is prohibited in Puerto Rico. Shipment of Cabomba is restricted in CA, CT, MA, ME, VT, and WA. In all other cases, the USDA does not require any special permits to receive aquatic plants. However, in order to continue to protect our environment, you must house your aquatic plants in an aquarium. Under no circum- stances should you release your plants into the wild. Primary Hazard Considerations Always wash your hands thoroughly before and after you handle your aquatic plants, or anything it has touched. Availability Aquatic plants are generally available year round, and can be found in freshwater lakes and ponds. They are collected, so shortages may occur. The aquatic plants come packaged in plastic bags. Once received, open package and, using tap water, gently rinse away any debris or broken-off pieces. Some plants come in jars; remove lid and place in tank. Your plants do not need to be acclimated. Aquarium Needs Habitat: • Water from the tap in most cases contains chlorine, which can be detrimental to the health of your plants and aquatic animals. De-chlorinate your water by using a commercial chemical designed to do so, such as Ammonia/Chlorine Detoxifier, or by leaving your water out in an open container for 24–48 hours. Tropical plants need temperatures ranging from 66–77°F. For an aquarium to function well, a Filtration System 21 W 3535 is needed.
    [Show full text]
  • J.F. Veldkamp (Continued from Page 104)
    BIBLIOGRAPHY: BRYOPHYTES 165 XVI. Bibliography J.F. Veldkamp (continued from page 104) * Books have been marked with an asterisk. BRYOPHYTES AKIYAMA, H. 1988. Studies onLeucodon (Leucodontaceae, Musci)and related genera in East Asia III. Notes on the systematic position of Pterogonium. Acta Phytotax. Geo- bot. 39: 73-82, 4 fig. — To Isobryales near Anomodon. ASAKAWA, Y. 1988. Chemicalevolution of mono- and sesquiterpenoids ofliverworts. J. Hattori Bot. Lab. 64: 97-108, 16 fig. BISCHLER, H. 1989. MarchantiaL.: subg. Chlamidium (Nees) Bischl. sect. Papillatae Bischl. sect. nov. en Asie et en Ocianie. Cryptog., Bryol. Lichenol. 10: 61-79, 9 fig, 3 tab. (In French, Engl. summ.). — Marchantia emarginata group, 2 species, 5 sub- species. - — 1988. Marchantiapaleacea Bertol. Karyotype analysis. Beih. Nova Hedw. 90 (1988) 95-100, 2 fig, 1 tab. — 1988. Relationships in the order Marchantiales (Hepaticae). J. Hattori Bot. Lab. 64: 47-57, 3 tab. BUCK, W.R. 1988. Another view ofthe familial delimitationofthe Hookeriales. J. Hattori Bot. Lab. 64: 29-36,1 fig. — 5 families; key; descriptions. CAP, T. & C. GAO. 1988. Studies ofChinese bryophytes. (2). Trematodon Michx. (Mus- ci, Dicranaceae). J. Hattori Bot. Lab. 65: 323-334, 6 fig, 1 tab. — 2 species, 1 Male- sian; descriptions. CATCHESIDE, D.G. 1988. The mosses of the Northern territory, Australia. J. Adelaide Bot. Gard. 11: 1-17, 4 — 95 54 new records, fig. species, keys to some genera. CHANDRA, V., et al. 1987. Calobryales: Distribution andphytogeographical discussion. Geophytology 17: 227-232, 1 map. * EDDY, A. 1988. A handbook ofMalesian mosses. 1. Sphagnales to Dicranales. iii, 204 165 British London. ISBN 0-567-01038-7.
    [Show full text]
  • Phylogeny and Phylogenetic Nomenclature of the Campanulidae Based on an Expanded Sample of Genes and Taxa
    Systematic Botany (2010), 35(2): pp. 425–441 © Copyright 2010 by the American Society of Plant Taxonomists Phylogeny and Phylogenetic Nomenclature of the Campanulidae based on an Expanded Sample of Genes and Taxa David C. Tank 1,2,3 and Michael J. Donoghue 1 1 Peabody Museum of Natural History & Department of Ecology & Evolutionary Biology, Yale University, P. O. Box 208106, New Haven, Connecticut 06520 U. S. A. 2 Department of Forest Resources & Stillinger Herbarium, College of Natural Resources, University of Idaho, P. O. Box 441133, Moscow, Idaho 83844-1133 U. S. A. 3 Author for correspondence ( [email protected] ) Communicating Editor: Javier Francisco-Ortega Abstract— Previous attempts to resolve relationships among the primary lineages of Campanulidae (e.g. Apiales, Asterales, Dipsacales) have mostly been unconvincing, and the placement of a number of smaller groups (e.g. Bruniaceae, Columelliaceae, Escalloniaceae) remains uncertain. Here we build on a recent analysis of an incomplete data set that was assembled from the literature for a set of 50 campanulid taxa. To this data set we first added newly generated DNA sequence data for the same set of genes and taxa. Second, we sequenced three additional cpDNA coding regions (ca. 8,000 bp) for the same set of 50 campanulid taxa. Finally, we assembled the most comprehensive sample of cam- panulid diversity to date, including ca. 17,000 bp of cpDNA for 122 campanulid taxa and five outgroups. Simply filling in missing data in the 50-taxon data set (rendering it 94% complete) resulted in a topology that was similar to earlier studies, but with little additional resolution or confidence.
