Cepaea Nemoralis (Gastropoda, Helicidae): the Invited Invader Author(S): Maggie Whitson Source: Journal of the Kentucky Academy of Science, 66(2):82-88

Total Page:16

File Type:pdf, Size:1020Kb

Cepaea Nemoralis (Gastropoda, Helicidae): the Invited Invader Author(S): Maggie Whitson Source: Journal of the Kentucky Academy of Science, 66(2):82-88 Cepaea nemoralis (Gastropoda, Helicidae): The Invited Invader Author(s): Maggie Whitson Source: Journal of the Kentucky Academy of Science, 66(2):82-88. 2005. Published By: Kentucky Academy of Science DOI: http://dx.doi.org/10.3101/1098-7096(2006)66[82:CNGHTI]2.0.CO;2 URL: http://www.bioone.org/doi/full/10.3101/1098-7096%282006%2966%5B82%3ACNGHTI %5D2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. J. Ky. Acad. Sci. 66(2):82–88. 2005. Cepaea nemoralis (Gastropoda, Helicidae): The Invited Invader Maggie Whitson Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky 41099 ABSTRACT Marauding snails may not immediately come to mind when considering invasive species, but many non- native snails have successfully colonized the U.S. The wood snail, Cepaea nemoralis (L.), is one of the most striking of these introductions, due in part to its attractive shell coloration. This is one of the few snails that people have purposely introduced into their gardens. Several populations are now established in Kentucky, including a newly discovered population in Kenton County. The bright, striped or solid, yellow, pink, and brown shells of this species have long caught the eyes of natural historians and biologists. Populations of these snails are classic model systems for ecological genetics studies. While introduced populations of wood snails seem to have had only minor impact as agricultural pests, they may have the potential to competitively exclude some native species of snails. INTRODUCTION mer (1907) argued in support of recognizing Though snails may not be the speediest of C. hortensis, having observed several mixed beasts, several species have launched success- populations and noting that of the many snails ful invasions of the U.S. (Cowie and Robinson seen paired on tree trunks, he saw no ‘‘mat- 2001; Dundee 1974; Mead 1971). Perhaps the rimonial alliances between these two forms.’’ most glamorous of these invaders is the wood Current taxonomists also take this view, and snail, Cepaea nemoralis (L.). While many gas- the occasional hybrids produced by these spe- tropods rely on stealth and interstate shipping cies are sterile (Jones et al. 1977). Both taxa to fuel their spread, wood snails have another occur in the U.S., and though wood snails are weapon in their arsenals: charm. Their color- known to be introduced, there is disagreement ful shells (see Figure 1) are nearly irresistible on whether C. hortensis is native or was also to small children, nostalgic malacologists, and introduced from Europe (Burch 1962; Dun- many an evolutionary biologist. dee 1974; Jones et al. 1977; Mead 1971). TAXONOMY LIFE HISTORY AND NATIVE RANGE The wood snail belongs to the family Heli- Native to central and western Europe, wood cidae, which includes the bulk of the Euro- snails are widespread in disturbed habitats, pean edible snails. It is a Linnaean species de- from woodlands to fields and yards, but are scribed in 1758 and was originally Helix ne- also found on chalk cliffs and even coastal moralis, until Held established the genus Ce- dunes (Reeve 1863). They are known by a va- paea in 1837 (Abbott 1989). Currently, four riety of common names, the English ones in- species are included in the genus, of which C. cluding banded grove snail, banded wood nemoralis is the type. The specific epithet snail, brown-lipped snail, and girdled snail means ‘of the woods’ or ‘inhabiting woods/ (Abbott 1989; Reed 1964; Step 1901; Turton groves’ (Pilsbry 1939; Reeve 1863; Rimmer 1857). This species has been widely intro- 1907). duced and now has a nearly worldwide distri- Cepaea hortensis, the white-lipped grove bution (Abbott 1989). snail, is considered the sister species of C. ne- Wood snails are obligately outcrossing her- moralis (Jones et al. 1977). Historically, tax- maphrodites, with both individuals exchanging onomists often treated C. hortensis as a variant sperm during mating, and both individuals of C. nemoralis (Step 1901). The two species able to lay eggs afterward (Stine 1989). Like are primarily differentiated by lip color of the other members of the Helicidae, Cepaea snails shells, which seems a minor feature in light of have a bizarre courtship behavior in which the the fact that C. nemoralis is the most variably courting pair stabs each other with sharp, cal- colored species in its genus and perhaps even careous structures, aptly