Science and the Scientific Disciplines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Walter Dominic Wetzels Professor Emeritus
Walter Dominic Wetzels Professor emeritus Ph.D., German Literature, Princeton University Career Highlights Research Focus: Eighteenth-century literature; German literature and science; the literature which popularized science, with particular emphasis on the eighteenth century Education 1965-1968 PhD, German Literature, Princeton University 1964-1965 German Literature, University of Cologne 1949-1954 University of Cologne; Staatsexamen in mathematics and physics Employment 1996- Professor emeritus, Dept. of Germanic Languages, U of Texas at Austin 1984-1996 Professor, Department of Germanic Languages, UT Austin 1973-1984 Associate Professor, Department of Germanic Languages, UT Austin 1968-1973 Assistant Professor, Department of Germanic Languages, UT Austin Awards Spring 1989 University of Texas Faculty Research Assignment Fall 1988 University of Texas Presidential Leave Publications: Books (Edited with Leonard Schulze) Literature and History. Lanham, New York, London: University Press of America, 1983 Johann Wilhelm Ritter: Physik im WIrkungsfeld der deutschen Romantik. Quellen und Forschungen, N.F., 59. Berlin and New York: Walter de Gruyter, 1973. (Edited with and introduction) Myth and Reason. Austin: University of Texas Press, 1973 Publications: Articles "Physics for the Ladies: Early Literary Voices and Strategies For and Against the Popularization of Copernicus and Newton." In: Themes and Structures: Studies in German Literature from Goethe to the Present. Ed. Alexander Stephan. Columbia, SC: Camden House, 1997: 21-38 "Newton for the Ladies: Algarotti's Popularization of Newton's Optics." Studies on Voltaire and the Eighteenth Century. Vol. 304. Oxford: The Voltaire Foundation, 1992: 1152-55 "Johann Wilhelm Ritter: Romantic Physics in Germany." Romanticism and the Sciences, ed. A Cunningham and N. Jardino. Cambridge: Cambridge UP, 1990. -
Winter Cities and Mood Disorder Akkerman
TRAMES, 2014, 18(68/63), 1, 19–37 WINTER-CITIES AND MOOD DISORDER: OBSERVATIONS FROM EUROPEAN CITY-FORM AT THE END OF LITTLE ICE AGE Abraham Akkerman University of Saskatchewan Abstract. The rise of modernity in Europe, from the close of the Renaissance to the Second Industrial Revolution, had spanned the period of the Little Ice Age, and was manifest by intensifying urbanization. Europeans in cities during cold days of the late LIA were able to seek warm shelter much easier than their forerunners in earlier times or their contemporaries in colonial America. But at higher latitudes during autumn and winter, daytime shelter deprived people of sunlight. The likely outcome, depression, had been a prominent trait among the founders of modern science and philosophy, many of whom lived in northern Europe. A rich source of perceptually stimulating spatial contrast, historic European city-form, compact and conducive to street walking, had been a visceral catalyst to intellectual exploration, while at the same time it had provided also a partial remedy to some of the mood disorder. Such observation is relevant to contemporary winter-cities. Keywords: Little Ice Age, city-form, mind and the environment, existentialism, winter- cities DOI: 10.3176/tr.2014.1.02 1. Introduction In “The morphology of landscape” (1925) Carl O. Sauer had introduced the notion of cultural landscape as the imposition of culture upon nature. Defined by the shared myths, beliefs and behavioral standards, Sauer’s cultural landscape is manifest in human intervention in natural landscape. Technology, as one of the more important aspects of culture, has been changing our lived space, primarily through considerations of expediency related to the human body, while bodily experiences have been changing accordingly and, in turn, have often driven advances of technological change. -
Volta, the German Controversy on Physics and Naturphilosophie and His Relations with Johann Wilhelm Ritter
