Basic Electrostatics System Model No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alessandro Volta and the Discovery of the Battery
1 Primary Source 12.2 VOLTA AND THE DISCOVERY OF THE BATTERY1 Alessandro Volta (1745–1827) was born in the Duchy of Milan in a town called Como. He was raised as a Catholic and remained so throughout his life. Volta became a professor of physics in Como, and soon took a significant interest in electricity. First, he began to work with the chemistry of gases, during which he discovered methane gas. He then studied electrical capacitance, as well as derived new ways of studying both electrical potential and charge. Most famously, Volta discovered what he termed a Voltaic pile, which was the first electrical battery that could continuously provide electrical current to a circuit. Needless to say, Volta’s discovery had a major impact in science and technology. In light of his contribution to the study of electrical capacitance and discovery of the battery, the electrical potential difference, voltage, and the unit of electric potential, the volt, were named in honor of him. The following passage is excerpted from an essay, written in French, “On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds,” which Volta sent in 1800 to the President of the Royal Society in London, Joseph Banks, in hope of its publication. The essay, described how to construct a battery, a source of steady electrical current, which paved the way toward the “electric age.” At this time, Volta was working as a professor at the University of Pavia. For the excerpt online, click here. The chief of these results, and which comprehends nearly all the others, is the construction of an apparatus which resembles in its effects viz. -
Parallel-Plate Capacitor
EXPERIMENT E4: Parallel-Plate Capacitor Objectives: • Scientific: Learn about parallel-plate capacitors • Scientific: Learn about multiple capacitors connected in parallel • Skill development: Use curve fitting to find parameters from experimental data Copyright © 2002, The University of Iowa Rev. jg 22 July 2002 Exp. E4: Parallel-Plate Capacitor Introductory Material Capacitance is a constant of proportionality. It relates the potential difference V between two conductors to their charge, Q. The charge Q is equal and opposite on the two conductors. The relationship can be written: Q = CV (4.1) The capacitance C of any two conductors depends on their size, shape, and separation. + schematic symbols capacitor battery One of the simplest configurations is a pair of flat conducting plates, which is called a “parallel-plate capacitor.” Theoretically, the capacitance of parallel-plate capacitors is CP = ε0 A/ d (4.2) where the subscript “P” denotes “parallel plate.” Here, A is the area of one of the plates, d is the distance between them, and ε0 is a constant called the “permittivity of free space,” which has a value of 8.85 × 10-12 C2 / N-m2, in SI units. Here is the basic idea of the experiment you will do. Suppose that you had a parallel-plate capacitor with the plates separated initially by a distance d0, and you applied a charge Q0 to the electrodes, so that they initially have a potential V0 = Q0 / Cp. Suppose that you then arranged for the two electrodes to be electrically insulated, so that the charge Q could not go anywhere. What would happen if you then increased the electrode separation d? The charge would remain constant, because it has nowhere to flow, whereas the capacitance would decrease, as shown in Eq. -
High Resistance Measurements Introduction
1689 App Note 312 11/10/05 11:12 AM Page 1 Number 312 Application Note High Resistance Series Measurements Introduction R Resistance is most often measured with a digital multimeter, which can make measurements up to about 200MΩ. However, in some cases, resistances in the gigohm and higher ranges must be HI measured accurately. These cases include such applications as VA characterizing high megohm resistors, determining the resistivity of insulators and measuring the insulation resistance of printed LO circuit boards. These measurements are made by using an elec- trometer, which can measure both very low current and high Figure 1: The constant voltage method for measuring resistance impedance voltage. Using an electrometer, resistances up to constant current sources so that either the constant voltage or the 1018Ω can be measured depending on the method used. One method is to source voltage and measure current and the other constant current method can be used to measure high resistance. method is to source current and measure voltage. Besides using For accurate measurements, the high impedance terminal the proper method and instrumentation, special measurement of the ammeter is always connected to the high impedance point techniques such as shielding and guarding must be used to mini- of the circuit being measured. If not, erroneous measurements mize leakage current, noise and other undesirable effects that can may result. degrade the accuracy of the measurements. Some of the applications which use this method include: testing two-terminal high resistance devices, measuring insula- tion resistance, and determining the volume and surface resistivi- Measurement Methods ty of insulating materials. -
A Vacuum Electrostatic Generator
