CART and IDC – Based Classification of Irrigated Agricultural Fields Using Multi-Source Satellite Data

Total Page:16

File Type:pdf, Size:1020Kb

CART and IDC – Based Classification of Irrigated Agricultural Fields Using Multi-Source Satellite Data GEOCARTO INTERNATIONAL, 2016 http://dx.doi.org/10.1080/10106049.2016.1232312 CART and IDC – based classification of irrigated agricultural fields using multi-source satellite data Virupakshagouda C. Patila,b, Khalid A. Al-Gaadia,c, Rangaswamy Madugundua , ElKamil Tolaa, Ahmed M. Zeyadaa, Samy Mareya and Chandrashekhar M. Biradard aPrecision Agriculture Research Chair, King Saud University, Riyadh, Saudi Arabia; bElectron Science Research Institute, Edith Cowan University, Joondalup, Australia; cDepartment of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia; dGeoinformatics Unit, International Center for Agricultural Research in the Dry Areas, Amman, Jordan ABSTRACT ARTICLE HISTORY To understand water productivity of crops cultivated in the Eastern Province Received 30 August 2015 of Saudi Arabia, this study was conducted to generate a reliable crop type Accepted 7 August 2016 map using a multi-temporal satellite data (ASTER, Landsat-8 and MODIS) and KEYWORDS crop phenology. Classification And Regression Tree (CART) and ISO-DATA Crop phenology; decision Cluster (IDC) classification techniques were utilized for the identification tree; spectral separability; of crops. The Ideal Crop Spectral Curves were generated and utilized for vegetation indices the formulation of CART decision rules. For IDC, the stacked images of the phenology-integrated Normalized Difference Vegetation Index were utilized for the classification. The overall accuracy of the classified maps of CART was 76, 77 and 81% for ASTER, MODIS and Landsat-8, respectively. For IDC, the accuracy was determined at 67, 63 and 60% for ASTER, MODIS and Landsat-8, respectively. The developed decision rules can be efficiently used for mapping of crop types for the same agro-climatic region of the study area. 1. Introduction Crop type mapping is a key factor for the efficient management of land and water resources (Biradar et al. 2009; Heller et al. 2012). Several researchers used crop type maps in various agricultural studies, such as cropping patterns based on crop water needs (Alzahrani et al. 2012), quantification of water use efficiency (Patil et al. 2015), irrigation management (Uddin et al. 2004), decisions on crop rotation (Biradar et al. 2008), nutrient management (Patil et al. 2014), yield forecasting (Ferencz et al. 2004) and economic policies and price optimization (Thornton et al. 1997; Wang et al. 2010). The use of satellite-based data-sets for studying agricultural fields and addressing resource man- agement strategies started in the 1990s (de Leeuw et al. 2010; Liaghat & Balasundram 2010). The remote sensing methods used to identify crop types mainly rely on the spectral signatures of crops (Sakamoto et al. 2005; Wardlow et al. 2007; Vincikova et al. 2010) and their temporal profiles of veg- etation indices (Xiao et al. 2005; Biradar & Xiao 2011). Due to the dynamic nature of the agricultural crops, the spectral reflectance of a crop may vary with respect to its phenology. On the other hand, the use of crop phenology-integrated spectral profiles improved the classification accuracy (Blaes et al. CONTACT Rangaswamy Madugundu [email protected] © 2016 Informa UK Limited, trading as Taylor & Francis Group 2 V. C. Patil et al. 2005; Zafar & Waqar 2014). For example, Pena-Barragan et al. (2011) achieved an overall accuracy of 79% in the classification of crops by incorporating phenology. Hence, the Ideal Crop Spectral Curves (ICSCs), which represent the phenology-integrated multi-spectral and multi-temporal profiles of a specific crop, are essential for the generation of an accurate crop type map. For the incorporation of the phenological changes in crop type mapping, the use of multi-temporal image analysis was found to be superior over single image analysis (Wardlow et al. 2007; Ozdogan 2010; Ozdogan et al. 2010; Foerster et al. 2012). However, during multi-temporal image analysis, the spectral reflectance of forage crops, such as alfalfa and Rhodes grass, can be influenced by the cutting schedule, which needs to be considered in discriminating agricultural crops (Yang et al. 2013). Classification of irrigated crops requires not only the detection of significant spectral differences, but also an algorithm that can successfully identify crops. In general, supervised (for example, the Classification And Regression Tree (CART)) and unsupervised (for example, ISO-DATA Cluster (IDC)) classification methods have been widely used to classify agricultural crops (Ahmad & Sufahani 2012). The CART method works on a sequence of binary decisions formulated in the classification strategy (Safavian & Landgrebe 1991). Depending on the decision rule, the first conditional statement leads to the second, the second to the third and so on (Friedl & Brodley 1997). However, a CART decision tree constructed to classify one data-set (e.g. Landsat-8) may not be able to classify another data-set (e.g. ASTER) due to the variation in the spectral profile or band width, where both data- sets do not cover exactly the same regions of the electromagnetic spectrum. On the other hand, the unsupervised IDC algorithm works via an iterative process through which it re-clusters the pixels to achieve relatively homogeneous groups separable in the spectral space (Ball & Hall 1965; Tou & Gonzalez 1977; Shen et al. 2009). The IDC requires a number of clusters and a number of additional user-supplied parameters as inputs to control the clustering process. Numerous studies used CART and IDC classification methods for the discrimination of land use and land cover classes (Hansen et al. 2000; Sesnie et al. 2008; Xie et al. 2008; Tooke et al. 2009; Punia et al. 2011). Most of the researchers used vegetation indices (Normalized Difference Vegetation Index (NDVI), EVI and SAVI) and crop phenology as a base for formulating the decision rules for crop type mapping (Sakamoto et al. 2005; Wardlow et al. 2007; Liu et al. 2014). In addition to vegetation indices, individual bands such as Red, NIR and SWIR were also utilized for crop separability and crop classification studies (Sharma et al. 1995; Dadhwal et al. 1996; Manjunath et al. 1998; Panigrahy et al. 2009; Mondal et al. 2014). A reliable crop type map provides vital information on cropping patterns for the efficient man- agement of agricultural inputs and available water resources. In view of the determination of crop water requirements, this study was carried out to generate a reliable crop type map by employing the CART and IDC classification techniques. The specific key objectives of the study were (i) to generate crop-specific ICSCs using a multi-temporal satellite data (ASTER, Landsat-8 and MODIS) and crop phenology, (ii) to classify and generate crop type maps utilizing the obtained ICSCs and (iii) to com- pare the accuracy of the CART and IDC classified maps. 2. Study area The study was carried out in Todhia Arable Farm (TAF), which spread across an area of 6967 ha with 47 agricultural fields (2400 ha) under centre pivot irrigation systems. Each field was about 50 ha. The TAF was located between Al-Kharj and Haradh cities in the Eastern Province of Saudi Arabia, within the latitudes of 24°10′22.77″ and 24°12′37.25″ N and longitudes of 47°56′14.60″ and 48°05′08.56″ E (Figure 1). The study area was under a dry continental climate with hot summers (40 ± 1.7 °C) and cold to moderate winters (15 ± 1.3 °C) with an average annual temperature of 35 °C. Tube wells located in the TAF were used to supply irrigation water to the cultivated fields. The major crops cultivated in the TAF were wheat, alfalfa, Rhodes grass, corn and barley. Geocarto International 3 Figure 1. Location map of Todhia Arable Farm in the eastern region of Saudi Arabia. 3. Data collection 3.1. Field data A reconnaissance survey was conducted to understand the cropping pattern of the TAF and to deter- mine the sampling approach for the development of classification strategies. Wheat and barley were cultivated during the winter season (November–April), while corn was grown twice a year (March–June and July–November). Rhodes grass and alfalfa were cultivated as biennial multi cut crops. In some instances, Rhodes grass was cultivated as a catch crop after the harvest of wheat or barley. Out of the 47 fields of the TAF, 11 fields (23%) were randomly selected and considered as sample plots. For the convenience of the study, the selected 11 fields were earmarked for ground truth data collection based on the area coverage of each crop (one field for wheat, one field for barley, three fields for corn, three fields for alfalfa and three fields for Rhodes grass). The sample plots were visited at frequent intervals (once in 16 ± 2 days) corresponding to the date of satellite over-pass (ASTER/ MODIS or Landsat-8) during the study period (February 2012–May 2014). From each sample plot, four to five homogeneous patches (>3 × 3 pixels) were identified and used to monitor the changes in the spectral reflectance with respect to crop phenology. The geo-location of each homogeneous patch was recorded, along with the field data, which included crop type, phenology and growth stage (Table 1). 3.2. Satellite imagery A total of 43 cloud-free images were acquired for the study, 15 (ASTER), 15 (MODIS) and 13 (Landsat-8). ASTER data were procured from the Japanese Space Centre (http://ims.aster.ersdac. jspacesystems.or.jp), while MODIS (MOD09A1) and Landsat-8 data were downloaded from the por- tal of the USGS Earth Explorer (http://earthexplorer.usgs.gov). The details of satellite data used in this study are provided in Table 2. The acquired images covered the entire growth period of wheat, barley and corn. However, for alfalfa and Rhodes grass, at least a complete growth cycle between two harvests was covered. 4. Methods In order to generate a reliable crop type map, agricultural crops were classified based on the response of phenology-integrated multi-spectral and multi-temporal profiles (i.e.