named darts, before among European land snails. However, Rim- mating (Abbott 1989; Pilsbry 1939). Wood 82 Cepaea nemoralis (Gastropoda. Helicidae)—Whitson 83 Figure 1. Shells of Cepaea nemoralis (L.), the wood snail, showing solid pink (left), solid yellow (top), and striped morphs. Note the brown lip characteristic of this species. These European snails have been introduced throughout the northeastern U.S. and occur in at least three counties of Kentucky. snails often mate multiple times prior to egg the aperture of the shell. The dark brown col- laying and can store sperm for up to 15 oration of this lip differentiates C. nemoralis months (Murray 1964). It is not unusual for from the similar C. hortensis. Shell color one clutch of eggs to include offspring from varies from yellow, to pinkish, brown, or oc- two different fathers (Murray 1964). Eggs are casionally even white (Step 1901; Turton buried in moist soil, hatching after about 3 1857). Shells are also generally augmented weeks (Abbott 1989). The snails reach matu- with 1–5 dark brown bands, though unstriped rity in 4 years and may live as long as 5–9 years shells are seen as well (Figure 2). Multiple col- (Abbott 1989; Jones et al. 1977). or variants are commonly found within the Like those of most land snails, wood snail same population. shells are dextral (spiraling to the right), Wood snails, feeding primarily at night, eat though rare sinistral individuals are sometimes a variety of plants, though they often prefer seen (Rimmer 1907; Turton 1857). Mature in- dead plant material to living, and may even dividuals of C. nemoralis reach 2–2.5 cm in forage on dead organisms such as worms or diameter and have five whorls to the shell other snails (Thompson 1996; Turton 1857). (Pilsbry 1939). When the snail reaches full size Among living plant materials, they prefer and ceases to grow, a reflexed lip forms around broad-leaved plants over the tougher grasses 84 Journal of the Kentucky Academy of Science 66(2) their shells on stones to get at the soft snail within. Other birds, including chickens, will sometimes eat wood snails (Howe 1898). Sev- eral snail predators are invertebrate organ- isms, including certain beetles, glowworm lar- vae (related to fireflies), and even predatory snails (Jones et al. 1977; Woodward 1913). Small mammals such as shrews, moles, and hedgehogs also enjoy these slow-moving mor- sels (Dees 1970; Reed 1964; Woodward 1913). SPREAD IN THE U.S. Since the arrival of Europeans, many spe- cies of molluscs have been both purposely and accidentally introduced into the U.S. In recent Figure 2. Typical five-striped wood snail morph. There years, the number one pathway for the intro- is such great variation in shell striping for this species that duction of new land snail species seems to be a coding system has been developed to catalogue it (Howe via infested horticultural materials (Cowie and 1898; Jones et al. 1977). Stripes are numbered from top to bottom. This shell would be coded 12345. A shell with Robinson 2001). Eggs and small individuals only the third stripe present (Figure 3) would be 00300. such as juveniles can be difficult to see when When partial or total fusion of bands is taken into account, intermixed with soil, mulch, or other plant ma- there are hundreds of possible variants. terial (Cowie and Robinson 2001). Many snail species can also self-fertilize or store sperm for up to a year after mating, so one over- which are common in their habitats, and avoid looked adult may be all it takes to pioneer an species with high concentrations of secondary invasion (Cowie and Robinson 2001; Thomp- compounds or physical defenses against her- son 1996). Wood snails specifically have also bivory such as hairs (Grime et al. 1968; been found by the USDA stuck to vehicles Thompson 1996). Oddly enough, they are said and military cargo (Dundee 1974). to particularly favor the leaves of stinging net- The helicid snails, which include C. nemor- tles (Step 1901). They are adaptable in the lab alis, have a somewhat more colorful history of or under cultivation and happily eat lettuce, introduction, as many of these were purposely carrots, fruit, pure cellulose filter paper, and established in new habitats (Dees 1970; Mead even (occasionally) mutton (Grime 1968; Judd 1971). Helicids, such as Helix pomatia, the 1953; Murray 1964; Sowerby 1825; Thompson French escargot, are often prized as choice co- 1996). mestibles. Many helicid introductions can be Though these snails lack operculums which traced back to the kitchen gardens of Euro- would allow them to close their shells, they pean immigrants desiring a renewable source have a relatively high drought tolerance due of snails (Mead 1971).
