200 Years of Arc Discharges
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Walter Dominic Wetzels Professor Emeritus
Walter Dominic Wetzels Professor emeritus Ph.D., German Literature, Princeton University Career Highlights Research Focus: Eighteenth-century literature; German literature and science; the literature which popularized science, with particular emphasis on the eighteenth century Education 1965-1968 PhD, German Literature, Princeton University 1964-1965 German Literature, University of Cologne 1949-1954 University of Cologne; Staatsexamen in mathematics and physics Employment 1996- Professor emeritus, Dept. of Germanic Languages, U of Texas at Austin 1984-1996 Professor, Department of Germanic Languages, UT Austin 1973-1984 Associate Professor, Department of Germanic Languages, UT Austin 1968-1973 Assistant Professor, Department of Germanic Languages, UT Austin Awards Spring 1989 University of Texas Faculty Research Assignment Fall 1988 University of Texas Presidential Leave Publications: Books (Edited with Leonard Schulze) Literature and History. Lanham, New York, London: University Press of America, 1983 Johann Wilhelm Ritter: Physik im WIrkungsfeld der deutschen Romantik. Quellen und Forschungen, N.F., 59. Berlin and New York: Walter de Gruyter, 1973. (Edited with and introduction) Myth and Reason. Austin: University of Texas Press, 1973 Publications: Articles "Physics for the Ladies: Early Literary Voices and Strategies For and Against the Popularization of Copernicus and Newton." In: Themes and Structures: Studies in German Literature from Goethe to the Present. Ed. Alexander Stephan. Columbia, SC: Camden House, 1997: 21-38 "Newton for the Ladies: Algarotti's Popularization of Newton's Optics." Studies on Voltaire and the Eighteenth Century. Vol. 304. Oxford: The Voltaire Foundation, 1992: 1152-55 "Johann Wilhelm Ritter: Romantic Physics in Germany." Romanticism and the Sciences, ed. A Cunningham and N. Jardino. Cambridge: Cambridge UP, 1990. -
Alessandro Volta and the Discovery of the Battery
1 Primary Source 12.2 VOLTA AND THE DISCOVERY OF THE BATTERY1 Alessandro Volta (1745–1827) was born in the Duchy of Milan in a town called Como. He was raised as a Catholic and remained so throughout his life. Volta became a professor of physics in Como, and soon took a significant interest in electricity. First, he began to work with the chemistry of gases, during which he discovered methane gas. He then studied electrical capacitance, as well as derived new ways of studying both electrical potential and charge. Most famously, Volta discovered what he termed a Voltaic pile, which was the first electrical battery that could continuously provide electrical current to a circuit. Needless to say, Volta’s discovery had a major impact in science and technology. In light of his contribution to the study of electrical capacitance and discovery of the battery, the electrical potential difference, voltage, and the unit of electric potential, the volt, were named in honor of him. The following passage is excerpted from an essay, written in French, “On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds,” which Volta sent in 1800 to the President of the Royal Society in London, Joseph Banks, in hope of its publication. The essay, described how to construct a battery, a source of steady electrical current, which paved the way toward the “electric age.” At this time, Volta was working as a professor at the University of Pavia. For the excerpt online, click here. The chief of these results, and which comprehends nearly all the others, is the construction of an apparatus which resembles in its effects viz. -
Parallel-Plate Capacitor
EXPERIMENT E4: Parallel-Plate Capacitor Objectives: • Scientific: Learn about parallel-plate capacitors • Scientific: Learn about multiple capacitors connected in parallel • Skill development: Use curve fitting to find parameters from experimental data Copyright © 2002, The University of Iowa Rev. jg 22 July 2002 Exp. E4: Parallel-Plate Capacitor Introductory Material Capacitance is a constant of proportionality. It relates the potential difference V between two conductors to their charge, Q. The charge Q is equal and opposite on the two conductors. The relationship can be written: Q = CV (4.1) The capacitance C of any two conductors depends on their