1465 A VACUUM ELECTROSTATIC GENERATOR B.H. Choi, H.D. Kang, W. Kim, B.H. Oh, Korea Advanced Energy Research Institute Daeduk-Danji, Choongnam, 301-353, Korea and K.H. Chung Seoul National University Shinrim-Dong, Kwanak-Ku, Seoul, 151-741, Korea Abstract insulator supports the breakdown strength is limited to about 30 kV/cm due to the flashover phenomena on A compact electrostatic generator designed with the insulator surface. the principle of vacuum insulation has been developed. The concept of vacuum insulation instead of gas It consists of a rotating insulation disk with charge- insulation for the electrostatic generator design has carrying conductors placed around the circumference some advantages, such as the capability to hold the n n ti a non-contact induction system with R” electron high voltage in narrow inductor gap, elimination cf gun. The usable voltage of 130 kV with the generating the electrical cant acr problem by utilizing the current of about 300 pA has been obtained at the oper- non-contact induction method, posstbility of fice ational pressure of 1x10-’ torr. regulation of high voltage, and reduction cf frictional wind loss and the mechanical vibration. In Introduction addition, elimination of gas handling system may enhance the compactness and the flexibilities for the The recent progress of research and industrial accelerator system. The characteristics and the applications of ion beams require very stable beams operational performance of this vacuum electrostatic with the high energy of around 1 MeV and the current generator have been described in this paper. of a few mA. A candidate of high voltage sources to produce Experimental Apparatus mono-energetic beams is electrostatic generator, which has superior features such as small voltage ripple and The schematic drawins of the vacuum electrostatic small stored energy in the state of ultra high generator is shown in Fig. -
Basic Electrostatics System Model No
Instruction Manual Manual No. 012-07227E *012-07227* Basic Electrostatics System Model No. ES-9080 Basic Electrostatics System Model No. ES-9080 Table of Contents Equipment List........................................................... 3 Introduction .......................................................... 4-5 Equipment Description .............................................. 5-11 Electrometer...................................................................................................................................5 Electrostatics Voltage Source ........................................................................................................6 Variable Capacitor .........................................................................................................................7 Charge Producers and Proof Plane............................................................................................. 7-8 Proof Plane................................................................................................................................. 8-9 Faraday Ice Pail............................................................................................................................10 Conductive Spheres......................................................................................................................11 Resistor-Capacitor Network Accessory.......................................................................................11 Electrometer Operation and Setup Requirements................12-13 -
A Simple Atmospheric Electrical Instrument for Educational Use
A simple atmospheric electrical instrument for educational use A.J. Bennett1 and R.G. Harrison Department of Meteorology, The University of Reading P.O. Box 243, Earley Gate, Reading RG6 6BB, UK Abstract Electricity in the atmosphere provides an ideal topic for educational outreach in environmental science. To support this objective, a simple instrument to measure real atmospheric electrical parameters has been developed and its performance evaluated. This project compliments educational activities undertaken by the Coupling of Atmospheric Layers (CAL) European research collaboration. The new instrument is inexpensive to construct and simple to operate, readily allowing it to be used in schools as well as at the undergraduate University level. It is suited to students at a variety of different educational levels, as the results can be analysed with different levels of sophistication. Students can make measurements of the fair weather electric field and current density, thereby gaining an understanding of the electrical nature of the atmosphere. This work was stimulated by the centenary of the 1906 paper in which C.T.R. Wilson described a new apparatus to measure the electric field and conduction current density. Measurements using instruments based on the same principles continued regularly in the UK until 1979. The instrument proposed is based on the same physical principles as C.T.R. Wilson's 1906 instrument. Keywords: electrostatics; potential gradient; air-earth current density; meteorology; Submitted to Advances in Geosciences 1 E-mail: [email protected] 1 1. Introduction The phenomena of atmospheric electricity provide an ideal topic for stimulating lectures, talks and laboratory demonstrations. -
01. Franklin Intro 9/04