Recommended publications
  • Candidate Genes for Shell Colour Polymorphism in [I]Cepaea
    A peer-reviewed version of this preprint was published in PeerJ on 18 September 2017. View the peer-reviewed version (peerj.com/articles/3715), which is the preferred citable publication unless you specifically need to cite this preprint. Kerkvliet J, de Boer T, Schilthuizen M, Kraaijeveld K. 2017. Candidate genes for shell colour polymorphism in Cepaea nemoralis. PeerJ 5:e3715 https://doi.org/10.7717/peerj.3715 Candidate genes for shell colour polymorphism in Cepaea nemoralis Jesse Kerkvliet Corresp., 1 , Tjalf de Boer 2 , Menno Schilthuizen 3 , Ken Kraaijeveld 4, 5 1 Bio-informatics, University of Applied Sciences Leiden, Leiden, The Netherlands 2 MicroLife Solutions, Amsterdam, The Netherlands 3 Naturalis Biodiversity Center, Leiden, The Netherlands 4 Department of Ecological Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands 5 Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands Corresponding Author: Jesse Kerkvliet Email address: [email protected] The characteristic ground colour and banding patterns on shells of the land snail Cepaea nemoralis form a classic study system for genetics and adaptation. We use RNAseq analysis to identify candidate genes underlying this polymorphism. We sequenced cDNA from the body and the mantle (the shell-producing tissue) of four individuals of two phenotypes and produced a de novo transcriptome of 147,397 contigs. Differential expression analysis identified a set of 1,961 transcripts that were upregulated in mantle tissue. Sequence variant analysis resulted in a set of 2,592 transcripts with single nucleotide polymorphisms (SNPs) that differed consistently between the phenotypes. Combining these results yielded a set of 197 candidate transcripts, of which 38 were annotated.
    [Show full text]
  • Os Nomes Galegos Dos Moluscos
    A Chave Os nomes galegos dos moluscos 2017 Citación recomendada / Recommended citation: A Chave (2017): Nomes galegos dos moluscos recomendados pola Chave. http://www.achave.gal/wp-content/uploads/achave_osnomesgalegosdos_moluscos.pdf 1 Notas introdutorias O que contén este documento Neste documento fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas). En total, achéganse nomes galegos para 534 especies de moluscos. A estrutura En primeiro lugar preséntase unha clasificación taxonómica que considera as clases, ordes, superfamilias e familias de moluscos. Aquí apúntase, de maneira xeral, os nomes dos moluscos que hai en cada familia. A seguir vén o corpo do documento, onde se indica, especie por especie, alén do nome científico, os nomes galegos e ingleses de cada molusco (nalgún caso, tamén, o nome xenérico para un grupo deles). Ao final inclúese unha listaxe de referencias bibliográficas que foron utilizadas para a elaboración do presente documento. Nalgunhas desas referencias recolléronse ou propuxéronse nomes galegos para os moluscos, quer xenéricos quer específicos. Outras referencias achegan nomes para os moluscos noutras linguas, que tamén foron tidos en conta. Alén diso, inclúense algunhas fontes básicas a respecto da metodoloxía e dos criterios terminolóxicos empregados. 2 Tratamento terminolóxico De modo moi resumido, traballouse nas seguintes liñas e cos seguintes criterios: En primeiro lugar, aprofundouse no acervo lingüístico galego. A respecto dos nomes dos moluscos, a lingua galega é riquísima e dispomos dunha chea de nomes, tanto específicos (que designan un único animal) como xenéricos (que designan varios animais parecidos).