    [Show full text]
  • Commemorative Edition
    HerbalGram 100 • November 2013 – January 100 • November HerbalGram 2014 ABC's 25th ANNIVERSARY — COMMEMORATIVE EDITION The Journal of the American Botanical Council Number 100 | November 2013 – January 2014 Botanical Clues to Voynich Origin • Ginseng and Cancer Fatigue • Obamacare and CAM • Critique of • Obamacare Fatigue • Ginseng and Cancer Origin Voynich Botanical Clues to WEED Documentary www.herbalgram.org US/CAN $6.95 www.herbalgram.org M I S S I O N D R I V E N : Educate & Inspire Making Outstanding Extracts recognition of our work in the propagation and con- servation of endangered medicinal plants. Has Never Been Enough. It’s seen in our higher education scholarship fund, Excellence in herbal extraction is at the heart of what which provides financial assistance to students of we do. But the soul of Herb Pharm’s mission is to lead naturopathic medicine and clinical herbalism. people to embrace herbal healthcare by educating And it’s why we offer guided herb walks and educa- them on the safe and effective use of herbs, and tional seminars to share our expertise with herbal inspiring a respect for plants and nature. enthusiasts and the herbally curious. That means standing shoulder-to-shoulder with aspiring Educating, inspiring and offering herbalists who attend our renowned HerbaCulture outstanding herbal Work-Study Program to experience traditional culti- healthcare products, vation and preparation of medicinal herbs. for more than 30 It means that our organic farm is designated a years that’s been Botanical Sanctuary by United Plant Savers in our secret formula. For more information about Herb Pharm’s educational programs visit us at www.herb-pharm.com/education.html or use your smart phone to scan the image to the left.
    [Show full text]
  • A Taxonomic Treatment of the Gentianaceae in Virginia
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1979 A taxonomic treatment of the Gentianaceae in Virginia Georgia A. Hammond-Soltis College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Systems Biology Commons Recommended Citation Hammond-Soltis, Georgia A., "A taxonomic treatment of the Gentianaceae in Virginia" (1979). Dissertations, Theses, and Masters Projects. Paper 1539625057. https://dx.doi.org/doi:10.21220/s2-ry01-2w40 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Thou waitest late, and com7st alone When woods are bare and birds have flown, And frosts and shortening days portend The aged year is near his end. Then doth thy sweet and quiet eye Tjook through its fringes to the sky Blue - blue - as if that sky let fall A flower from its cerulean wall. * Bryant , from Wiidflowers of the Alleghanies APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts iL a, d. m / Y m M i - M i iA Author Approved September, 1979 istav W. Hall, Stewart A. Ware, Ph. D. r~V>Dtnn% Pi. 2. Lf&te Donna M. E. Ware, Ph. D. Mitchell A. Byrd , ‘Ph. D. TABLE OF CONTENTS Page ACKNOWLEDGMENTS................................................ v LIST OF TABLES................................................. vi LIST OF FIGURES.................................................
    [Show full text]
  • Ecology of Pyrmont Peninsula 1788 - 2008
    Transformations: Ecology of Pyrmont peninsula 1788 - 2008 John Broadbent Transformations: Ecology of Pyrmont peninsula 1788 - 2008 John Broadbent Sydney, 2010. Ecology of Pyrmont peninsula iii Executive summary City Council’s ‘Sustainable Sydney 2030’ initiative ‘is a vision for the sustainable development of the City for the next 20 years and beyond’. It has a largely anthropocentric basis, that is ‘viewing and interpreting everything in terms of human experience and values’(Macquarie Dictionary, 2005). The perspective taken here is that Council’s initiative, vital though it is, should be underpinned by an ecocentric ethic to succeed. This latter was defined by Aldo Leopold in 1949, 60 years ago, as ‘a philosophy that recognizes[sic] that the ecosphere, rather than any individual organism[notably humans] is the source and support of all life and as such advises a holistic and eco-centric approach to government, industry, and individual’(http://dictionary.babylon.com). Some relevant considerations are set out in Part 1: General Introduction. In this report, Pyrmont peninsula - that is the communities of Pyrmont and Ultimo – is considered as a microcosm of the City of Sydney, indeed of urban areas globally. An extensive series of early views of the peninsula are presented to help the reader better visualise this place as it was early in European settlement (Part 2: Early views of Pyrmont peninsula). The physical geography of Pyrmont peninsula has been transformed since European settlement, and Part 3: Physical geography of Pyrmont peninsula describes the geology, soils, topography, shoreline and drainage as they would most likely have appeared to the first Europeans to set foot there.