size, shape, and separation. + schematic symbols capacitor battery One of the simplest configurations is a pair of flat conducting plates, which is called a “parallel-plate capacitor.” Theoretically, the capacitance of parallel-plate capacitors is CP = ε0 A/ d (4.2) where the subscript “P” denotes “parallel plate.” Here, A is the area of one of the plates, d is the distance between them, and ε0 is a constant called the “permittivity of free space,” which has a value of 8.85 × 10-12 C2 / N-m2, in SI units. Here is the basic idea of the experiment you will do. Suppose that you had a parallel-plate capacitor with the plates separated initially by a distance d0, and you applied a charge Q0 to the electrodes, so that they initially have a potential V0 = Q0 / Cp. Suppose that you then arranged for the two electrodes to be electrically insulated, so that the charge Q could not go anywhere. What would happen if you then increased the electrode separation d? The charge would remain constant, because it has nowhere to flow, whereas the capacitance would decrease, as shown in Eq. -
High Resistance Measurements Introduction
1689 App Note 312 11/10/05 11:12 AM Page 1 Number 312 Application Note High Resistance Series Measurements Introduction R Resistance is most often measured with a digital multimeter, which can make measurements up to about 200MΩ. However, in some cases, resistances in the gigohm and higher ranges must be HI measured accurately. These cases include such applications as VA characterizing high megohm resistors, determining the resistivity of insulators and measuring the insulation resistance of printed LO circuit boards. These measurements are made by using an elec- trometer, which can measure both very low current and high Figure 1: The constant voltage method for measuring resistance impedance voltage. Using an electrometer, resistances up to constant current sources so that either the constant voltage or the 1018Ω can be measured depending on the method used. One method is to source voltage and measure current and the other constant current method can be used to measure high resistance. method is to source current and measure voltage. Besides using For accurate measurements, the high impedance terminal the proper method and instrumentation, special measurement of the ammeter is always connected to the high impedance point techniques such as shielding and guarding must be used to mini- of the circuit being measured. If not, erroneous measurements mize leakage current, noise and other undesirable effects that can may result. degrade the accuracy of the measurements. Some of the applications which use this method include: testing two-terminal high resistance devices, measuring insula- tion resistance, and determining the volume and surface resistivi- Measurement Methods ty of insulating materials. -
Volta, the German Controversy on Physics and Naturphilosophie and His Relations with Johann Wilhelm Ritter
Andreas Kleinert Volta, the German Controversy on Physics and Naturphilosophie and his Relations with Johann Wilhelm Ritter A characteristic of German science around 1800 is the violent debate about concepts and methods between the supporters and opponents of a certain philosophy of nature that is generally designed by the German term of Naturphilosophie.1 In the early nineteenth century, physicists who were arguing in the spirit of Naturphilosophie were defined as a community of people that could be sharply distinguished from the “normal” or traditional physicists. This was especially the standpoint of observers from outside Germany.2 But also German physicists spoke of “so-called philosophers of nature who declared that dualism is the principle of order everywhere in physics and chemistry”.3 The philosopher Friedrich Wilhem Schelling, who had given the term of “spekulative Physik”4 to the kind of science by which he wanted to overcome traditional experimental physics and chemistry, is often considered as the ideological forerunner of this group of scientists. Another way of dividing German physicists into different camps was the distinction between “Atomisten” and “Dynamisten”, atomists believing in the existence of matter, including imponderable matter, and dynamists believing only in 1 For more details, see the article of von Engelhardt in this volume. With regard to physics, see CANEVA (1997). 2 See OERSTED (1813). On p. XIV, the translator apologises for translating such an eccentric essay into French and mentions that Naturphilosophie was widely considered as having a detrimental influence on empirical sciences. (“Depuis peu on a fait aux Allemands le reproche très-grave de vouloir porter dans les sciences les spéculations, et pour ainsi dire les rêves d’une imagination exaltée. -