    [Show full text]
  • The Slugs of Bulgaria (Arionidae, Milacidae, Agriolimacidae
    POLSKA AKADEMIA NAUK INSTYTUT ZOOLOGII ANNALES ZOOLOGICI Tom 37 Warszawa, 20 X 1983 Nr 3 A n d rzej W ik t o r The slugs of Bulgaria (A rionidae , M ilacidae, Limacidae, Agriolimacidae — G astropoda , Stylommatophora) [With 118 text-figures and 31 maps] Abstract. All previously known Bulgarian slugs from the Arionidae, Milacidae, Limacidae and Agriolimacidae families have been discussed in this paper. It is based on many years of individual field research, examination of all accessible private and museum collections as well as on critical analysis of the published data. The taxa from families to species are sup­ plied with synonymy, descriptions of external morphology, anatomy, bionomics, distribution and all records from Bulgaria. It also includes the original key to all species. The illustrative material comprises 118 drawings, including 116 made by the author, and maps of localities on UTM grid. The occurrence of 37 slug species was ascertained, including 1 species (Tandonia pirinia- na) which is quite new for scientists. The occurrence of other 4 species known from publications could not bo established. Basing on the variety of slug fauna two zoogeographical limits were indicated. One separating the Stara Pianina Mountains from south-western massifs (Pirin, Rila, Rodopi, Vitosha. Mountains), the other running across the range of Stara Pianina in the^area of Shipka pass. INTRODUCTION Like other Balkan countries, Bulgaria is an area of Palearctic especially interesting in respect to malacofauna. So far little investigation has been carried out on molluscs of that country and very few papers on slugs (mostly contributions) were published. The papers by B a b o r (1898) and J u r in ić (1906) are the oldest ones.
    [Show full text]
  • Succineidae, Testacelloidea and Helicoidea
    Zootaxa 3721 (2): 157–171 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3721.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:71B4B001-FB10-4B99-ACF9-720131457534 The fossil pulmonate snails of Sandelzhausen (Early/Middle Miocene, Germany): Succineidae, Testacelloidea and Helicoidea RODRIGO BRINCALEPE SALVADOR Staatliches Museum für Naturkunde Stuttgart (Stuttgart, Germany). Mathematisch-Naturwissenschaftliche Fakultät, Eberhard Karls Universität Tübingen (Tübingen, Germany). E-mail: [email protected] Abstract Sandelzhausen is an Early/Middle Miocene (Mammal Neogene zone MN5) fossil site near Mainburg, S Germany, and despite its small size it harbors a rich fossil record. Hundreds of fossil continental mollusks, almost exclusively pulmo- nates snails, were recovered during the excavations, but never received due attention by researchers. Here, the second part of a formal taxonomical treatment of the fossil pulmonates from Sandelzhausen is presented, dealing with the superfam- ilies Succineoidea, Testacelloidea and Helicoidea, and including the description of a new hygromiid species. The follow- ing species were found in the material: Succinea minima (Succineidae); Palaeoglandina sp. (Spiraxidae); Testacella zellii (Testacellidae); Klikia cf. coarctata (Elonidae); Cepaea cf. eversa, Cepaea cf. sylvestrina and Tropidomphalus cf. incras- satus (Helicidae); ?Helicodonta sp. and Helicodontidae indet. (Helicodontidae); Leucochroopsis kleinii and Urticicola perchtae sp. nov. (Hygromiidae). Key words: Gastropoda, MN5 European Mammal Neogene zone, Pulmonata, Stylommatophora, Urticicola perchtae new species Introduction The Sandelzhausen fossil site is one of the most important continental sites in Europe (Moser et al. 2009a) and its bounty include hundreds of specimens of gastropods.
    [Show full text]
  • The Frog in Taffeta Pants
    Evolutionary Anthropology 13:5–10 (2004) CROTCHETS & QUIDDITIES The Frog in Taffeta Pants KENNETH WEISS What is the magic that makes dead flesh fly? himself gave up on the preformation view). These various intuitions arise natu- Where does a new life come from? manded explanation. There was no rally, if sometimes fancifully. The nat- Before there were microscopes, and compelling reason to think that what uralist Henry Bates observed that the before the cell theory, this was not a one needed to find was too small to natives in the village of Aveyros, up trivial question. Centuries of answers see. Aristotle hypothesized epigenesis, the Tapajos tributary to the Amazon, were pure guesswork by today’s stan- a kind of spontaneous generation of believed the fire ants, that plagued dards, but they had deep implications life from the required materials (pro- them horribly, sprang up from the for the understanding of life. The vided in the egg), that systematic ob- blood of slaughtered victims of the re- 5 phrase spontaneous generation has servation suggested coalesced into a bellion of 1835–1836 in Brazil. In gone out of our vocabulary except as chick. Such notions persisted for cen- fact, Greek mythology is full of beings an historical relic, reflecting a total turies into what we will see was the spontaneously arising—snakes from success of two centuries of biological critical 17th century, when the follow- Medusa’s blood, Aphrodite from sea- research.1 The realization that a new ing alchemist’s recipe was offered for foam, and others. Even when the organism is always generated from the production of mice:3,4 mix sweaty truth is known, we can be similarly one or more cells shed by parents ex- underwear and wheat husks; store in impressed with the phenomena of plained how something could arise open-mouthed jar for 21 days; the generation.