Andreas Kleinert Volta, the German Controversy on Physics and Naturphilosophie and his Relations with Johann Wilhelm Ritter A characteristic of German science around 1800 is the violent debate about concepts and methods between the supporters and opponents of a certain philosophy of nature that is generally designed by the German term of Naturphilosophie.1 In the early nineteenth century, physicists who were arguing in the spirit of Naturphilosophie were defined as a community of people that could be sharply distinguished from the “normal” or traditional physicists. This was especially the standpoint of observers from outside Germany.2 But also German physicists spoke of “so-called philosophers of nature who declared that dualism is the principle of order everywhere in physics and chemistry”.3 The philosopher Friedrich Wilhem Schelling, who had given the term of “spekulative Physik”4 to the kind of science by which he wanted to overcome traditional experimental physics and chemistry, is often considered as the ideological forerunner of this group of scientists. Another way of dividing German physicists into different camps was the distinction between “Atomisten” and “Dynamisten”, atomists believing in the existence of matter, including imponderable matter, and dynamists believing only in 1 For more details, see the article of von Engelhardt in this volume. With regard to physics, see CANEVA (1997). 2 See OERSTED (1813). On p. XIV, the translator apologises for translating such an eccentric essay into French and mentions that Naturphilosophie was widely considered as having a detrimental influence on empirical sciences. (“Depuis peu on a fait aux Allemands le reproche très-grave de vouloir porter dans les sciences les spéculations, et pour ainsi dire les rêves d’une imagination exaltée. -
Beyond Autonomy in Eighteenth-Century and German Aesthetics
10 Goethe’s Exploratory Idealism Mattias Pirholt “One has to always experiment with ideas.” Georg Christoph Lichtenberg “Everything that exists is an analogue to all existing things.” Johann Wolfgang Goethe Johann Wolfgang Goethe made his famous Italian journey in the late 1780s, approaching his forties, and it was nothing short of life-c hanging. Soon after his arrival in Rome on November 1, 1786, he writes to his mother that he would return “as a new man”1; in the retroactive account of the journey in Italienische Reise, he famously describes his entrance into Rome “as my second natal day, a true rebirth.”2 Latter- day crit- ics essentially confirm Goethe’s reflections, describing the journey and its outcome as “Goethe’s aesthetic catharsis” (Dieter Borchmeyer), “the artist’s self-d iscovery” (Theo Buck), and a “Renaissance of Goethe’s po- etic genius” (Jane Brown).3 Following a decade of frustrating unproduc- tivity, the Italian sojourn unleashed previously unseen creative powers which would deeply affect Goethe’s life and work over the decades to come. Borchmeyer argues that Goethe’s “new existence in Weimar bore an essentially different signature than his pre- Italian one.”4 With this, Borchmeyer refers to a particular brand of neoclassicism known as Wei- mar classicism, Weimarer Klassik, which is less an epochal term, seeing as it covers only a little more than a decade, than a reference to what Gerhard Schulz and Sabine Doering matter-o f- factly call “an episode in the creative history of a group of German writers around 1800.”5 Equally important as the aesthetic reorientation, however, was Goethe’s new- found interest in science, which was also a direct conse- quence of his encounter with the Italian nature. -
Johann Wilhelm Ritter and Ernest Rutherford Michael W
Downloaded from https://www.cambridge.org/core Microscopy Pioneers Pioneers in Optics: Johann Wilhelm Ritter and Ernest Rutherford Michael W. Davidson . IP address: National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306 [email protected] 170.106.35.234 Johann Wilhelm Ritter beyond the violet. Ritter initially referred to the new type of , on (1776–1810) radiation as chemical rays, but the title of ultraviolet radiation 30 Sep 2021 at 19:10:55 Johann Wilhelm Ritter was a somewhat controversial eventually became the preferred term. scientist best known for his discovery of ultraviolet radiation. Despite his significant scientific achievements and his He was born on December 16, 1776, in Samitz, Germany, an acceptance into the Bavarian Academy of Sciences, Ritter area that is now part of Poland. Apprenticed to an apothecary was not well received by his contemporaries. His writing in Leignitz at the age of fourteen, Ritter developed an acute was considered oblique and confusing, and he often delayed interest in chemistry that carried over into other scientific explaining his experiments