Beyond Autonomy in Eighteenth-Century and German Aesthetics
10 Goethe’s Exploratory Idealism Mattias Pirholt “One has to always experiment with ideas.” Georg Christoph Lichtenberg “Everything that exists is an analogue to all existing things.” Johann Wolfgang Goethe Johann Wolfgang Goethe made his famous Italian journey in the late 1780s, approaching his forties, and it was nothing short of life-c hanging. Soon after his arrival in Rome on November 1, 1786, he writes to his mother that he would return “as a new man”1; in the retroactive account of the journey in Italienische Reise, he famously describes his entrance into Rome “as my second natal day, a true rebirth.”2 Latter- day crit- ics essentially confirm Goethe’s reflections, describing the journey and its outcome as “Goethe’s aesthetic catharsis” (Dieter Borchmeyer), “the artist’s self-d iscovery” (Theo Buck), and a “Renaissance of Goethe’s po- etic genius” (Jane Brown).3 Following a decade of frustrating unproduc- tivity, the Italian sojourn unleashed previously unseen creative powers which would deeply affect Goethe’s life and work over the decades to come. Borchmeyer argues that Goethe’s “new existence in Weimar bore an essentially different signature than his pre- Italian one.”4 With this, Borchmeyer refers to a particular brand of neoclassicism known as Wei- mar classicism, Weimarer Klassik, which is less an epochal term, seeing as it covers only a little more than a decade, than a reference to what Gerhard Schulz and Sabine Doering matter-o f- factly call “an episode in the creative history of a group of German writers around 1800.”5 Equally important as the aesthetic reorientation, however, was Goethe’s new- found interest in science, which was also a direct conse- quence of his encounter with the Italian nature. -
Johann Wilhelm Ritter and Ernest Rutherford Michael W
Downloaded from https://www.cambridge.org/core Microscopy Pioneers Pioneers in Optics: Johann Wilhelm Ritter and Ernest Rutherford Michael W. Davidson . IP address: National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306 [email protected] 170.106.35.234 Johann Wilhelm Ritter beyond the violet. Ritter initially referred to the new type of , on (1776–1810) radiation as chemical rays, but the title of ultraviolet radiation 30 Sep 2021 at 19:10:55 Johann Wilhelm Ritter was a somewhat controversial eventually became the preferred term. scientist best known for his discovery of ultraviolet radiation. Despite his significant scientific achievements and his He was born on December 16, 1776, in Samitz, Germany, an acceptance into the Bavarian Academy of Sciences, Ritter area that is now part of Poland. Apprenticed to an apothecary was not well received by his contemporaries. His writing in Leignitz at the age of fourteen, Ritter developed an acute was considered oblique and confusing, and he often delayed interest in chemistry that carried over into other scientific explaining his experiments in detail. Some believed Ritter , subject to the Cambridge Core terms of use, available at fields. When he inherited a sum of made claims that he could not support and deemed him an money five years later, he was able unreliable source of information. His interest and studies of to leave his position and decided occult phenomena further damaged his reputation as a serious to enroll at the University of Jena. scientist. Jaded by his lack of credit and plagued by financial There he studied medicine, staying difficulties, Ritter suffered a premature death at the age of on in a teaching position after thirty-three and did not receive proper recognition for his his graduation, until the duke of scientific exploits until more than a century later. -
Electrolysis of Water - Wikipedia 1 of 15