Franklin and Electrostatics- Ben Franklin as my Lab Partner A Workshop on Franklin’s Experiments in Electrostatics Developed at the Wright Center for Innovative Science Teaching Tufts University Medford MA 02155 by Robert A. Morse, Ph.D. ©2004 Sept 2004 Benjamin Franklin observing his lightning alarm. Described in Section VII. Engraving after the painting by Mason Chamberlin, R. A. Reproduced from Bigelow, 1904 Vol. VII Franklin and Electrostatics version 1.3 ©2004 Robert A. Morse Wright Center for Science Teaching, Tufts University Section I- page 1 Copyright and reproduction Copyright 2004 by Robert A. Morse, Wright Center for Science Education, Tufts University, Medford, MA. Quotes from Franklin and others are in the public domain, as are images labeled public domain. These materials may be reproduced freely for educational and individual use and extracts may be used with acknowledgement and a copy of this notice.These materials may not be reproduced for commercial use or otherwise sold without permission from the copyright holder. The materials are available on the Wright Center website at www.tufts.edu/as/wright_center/ Acknowledgements Rodney LaBrecque, then at Milton Academy, wrote a set of laboratory activities on Benjamin Franklin’s experiments, which was published as an appendix to my 1992 book, Teaching about Electrostatics, and I thank him for directing my attention to Franklin’s writing and the possibility of using his experiments in teaching. I would like to thank the Fondation H. Dudley Wright and the Wright Center for Innovative Science Teaching at Tufts University for the fellowship support and facilities that made this work possible. -
Experiment 0 an Introduction to the Equipment
Experiment 0 An Introduction to the Equipment Objectives After completing Experiment 0, you should be able to: • Use basic electronic instruments • Determine the precision of a measurement • Select the scale that gives the most accurate reading • Give a qualitative description of electric potential (voltage), current, and resistance • Describe the uses of an electrometer, voltmeter, ammeter, ohmmeter, and multimeter • Use an electrometer and digital multimeter properly • Describe the precautions required to protect meters from damage. Introduction In Physics 116L, you will investigate the properties of electricity and magnetism with a variety of laboratory instruments. Unlike mechanics, for which the basic measurements of length, time, and mass are familiar, common quantities, electricity and magnetism involve unfamiliar quantities and require special instruments for their study. Some of the measurements are quite simple, for example the circuits of Experiments 5 and 6, but others are more subtle. Although you are certainly familiar with certain aspects of basic electricity -- shocks upon touching metal objects on dry days, the quantitative experiments are not trivial. You must understand a number of physical processes and phenomena to form a conceptual picture of what is happening in these experiments. We cannot explore electrostatics one step at a time as in the lectures; understanding even the simplest experiments requires the complete framework of electrostatics. These first three experiments, which introduce you to electrical instruments and the basic properties of electric charge, require considerable thought and care. If you are unfamiliar with these instruments, you may find them slightly intimidating at first. However, they are not really difficult to use. This first "experiment" is merely a set of exercises to enable you to experiment with the basic instruments and become comfortable with using them. -
Electrostatics Lab Introductory Physics Lab Summer 2018
Washington University in St. Louis Electrostatics Lab Introductory Physics Lab Summer 2018 Electrostatics: The Shocking Truth STOP Important health warning for students with pacemakers or other electronic medical devices: This lab involves the use of a Van de Graaff generator, which produces small amounts of electrical charge. They are regularly used in elementary schools, high schools, colleges, and science centers. They pose no risk to health or safety, except to students with pacemakers or other electronic medical devices. If you use a pacemaker or other electronic medical device, please contact the Lab Manager, Merita Haxhia at [email protected], IMMEDIATELY to make other arrangements for lab. It is very unlikely that you will be affected, but safety is our top priority. As long as you do not have this type of medical device, you have absolutely nothing to worry about. However, it is not recommended that you bring sensitive electronic equipment to this experiment. Pre-Lab: The Van de Graaff Generator A Bit of History The Van de Graaff generator is an electrostatic generator, capable of producing constant electric potential differences reaching about 10 million volts. The model that you will use (thankfully) only achieves about 1% of that. The term Van de Graaff electrostatic generator may sound a little foreign, but there is one electrostatic generator that you are no doubt familiar with: earth’s atmosphere. In fact, some of the most famous experiments in the history of electrostatics were done using the atmosphere. In May of 1752, Benjamin Franklin performed his well-known kite experiment, an experiment which strongly suggested that lightning might not be so different from the sparks he produced using silk and glass. -
Electrowetting Using a Microfluidic Kelvin Water Dropper