in detail. Some believed Ritter , subject to the Cambridge Core terms of use, available at fields. When he inherited a sum of made claims that he could not support and deemed him an money five years later, he was able unreliable source of information. His interest and studies of to leave his position and decided occult phenomena further damaged his reputation as a serious to enroll at the University of Jena. scientist. Jaded by his lack of credit and plagued by financial There he studied medicine, staying difficulties, Ritter suffered a premature death at the age of on in a teaching position after thirty-three and did not receive proper recognition for his his graduation, until the duke of scientific exploits until more than a century later. -
Electrolysis of Water - Wikipedia 1 of 15
Electrolysis of water - Wikipedia 1 of 15 Electrolysis of water Electrolysis of water is the decomposition of water into oxygen and hydrogen gas due to the passage of an electric current. This technique can be used to make hydrogen gas, a main component of hydrogen fuel, and breathable oxygen gas, or can mix the two into oxyhydrogen, which is also usable as fuel, though more volatile and dangerous. It is also called water splitting. It ideally requires a potential difference of 1.23 volts to split water. Simple setup for demonstration of Contents electrolysis of water at home History Principle Equations Thermodynamics Electrolyte selection Electrolyte for water electrolysis Pure water electrolysis Techniques Fundamental demonstration Hofmann voltameter Industrial High-pressure High-temperature An AA battery in a glass of tap water Alkaline water with salt showing hydrogen Polymer electrolyte membrane produced at the negative terminal Nickel/iron Nanogap electrochemical cells Applications Efficiency Industrial output Overpotential Thermodynamics https://en.wikipedia.org/wiki/Electrolysis_of_water Electrolysis of water - Wikipedia 2 of 15 See also References External links History Jan Rudolph Deiman and Adriaan Paets van Troostwijk used, in 1789, an electrostatic machine to make electricity which was discharged on gold electrodes in a Leyden jar with water.[1] In 1800 Alessandro Volta invented the voltaic pile, and a few weeks later the English scientists William Nicholson and Anthony Carlisle used it for the electrolysis of water. In 1806 -
Natural Philosophy and Natural Science Around 1800
Dietrich von Engelhardt Natural Philosophy and Natural Science around 1800 1. Introduction The development of science since the Renaissance can be characterized as an expansion of the knowledge of phenomena, as increasing specialization, as a growing of empiricism with many techno-practical consequences. It can also be considered as an institutionalization of science and the dominance of research, as emancipation from theology and philosophy, as separation from the humanities or a loss of historico-theoretical interests within the natural sciences. The terms philosophy or philosophical – especially in connection with natural science and medicine – had up to the eighteenth century different meanings: metaphysical foundation of nature and natural science, theory and methodology of scientific research, causal explanation of natural phenomena and natural processes, or total, general and systematic description or representation of a certain area of nature or a specific discipline. 2. Enlightenment The dialogue between science and philosophy depended on the internal developments of science and philosophy and their changing relationships. The eighteenth century was a period of fundamental innovation – in the field of physics, chemistry, geology and biology as well as in the relationship between science and philosophy.1 In the chemistry of that period, the concept of the elements and their combination was transformed by the controversy between phlogistic and antiphlogistic schools of thought. By 1800, the new oxygen theory (A.L. Lavoisier 1789) had established itself, whereas the doctrine of forces and processes was being developed mainly by 1 See BÖHM (1964); CROSLAND (1962); ENGELHARDT VON (1979); HOOYKAAS (1966); PARTINGTON (1961-70); RITTERBUSH (1964); ROGER (1963; 1971); SCHIMANK (1973); STRÖKER (1967); VERRA (1992). -
El Médico Y El Escritor: Andras Ruschlaub (1768-1835)