Electrolysis of water - Wikipedia 1 of 15 Electrolysis of water Electrolysis of water is the decomposition of water into oxygen and hydrogen gas due to the passage of an electric current. This technique can be used to make hydrogen gas, a main component of hydrogen fuel, and breathable oxygen gas, or can mix the two into oxyhydrogen, which is also usable as fuel, though more volatile and dangerous. It is also called water splitting. It ideally requires a potential difference of 1.23 volts to split water. Simple setup for demonstration of Contents electrolysis of water at home History Principle Equations Thermodynamics Electrolyte selection Electrolyte for water electrolysis Pure water electrolysis Techniques Fundamental demonstration Hofmann voltameter Industrial High-pressure High-temperature An AA battery in a glass of tap water Alkaline water with salt showing hydrogen Polymer electrolyte membrane produced at the negative terminal Nickel/iron Nanogap electrochemical cells Applications Efficiency Industrial output Overpotential Thermodynamics https://en.wikipedia.org/wiki/Electrolysis_of_water Electrolysis of water - Wikipedia 2 of 15 See also References External links History Jan Rudolph Deiman and Adriaan Paets van Troostwijk used, in 1789, an electrostatic machine to make electricity which was discharged on gold electrodes in a Leyden jar with water.[1] In 1800 Alessandro Volta invented the voltaic pile, and a few weeks later the English scientists William Nicholson and Anthony Carlisle used it for the electrolysis of water. In 1806 -
A Simple Atmospheric Electrical Instrument for Educational Use
A simple atmospheric electrical instrument for educational use A.J. Bennett1 and R.G. Harrison Department of Meteorology, The University of Reading P.O. Box 243, Earley Gate, Reading RG6 6BB, UK Abstract Electricity in the atmosphere provides an ideal topic for educational outreach in environmental science. To support this objective, a simple instrument to measure real atmospheric electrical parameters has been developed and its performance evaluated. This project compliments educational activities undertaken by the Coupling of Atmospheric Layers (CAL) European research collaboration. The new instrument is inexpensive to construct and simple to operate, readily allowing it to be used in schools as well as at the undergraduate University level. It is suited to students at a variety of different educational levels, as the results can be analysed with different levels of sophistication. Students can make measurements of the fair weather electric field and current density, thereby gaining an understanding of the electrical nature of the atmosphere. This work was stimulated by the centenary of the 1906 paper in which C.T.R. Wilson described a new apparatus to measure the electric field and conduction current density. Measurements using instruments based on the same principles continued regularly in the UK until 1979. The instrument proposed is based on the same physical principles as C.T.R. Wilson's 1906 instrument. Keywords: electrostatics; potential gradient; air-earth current density; meteorology; Submitted to Advances in Geosciences 1 E-mail: [email protected] 1 1. Introduction The phenomena of atmospheric electricity provide an ideal topic for stimulating lectures, talks and laboratory demonstrations. -
Fenny Bentley Biographies
FENNY BENTLEY BIOGRAPHIES 1 Ambulford, Simon Rector of Fenny Bentley 1432 - 1443 Attlowe, Robert de Rector of Fenny Bentley 1362 - 1374 Baggaley, Charles Rector of Fenny Bentley 1925 - 1927 1908 Deacon of St. Philip's Dewsbury 1911 Moved to Barton on Humber 1915 Moved to Ratcliffe on Trent. Served as army chaplain in war 1919 - 1925 Newark 10 June 1925 Inducted as Rector of Fenny Bentley by Archdeacon Noakes. Ballidon, Roger de Rector of Fenny Bentley 1361 - 1362 Bamford, Nicholas Rector of Fenny Bentley 12 Sept 1561 - Feb 1564 Deprived of the living Feb 1564 Barnes, Jeremiah M.A. Born 1808 Died 24 Feb 1883 Sometime Vicar of Tissington (1879 according to Kelly 1936 although this may be the date of the window to his wife ); former Rural Dean of Leek In 1834 Jeremiah Barnes, assistant curate at St. Edward's, Leek and master of the grammar school, started a monthly lecture at the school. It was so well attended that he began a lecture and service in the church every Sunday evening later the same year. A subscription was started in 1835 to meet the cost, including a stipend of £30 a year for the lecturer; in addition a special sermon was preached annually to raise funds. Barnes also started cottage lectures. The Sunday evening lecture continued at least until 1888. Attendances at the services on Census Sunday 1851 were 350 in the morning and 200 in the afternoon, besides Sunday school children, and 550 in the Having been 'Rector designate' of Bentley, stood down in favour of Edward Hayton in 1877 Purchased Bank Top Farm in 1852 when the Irving and Jackson estate was broken up and converted the old farmhouse into Bentley Cottage (now The Bentley Brook Inn) as his 'occasional residence'. -