    [Show full text]
  • Fauna of New Zealand Ko Te Aitanga Pepeke O Aotearoa
    aua o ew eaa Ko te Aiaga eeke o Aoeaoa IEEAE SYSEMAICS AISOY GOU EESEAIES O ACAE ESEAC ema acae eseac ico Agicuue & Sciece Cee P O o 9 ico ew eaa K Cosy a M-C aiièe acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa EESEAIE O UIESIIES M Emeso eame o Eomoogy & Aima Ecoogy PO o ico Uiesiy ew eaa EESEAIE O MUSEUMS M ama aua Eiome eame Museum o ew eaa e aa ogaewa O o 7 Weigo ew eaa EESEAIE O OESEAS ISIUIOS awece CSIO iisio o Eomoogy GO o 17 Caea Ciy AC 1 Ausaia SEIES EIO AUA O EW EAA M C ua (ecease ue 199 acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 38 Naturalised terrestrial Stylommatophora (Mousca Gasooa Gay M ake acae eseac iae ag 317 amio ew eaa 4 Maaaki Whenua Ρ Ε S S ico Caeuy ew eaa 1999 Coyig © acae eseac ew eaa 1999 o a o is wok coee y coyig may e eouce o coie i ay om o y ay meas (gaic eecoic o mecaica icuig oocoyig ecoig aig iomaio eiea sysems o oewise wiou e wie emissio o e uise Caaoguig i uicaio AKE G Μ (Gay Micae 195— auase eesia Syommaooa (Mousca Gasooa / G Μ ake — ico Caeuy Maaaki Weua ess 1999 (aua o ew eaa ISS 111-533 ; o 3 IS -7-93-5 I ie 11 Seies UC 593(931 eae o uIicaio y e seies eio (a comee y eo Cosy usig comue-ase e ocessig ayou scaig a iig a acae eseac M Ae eseac Cee iae ag 917 Aucka ew eaa Māoi summay e y aco uaau Cosuas Weigo uise y Maaaki Weua ess acae eseac O o ico Caeuy Wesie //wwwmwessco/ ie y G i Weigo o coe eoceas eicuaum (ue a eigo oaa (owe (IIusao G M ake oucio o e coou Iaes was ue y e ew eaIa oey oa ue oeies eseac
    [Show full text]
  • Download Preprint
    1 Mobilising molluscan models and genomes in biology 2 Angus Davison1 and Maurine Neiman2 3 1. School of Life Sciences, University Park, University of Nottingham, NG7 2RD, UK 4 2. Department of Biology, University of Iowa, Iowa City, IA, USA and Department of Gender, 5 Women's, and Sexuality Studies, University of Iowa, Iowa, City, IA, USA 6 Abstract 7 Molluscs are amongst the most ancient, diverse, and important of all animal taxa. Even so, 8 no individual mollusc species has emerged as a broadly applied model system in biology. 9 We here make the case that both perceptual and methodological barriers have played a role 10 in the relative neglect of molluscs as research organisms. We then summarize the current 11 application and potential of molluscs and their genomes to address important questions in 12 animal biology, and the state of the field when it comes to the availability of resources such 13 as genome assemblies, cell lines, and other key elements necessary to mobilising the 14 development of molluscan model systems. We conclude by contending that a cohesive 15 research community that works together to elevate multiple molluscan systems to ‘model’ 16 status will create new opportunities in addressing basic and applied biological problems, 17 including general features of animal evolution. 18 Introduction 19 Molluscs are globally important as sources of food, calcium and pearls, and as vectors of 20 human disease. From an evolutionary perspective, molluscs are notable for their remarkable 21 diversity: originating over 500 million years ago, there are over 70,000 extant mollusc 22 species [1], with molluscs present in virtually every ecosystem.