Universidad Autónoma de Barcelona Departamento de Filosofía Centro de Estudios de Historia de las Ciencias (C.E.H.I.C.) El médico y el escritor: Andreas Röschlaub (1768-1835) y Friedrich Wilhelm Joseph von Schelling (1775-1854) Slavko Zupcic Rivas Tesis doctoral dirigida por los doctores Luis Montiel Llorente y José Pardo Tomás Bellaterra, mayo de 2003 Luis Montiel Llorente, Profesor Titular de Historia de la Ciencia de la Facultad de Medicina de la Universidad Complutense de Madrid (U.C.M.), y José Pardo Tomás, miembro del Departamento de Historia de la Ciencia, en la Institución “Milà y Fontanals”, del Consejo Superior de Investigaciones Científicas (C.S.I.C.) CERTIFICAN Que la presente memoria, El médico y el escritor: Andreas Röschlaub (1768- 1835) y Friedrich Wilhelm Joseph von Schelling (1775-1854), ha sido realizada por Slavko Zupcic Rivas bajo nuestra dirección y que constituye su tesis para optar al grado de Doctor dentro del programa de Historia de las Ciencias de la Universidad Autónoma de Barcelona. Bellaterra, marzo de 2003 Luis Montiel Llorente José Pardo Tomás ÍNDICE Introducción 1 Agradecimientos 9 1. La mirada plural del siglo XX 12 1.1 El tránsito entre literatura y medicina en algunas obras de ficción del siglo XX 14 1.2 Las dos culturas 25 1.3 Muerte y resurrección de la Naturphilosophie 34 2. Derribados por los bolos de Kotzebue 41 2.1 Lo romántico y el romanticismo 42 2.2 La incertidumbre de la medicina alemana en los últimos años del siglo XVIII 47 2.3 Los nuevos senderos de la literatura romántica 57 3. -
World-History-Timeline.Pdf
HISTORY TIMELINE WORLD HISTORY TIMELINE FROM ANCIENT HISTORY TO 21ST CENTURY COPYRIGHT © 2010 - www.ithappened.info Table of Contents Ancient history .................................................................................................................................... 4 100,000 to 800 BC...........................................................................................................................4 800 BC to 300 BC............................................................................................................................5 300 BC to 1 BC................................................................................................................................6 1 AD to 249 AD............................................................................................................................... 8 249 AD to 476 AD .......................................................................................................................... 9 Middle Ages .......................................................................................................................................11 476 AD to 649 AD......................................................................................................................... 11 650 AD to 849 AD ........................................................................................................................ 12 850 AD to 999 AD........................................................................................................................ -
Romanticism in Science Boston Studies in the Philosophy of Science
ROMANTICISM IN SCIENCE BOSTON STUDIES IN THE PHILOSOPHY OF SCIENCE Editor ROBERT S. COHEN, Boston University Editorial Advisory Board THOMAS F. GLICK, Boston University ADOLF GRONBAUM, University of Pittsburgh SAHOTRA SARKAR, Dibner Institute M.1. T. SYLVAN S. SCHWEBER, Brandeis University JOHN J. STACHEL, Boston University MARX W. WARTOFSKY, Baruch College of the City University of New York VOLUME 152 ROMANTICISM IN SCIENCE Science in Europe, 1790-1840 Edited by STEFANO POGGI Department of Philosophy, University of Florence, Italy and MAURIZIO BOSSI Centro Romantico, Gabinetto Scientifico Letterario G.P. Vieusseux, Florence, Italy With the editorial assistance of Berendina van Straalen Under the auspices of the Centro Romantico of the Gabinetto Scientifico Letterario G.P. Vieusseux SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Library of Congress Cataloging-in-Publication Data Romanticism in sCience: science in Europe, 1790-1840 I edited by Stefano Poggi and Maurizio Bossi: with the editorial assistance of Berendina van Straalen. p. cm. -- (Boston studies in the philosophy of science) Includes index. ISBN 978-90-481-4284-2 ISBN 978-94-017-2921-5 (eBook) DOI 10.1007/978-94-017-2921-5 1. Sctence--Europe--History--18th century. 2. SCience--Europe -History--19th century. 3. Science--Philosophy--History. 4. RONanticism--History. I. Poggi, Stefano. II. Bassi. Maurizio. III. Series. 0127.E8R66 1993 509.4' 09' 033--dc20 93-1728 ISBN 978-90-481-4284-2 Printed on acid-free paper All Rights Reserved © 1994 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1994 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. -
