Research Diversification, disparification and hybridization in the desert shrubs Encelia Sonal Singhal1 , Adam B. Roddy2 , Christopher DiVittorio3,4, Ary Sanchez-Amaya5, Claudia L. Henriquez5 , Craig R. Brodersen6 , Shannon Fehlberg7 and Felipe Zapata5 1Department of Biology, CSU Dominguez Hills, 1000 E Victoria Street, Carson, CA 90747, USA; 2Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33133, USA; 3University of California Institute for Mexico and the United States, University of California, 3324 Olmsted Hall, Riverside, CA 92521, USA; 4Pinecrest Research Corporation, 5627 Telegraph Avenue, Suite 420, Oakland, CA 94609, USA; 5Department of Ecology and Evolutionary Biology, University of California, 612 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; 6School of the Environment, Yale University, New Haven, CT 06511, USA; 7Research, Conservation, and Collections, Desert Botanical Garden, 1201 N Galvin Parkway, Phoenix, AZ 85008, USA Summary Author for correspondence: There are multiple hypotheses for the spectacular plant diversity found in deserts. We Sonal Singhal explore how different factors, including the roles of ecological opportunity and selection, pro- Email:
[email protected] mote diversification and disparification in Encelia, a lineage of woody plants in the deserts of the Americas. Received: 31 July 2020 Using a nearly complete species-level phylogeny based on double-digest restriction-aided Accepted: 10 January 2021 sequencing along with a broad set of phenotypic traits, we estimate divergence times and diversification rates, identify instances of hybridization, quantify trait disparity and assess phe- New Phytologist (2021) notypic divergence across environmental gradients. doi: 10.1111/nph.17212 We show that Encelia originated and diversified recently (mid-Pleistocene) and rapidly, with rates comparable to notable adaptive radiations in plants.