    [Show full text]
  • Learning in the Land Snail (Helix Aspers a Mliller)*
    Bulletin of the Psychonomic Society 1974, Vol. 4 (SA), 476-478 Learning in the land snail (Helix aspers a Mliller)* R. K. SIEGEL and M. E. JARVIK Departments of Pharmacology and Psychiatry, University of California, Los Angeles Los Angeles, California 90024 A group of two experiments are discussed which demonstrate avoidance learning in land snails. Experiment I utilized the snail's negative geotaxis and its chemoreceptive characteristics and required the snail to climb a vertical pole which contained a quinine-saturated loop of thread at the top. Experiment II substituted electric shock loops for the quinine. Snails in both experimental groups manifested progressively increasing climbing latencies and avoidance responses throughout five successive training sessions and a one week retention test. Control animals which received noncontingent quinine or shock did not show evidence of learning. These results provide evidence of rapid avoidance learning in gastropod mollusks. Very few investigators have examined the problem of employed a pole-climbing response with quinine as an learning in snails (see reviews by Stephens & McGaugh, aversive stimulus at the top of the pole. These authors 1972; Willows, 1973). Early workers have suggested that demonstrated both short- and long-term memory of the these gastropods show evidence of classical conditioning aversive experience as well as habituation of the climbing (Thompson, 1917), maze learning (Garth & Mitchell, response itself with a neutral water stimulus. This 1926; Fischel, 1931), and habituation (Humphrey, learning appeared to be modifiable by length of 1930; Grindley, 1937). The phenomenon of classical laboratory housing, humidity, nutrition, and conditioning in snails has been recently reexamined by reproductive conditions.
    [Show full text]
  • Striped Whitelip Webbhelix Multilineata
    COSEWIC Assessment and Status Report on the Striped Whitelip Webbhelix multilineata in Canada ENDANGERED 2018 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2018. COSEWIC assessment and status report on the Striped Whitelip Webbhelix multilineata in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 62 pp. (http://www.registrelep-sararegistry.gc.ca/default.asp?lang=en&n=24F7211B-1). Production note: COSEWIC would like to acknowledge Annegret Nicolai for writing the status report on the Striped Whitelip. This report was prepared under contract with Environment and Climate Change Canada and was overseen by Dwayne Lepitzki, Co-chair of the COSEWIC Molluscs Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment and Climate Change Canada Ottawa, ON K1A 0H3 Tel.: 819-938-4125 Fax: 819-938-3984 E-mail: [email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le Polyspire rayé (Webbhelix multilineata) au Canada. Cover illustration/photo: Striped Whitelip — Robert Forsyth, August 2016, Pelee Island, Ontario. Her Majesty the Queen in Right of Canada, 2018. Catalogue No. CW69-14/767-2018E-PDF ISBN 978-0-660-27878-0 COSEWIC Assessment Summary Assessment Summary – April 2018 Common name Striped Whitelip Scientific name Webbhelix multilineata Status Endangered Reason for designation This large terrestrial snail is present on Pelee Island in Lake Erie and at three sites on the mainland of southwestern Ontario: Point Pelee National Park, Walpole Island, and Bickford Oak Woods Conservation Reserve.
    [Show full text]
  • Photoperiod and Temperature Interaction in the Helix Pomatia
    Photoperiod and temperature interaction in the determination of reproduction of the edible snail, Helix pomatia Annette Gomot Laboratoire de Zoologie et Embryologie, UA CNRS 687, Faculté des Sciences et Techniques et Centre Universitaire d'Héliciculture, Université de Franche-Comté, 25030 Besançon Cedex, France Summary. Snails were kept in self-cleaning housing chambers in an artificially con- trolled environment. Mating was frequent under long days (18 h light) and rare under short days (8 h light) regardless of whether the snails were kept at 15\s=deg\Cor 20\s=deg\C.An interaction between photoperiod and temperature was observed for egg laying. The number of eggs laid (45\p=n-\50/snail)and the frequency of egg laying (90\p=n-\130%)were greater in long than in short days (16\p=n-\35/snailand 27\p=n-\77%)but a temperature of 20\s=deg\C redressed, to some extent, the inhibitory effect of short days. At both temperatures only long photoperiods brought about cyclic reproduction over a period of 16 weeks, con- firming the synchronizing role of photoperiod on the neuroendocrine control of egg laying in this species of snail. Keywords: edible snail; mating; egg laying; photoperiod; temperature Introduction The effects of photoperiod and temperature, which influence most reproductive cycles of animals of temperate regions, have given rise to a certain number of observations for pulmonate gastropods. In basommatophorans, the influence of photoperiod and temperature on reproduction has been shown in four species of lymnaeids and planorbids (Imhof, 1973), in Melampus (Price, 1979), in Lymnaea stagnalis (Bohlken & Joosse, 1982; Dogterom et ai, 1984; Joosse, 1984) and in Bulinus truncatus (Bayomy & Joosse, 1987).