Experiment 0 an Introduction to the Equipment
Experiment 0 An Introduction to the Equipment Objectives After completing Experiment 0, you should be able to: • Use basic electronic instruments • Determine the precision of a measurement • Select the scale that gives the most accurate reading • Give a qualitative description of electric potential (voltage), current, and resistance • Describe the uses of an electrometer, voltmeter, ammeter, ohmmeter, and multimeter • Use an electrometer and digital multimeter properly • Describe the precautions required to protect meters from damage. Introduction In Physics 116L, you will investigate the properties of electricity and magnetism with a variety of laboratory instruments. Unlike mechanics, for which the basic measurements of length, time, and mass are familiar, common quantities, electricity and magnetism involve unfamiliar quantities and require special instruments for their study. Some of the measurements are quite simple, for example the circuits of Experiments 5 and 6, but others are more subtle. Although you are certainly familiar with certain aspects of basic electricity -- shocks upon touching metal objects on dry days, the quantitative experiments are not trivial. You must understand a number of physical processes and phenomena to form a conceptual picture of what is happening in these experiments. We cannot explore electrostatics one step at a time as in the lectures; understanding even the simplest experiments requires the complete framework of electrostatics. These first three experiments, which introduce you to electrical instruments and the basic properties of electric charge, require considerable thought and care. If you are unfamiliar with these instruments, you may find them slightly intimidating at first. However, they are not really difficult to use. This first "experiment" is merely a set of exercises to enable you to experiment with the basic instruments and become comfortable with using them. -
High Accuracy Electrometers
www.keithley.com HighHigh accuracyaccuracy electrometerselectrometers forfor lowlow current/highcurrent/high resistanceresistance applicationsapplications A GREATER MEASURE OF CONFIDENCE KEITHLEY INSTRUMENTS ARE AT WORK AROUND THE WORLD KEITHLEY INSTRUMENTS ARE AT 1EΩ 1PΩ µ 1TΩ 1 C 1GΩ 1nC 1MΩ 1kΩ 1pC 1Ω 6430 6517 6514 1mΩ 1fC Resistance Measurement Ranges 6514 6517A Charge Measurement Ranges 1kV 1A 1mA 1V 1µA 1nA 1mV 1pA 1fA 1µV 1aA 6430 6517/6514 6430 6517/6514 Voltage Measurement Ranges Current Measurement Ranges High performance electrometers MEASUREMENTS FAR BEYOND THE RANGE OF CONVENTIONAL INSTRUMENTATION MEASUREMENTS FAR Keithley has more than a half-century of experience in designing and producing sensitive instrumentation. As new testing requirements have evolved, we’ve developed dozens of different models to address our customers’ needs for higher resolution, accuracy, and sensitivity, as well as support for specific applications. Keithley electrometers are at work around the world in production test applications, industrial R&D centers, and university and government laboratories—wherever people need to make high precision current, voltage, resistance, or charge measurements. What is an electrometer? Why is low voltage burden critical? Essentially, an electrometer is a highly refined digital multimeter Voltage burden is the voltage that appears across the ammeter (DMM). Electrometers can be used for virtually any measurement input terminals when measuring. As Figure 1 illustrates, a DMM task that a conventional DMM can and offer the advantages of uses a shunt ammeter that requires voltage (typically 200mV) to very high input resistance when used as voltmeters, and ultra-low be developed across a shunt resistor in order to measure current.