    [Show full text]
  • Tropical Australian Water Plants Care and Propagation in Aquaria
    Tropical Australian Water Plants Care and propagation in Aquaria Dave Wilson Aquagreen Phone – 08 89831483 or 0427 212 782 Email – [email protected] 100 Mahaffey Rd Howard Springs NT 0835 Introduction There is a growing interest in keeping native fishes and plants. Part of the developing trend in keeping aquaria and ponds is to set up a mini habitat for selected species from the one place and call it a biotope. Some enthusiasts have indicated that in recent times there is not much technical information for beginners about native Australian aquatic plant growing. Generally, if you can provide good conditions for the plants, the other inhabitants, fish, crustaceans and mollusc will be happy. This will set out water quality management, fertiliser and its management, describe an aquarium system that incorporates technology to achieve a nice aquarium. The fourth part will describe some native plants that can be trialled in the aquarium. Soft water plants Hard Water plants Part 1 - Water Quality - Measuring and Management Most people are familiar with pH, alkalinity, hardness, salinity and temperature. The system described here needs control over these parameters which link in with the fertilisers required for good plant growth. A couple of others that can be measured are phosphate and nitrate. Fertilisers produced from feeding fish can be used and are calculated into the system but are usually in the wrong proportions for good plant growth management. A fresh water planted aquarium does better with a 25% to 50% water change per week, test the water you use for the change to make sure that it is better than the water you have already.
    [Show full text]
  • Nuytsia the Journal of the Western Australian Herbarium 27: 245–252 Published Online 13 December 2016
    R.W. Davis et al., A new and rare species of Nymphoides (Menyanthaceae) 245 Nuytsia The journal of the Western Australian Herbarium 27: 245–252 Published online 13 December 2016 A new and rare species of Nymphoides (Menyanthaceae) from the North West of Western Australia Robert W. Davis1,3, Timothy A. Hammer2 and Kevin R. Thiele2 ¹Western Australian Herbarium, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 2School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, Western Australia 6009 3Corresponding author, email: [email protected] Abstract Davis, R.W., Hammer, T.A. & Thiele, K.R. A new and rare species of Nymphoides (Menyanthaceae) from the North West of Western Australia. Nuytsia 27: 245–252 (2016). Nymphoides walshiae R.W.Davis & K.R.Thiele, a new and rare species of Nymphoides Ség., is described. This new species is geographically disjunct from other Nymphoides species, occurring in a small area of arid Western Australia near the Cape Range. A molecular phylogenetic analysis based on ITS sequences suggests that it occupies a phylogenetically isolated position sister to the largest clade in the genus. It lacks some of the more common features seen in the genus Nymphoides. A scanning electron microscope image displaying the seed surface and outline is provided. Introduction Nymphoides Ség. is a cosmopolitan genus of aquatic plants in Menyanthaceae Dumort., distributed primarily in the tropics and subtropics (Kadereit & Jeffrey 2007). The genus comprises c. 50 species (Tippery & Les 2011), 22 of which occur in Australia (Council of Heads of Australasian Herbaria 2006–), including one currently phrase-named species.
    [Show full text]
  • Wetland Plants of the Townsville − Burdekin
    WETLAND PLANTS OF THE TOWNSVILLE − BURDEKIN Dr Greg Calvert & Laurence Liessmann (RPS Group, Townsville) For Lower Burdekin Landcare Association Incorporated (LBLCA) Working in the local community to achieve sustainable land use THIS PUBLICATION WAS MADE POSSIBLE THROUGH THE SUPPORT OF: Burdekin Shire Council Calvert, Greg Liessmann, Laurence Wetland Plants of the Townsville–Burdekin Flood Plain ISBN 978-0-9925807-0-4 First published 2014 by Lower Burdekin Landcare Association Incorporated (LBLCA) PO Box 1280, Ayr, Qld, 4807 Graphic Design by Megan MacKinnon (Clever Tangent) Printed by Lotsa Printing, Townsville © Lower Burdekin Landcare Association Inc. Copyright protects this publication. Except for purposes permitted under the Copyright Act, reproduction by whatever means is prohibited without prior permission of LBLCA All photographs copyright Greg Calvert Please reference as: Calvert G., Liessmann L. (2014) Wetland Plants of the Townsville–Burdekin Flood Plain. Lower Burdekin Landcare Association Inc., Ayr. The Queensland Wetlands Program supports projects and activities that result in long-term benefits to the sustainable management, wise use and protection of wetlands in Queensland. The tools developed by the Program help wetlands landholders, managers and decision makers in government and industry. The Queensland Wetlands Program is currently funded by the Queensland Government. Disclaimer: This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The authors and funding bodies hold no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy.
    [Show full text]