    [Show full text]
  • Abstract Volume
    ABSTRACT VOLUME August 11-16, 2019 1 2 Table of Contents Pages Acknowledgements……………………………………………………………………………………………...1 Abstracts Symposia and Contributed talks……………………….……………………………………………3-225 Poster Presentations…………………………………………………………………………………226-291 3 Venom Evolution of West African Cone Snails (Gastropoda: Conidae) Samuel Abalde*1, Manuel J. Tenorio2, Carlos M. L. Afonso3, and Rafael Zardoya1 1Museo Nacional de Ciencias Naturales (MNCN-CSIC), Departamento de Biodiversidad y Biologia Evolutiva 2Universidad de Cadiz, Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO) 3Universidade do Algarve, Centre of Marine Sciences (CCMAR) Cone snails form one of the most diverse families of marine animals, including more than 900 species classified into almost ninety different (sub)genera. Conids are well known for being active predators on worms, fishes, and even other snails. Cones are venomous gastropods, meaning that they use a sophisticated cocktail of hundreds of toxins, named conotoxins, to subdue their prey. Although this venom has been studied for decades, most of the effort has been focused on Indo-Pacific species. Thus far, Atlantic species have received little attention despite recent radiations have led to a hotspot of diversity in West Africa, with high levels of endemic species. In fact, the Atlantic Chelyconus ermineus is thought to represent an adaptation to piscivory independent from the Indo-Pacific species and is, therefore, key to understanding the basis of this diet specialization. We studied the transcriptomes of the venom gland of three individuals of C. ermineus. The venom repertoire of this species included more than 300 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIOXS. 227 AEEANGEMENT FAMILIES OF MOLLUSKS. PREPARED FOR THE SMITHSONIAN INSTITUTION BY THEODORE GILL, M. D., Ph.D. WASHINGTON: PUBLISHED BY THE SMITHSONIAN INSTITUTION, FEBRUARY, 1871. ^^1 I ADVERTISEMENT. The following list has been prepared by Dr. Theodore Gill, at the request of the Smithsonian Institution, for the purpose of facilitating the arrangement and classification of the Mollusks and Shells of the National Museum ; and as frequent applica- tions for such a list have been received by the Institution, it has been thought advisable to publish it for more extended use. JOSEPH HENRY, Secretary S. I. Smithsonian Institution, Washington, January, 1871 ACCEPTED FOR PUBLICATION, FEBRUARY 28, 1870. (iii ) CONTENTS. VI PAGE Order 17. Monomyaria . 21 " 18. Rudista , 22 Sub-Branch Molluscoidea . 23 Class Tunicata , 23 Order 19. Saccobranchia . 23 " 20. Dactjlobranchia , 24 " 21. Taeniobranchia , 24 " 22. Larvalia , 24 Class Braehiopoda . 25 Order 23. Arthropomata , 25 " . 24. Lyopomata , 26 Class Polyzoa .... 27 Order 25. Phylactolsemata . 27 " 26. Gymnolseraata . 27 " 27. Rhabdopleurse 30 III. List op Authors referred to 31 IV. Index 45 OTRODUCTIO^. OBJECTS. The want of a complete and consistent list of the principal subdivisions of the mollusks having been experienced for some time, and such a list being at length imperatively needed for the arrangement of the collections of the Smithsonian Institution, the present arrangement has been compiled for that purpose. It must be considered simply as a provisional list, embracing the results of the most recent and approved researches into the systematic relations and anatomy of those animals, but from which innova- tions and peculiar views, affecting materially the classification, have been excluded.
    [Show full text]