micromachines Article Electrowetting Using a Microfluidic Kelvin Water Dropper Elias Yazdanshenas 1, Qiang Tang 1,2 and Xiaoyu Zhang 1,* 1 Department of Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA; [email protected] (E.Y.); [email protected] (Q.T.) 2 State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics & Astronautics, Nanjing, Jiangsu 210016, China * Correspondence: [email protected]; Tel.: +1-757-683-4913 Received: 16 December 2017; Accepted: 22 February 2018; Published: 25 February 2018 Abstract: The Kelvin water dropper is an electrostatic generator that can generate high voltage electricity through water dripping. A conventional Kelvin water dropper converts the gravitational potential energy of water into electricity. Due to its low current output, Kelvin water droppers can only be used in limited cases that demand high voltage. In the present study, microfluidic Kelvin water droppers (MKWDs) were built in house to demonstrate a low-cost but accurately controlled miniature device for high voltage generation. The performance of the MKWDs was characterized using different channel diameters and flow rates. The best performed MKWD was then used to conduct experiments of the electrowetting of liquid on dielectric surfaces. Electrowetting is a process that has been widely used in manipulating the wetting properties of a surface using an external electric field. Usually electrowetting requires an expensive DC power supply that outputs high voltage. However, in this research, it was demonstrated that electrowetting can be conducted by simply using an MKWD. Additionally, an analytic model was developed to simulate the electrowetting process. Finally, the model’s ability to well predict the liquid deformation during electrowetting using MKWDs was validated. -
Experiment Using Electrostatic Motor
Experiment Using Electrostatic Motor 1. Learning Outcome In this sub-unit, we will perform experiment related to the attractive and repulsive forces of static electricity (Coulomb force) using the Electrostatic Motor (Franklin Motor) and Static Genecon. As the typical principle of static electricity, we will confirm the phenomena of electrostatic induction, attractive and repulsive forces. Let’s start our experiment for the sake of analyzing this phenomenon. 2. Historical Background In this sub-unit, we use an Electrostatic Motor, namely Franklin Motor, which was first invented by Benjamin Franklin and Andrew Gordon between 1740s and 1750s. Electrostatic Motor is based on the principles of electrostatic induction, attractive and repulsive force. Electrostatic Motor feature is operation with high voltage and low current. On the contrary, other types of (normal) motors can be operated with low voltage and large current, because their principle is electromagnetic induction. 3. Electrostatic Generator: “Static Genecon” We already know that if we rub piece of plastic with felt or different kind of cloth then static electricity will be generated. And we have in various ways confirmed properties of above mentioned way of generating static electricity. As a result, we have learned among other things as well, that electrostatic charge has two kinds. Furthermore, we can store static electricity because of the invention of Leyden jar and Electrophorus. By using them we can store greater 1 © Narika Corporation 2020 amount of static electricity, thus conducting experiments with large amount of static electricity. Because of that invention research about static electricity accelerated in the past. In 1929, Robert J. -
High Accuracy Electrometers
www.keithley.com HighHigh accuracyaccuracy electrometerselectrometers forfor lowlow current/highcurrent/high resistanceresistance applicationsapplications A GREATER MEASURE OF CONFIDENCE KEITHLEY INSTRUMENTS ARE AT WORK AROUND THE WORLD KEITHLEY INSTRUMENTS ARE AT 1EΩ 1PΩ µ 1TΩ 1 C 1GΩ 1nC 1MΩ 1kΩ 1pC 1Ω 6430 6517 6514 1mΩ 1fC Resistance Measurement Ranges 6514 6517A Charge Measurement Ranges 1kV 1A 1mA 1V 1µA 1nA 1mV 1pA 1fA 1µV 1aA 6430 6517/6514 6430 6517/6514 Voltage Measurement Ranges Current Measurement Ranges High performance electrometers MEASUREMENTS FAR BEYOND THE RANGE OF CONVENTIONAL INSTRUMENTATION MEASUREMENTS FAR Keithley has more than a half-century of experience in designing and producing sensitive instrumentation. As new testing requirements have evolved, we’ve developed dozens of different models to address our customers’ needs for higher resolution, accuracy, and sensitivity, as well as support for specific applications. Keithley electrometers are at work around the world in production test applications, industrial R&D centers, and university and government laboratories—wherever people need to make high precision current, voltage, resistance, or charge measurements. What is an electrometer? Why is low voltage burden critical? Essentially, an electrometer is a highly refined digital multimeter Voltage burden is the voltage that appears across the ammeter (DMM). Electrometers can be used for virtually any measurement input terminals when measuring. As Figure 1 illustrates, a DMM task that a conventional DMM can and offer the advantages of uses a shunt ammeter that requires voltage (typically 200mV) to very high input resistance when used as voltmeters, and ultra-low be developed across a shunt resistor in order to measure current.