NHBS Backlist Bargains 2011 Main Web Page NHBS Home Page
www.nhbs.com [email protected] T: +44 (0)1803 865913 The Migration Biochemistry How To Identify How and Why Collins Field Guide: The Iberian Lynx: Ecology of Birds £51.99 £30.50 Trees in Southen Species Multiply: Birds of the Extinction or Africa The Radiation of Palearctic - Non- Recovery? £83.00 £48.99 £14.99 £8.99 Darwin's Finches Passerines £6.99 £4.50 £27.95 £16.50 £24.99 £12.99 For Love of Insects Field Guide to the The Status and Atlas of Seeds and The Biology of A Primer of £18.95 £11.50 Birds of The Distribution of Fruits of Central African Savannahs Ecological Statistics Gambia and Dragonflies of the and East-European £34.95 £20.50 £32.99 £19.50 Senegal Mediterranean Flora £24.99 £14.99 Region £359.00 £209.99 £9.99 £6.50 Browse the subject pages Dear Customers, Mammals Birds Welcome to the 2011 Backlist Bargains Catalogue! Every year we offer you the Reptiles & Amphibians chance to update your library collections, top up on textbooks or explore new interests, at greatly reduced prices. This year we have nearly 5000 books at up Fishes to 50% off. Invertebrates Palaeontology You'll find books from across our range of scientific and environmental subjects, Marine & Freshwater Biology from heavyweight science and monographs to field guides and natural history General Natural History writing. Regional & Travel Botany & Plant Science Please enjoy browsing the catalogue. The NHBS Backlist Bargains sale ends March Animal & General Biology 31st 2011. Take advantage of these great discounts - Order Now! Evolutionary Biology Ecology Happy reading and buying, Habitats & Ecosystems Conservation & Biodiversity Nigel Massen Managing Director Environmental Science Physical Sciences Sustainable Development Using the Backlist Bargains Catalogue Data Analysis Reference Now that NHBS Catalogues are online there are many ways to access the title information that you need. -
From the Ritter Pile to the Aluminum Ion Battery–Peter Paufler's
Z. Kristallogr. 2020; 235(11): 481–511 Tilmann Leisegang*, Aleksandr A. Levin and Andreas Kupsch From the Ritter pile to the aluminum ion battery – Peter Paufler’s academic genealogy https://doi.org/10.1515/zkri-2020-0063 Keywords: academic genealogy; crystallography; Fest- Received June 29, 2020; accepted August 18, 2020; published online schrift; physics; structural science. October 27, 2020 Abstract: This article highlights Peter Paufler’s academic 1 Introduction genealogy on the occasion of his 80th birthday. We describe the academic background since 1776, which covers 11 Peter Paufler celebrated his 80th birthday on February 18, generations of scientists: Ritter, Ørsted, Han-steen, Keilhau, 2020. Throughout his academic career, he devoted himself Kjerulf, Brøgger, Goldschmidt, Schulze, Paufler, Meyer, and primarily to crystallography, particularly as an editor and Leisegang. The biographies of these scientists are described book reviewer for the German crystallographic journal in spotlight character and references to scientists such as Zeitschrift für Kristallographie, but also as member of the Dehlinger, Ewald, Glocker, Röntgen, Vegard, Weiss, and board of the German Society for Crystallography (Deutsche Werner are given. A path is drawn that begins in the Gesellschaft für Kristallographie, DGK), as member of Romanticism with electrochemistry and the invention of committees of the International Union of Crystallography what is probably the first accumulator. It leads through the (IUCr) and the European Crystallographic Association industrialization and the modern geology, mineralogy, and (ECA), and as chairman of the Association for Crystallo- crystallography to crystal chemistry, metal and crystal graphy (Vereinigung für Kristallographie, VfK) in the former physics and eventually returns to electrochemistry and the German Democratic Republic (GDR), the German Mineral- aluminum-ion accumulator in the era of the energy transi- ogical Society (Deutsche Mineralogische Gesellschaft, tion.