Recommended publications
  • Spatiotemporal Continuous Impervious Surface Mapping by Fusion of Landsat Time Series Data and Google Earth Imagery
    remote sensing Article Spatiotemporal Continuous Impervious Surface Mapping by Fusion of Landsat Time Series Data and Google Earth Imagery Rui Chen 1,2, Xiaodong Li 1,* , Yihang Zhang 1, Pu Zhou 1,2, Yalan Wang 1,2, Lingfei Shi 3 , Lai Jiang 4, Feng Ling 1 and Yun Du 1 1 Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; [email protected] (R.C.); [email protected] (Y.Z.); [email protected] (P.Z.); [email protected] (Y.W.); [email protected] (F.L.); [email protected] (Y.D.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Henan Agricultural University School of Resources and Environment, Zhengzhou 450002, China; [email protected] 4 Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430070, China; [email protected] * Correspondence: [email protected]; Tel./Fax: +86-27-6888-1075 Abstract: The monitoring of impervious surfaces in urban areas using remote sensing with fine spatial and temporal resolutions is crucial for monitoring urban development and environmental changes in urban areas. Spatiotemporal super-resolution mapping (STSRM) fuses fine-spatial-coarse- temporal remote sensing data with coarse-spatial-fine-temporal data, allowing for urban impervious surface mapping at both fine-spatial and fine-temporal resolutions. The STSRM involves two main steps: unmixing the coarse-spatial-fine-temporal remote sensing data to class fraction images, and Citation: Chen, R.; Li, X.; Zhang, Y.; downscaling the fraction images to sub-pixel land cover maps.
    [Show full text]
  • Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity
    Remote Sens. 2014, 6, 2282-2295; doi:10.3390/rs6032282 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity Matthew Blackett Centre for Disaster Management and Hazards Research, Coventry University, Priory Street, Coventry, CV1 5FB, UK; E-Mail: [email protected]; Tel.: +44-2476-887-692 Received: 18 October 2013; in revised form: 21 February 2014 / Accepted: 10 March 2014 / Published: 12 March 2014 Abstract: The Landsat-8 satellite of the Landsat Data Continuity Mission was launched by the National Aeronautics and Space Administration (NASA) in April 2013. Just weeks after it entered active service, its sensors observed activity at Paluweh Volcano, Indonesia. Given that the image acquired was in the daytime, its shortwave infrared observations were contaminated with reflected solar radiation; however, those of the satellite’s Thermal Infrared Sensor (TIRS) show thermal emission from the volcano’s summit and flanks. These emissions detected in sensor’s band 10 (10.60–11.19 µm) have here been quantified in terms of radiant power, to confirm reports of the actual volcanic processes operating at the time of image acquisition, and to form an initial assessment of the TIRS in its volcanic observation capabilities. Data from band 11 have been neglected as its data have been shown to be unreliable at the time of writing. At the instant of image acquisition, the thermal emission of the volcano was found to be 345 MW. This value is shown to be on the same order of magnitude as similarly timed NASA Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer thermal observations.
    [Show full text]
  • Year in Review 2013
    SM_Dec_2013 cover Worldwide Satellite Magazine December 2013 SatMagazine 2013 YEAR IN REVIEW SatMagazine December 2013—Year In Review Publishing Operations Senior Contributors This Issue’s Authors Silvano Payne, Publisher + Writer Mike Antonovich, ATEME Mike Antonovich Robert Kubbernus Hartley G. Lesser, Editorial Director Tony Bardo, Hughes Eran Avni Dr. Ajey Lele Richard Dutchik Dave Bettinger Tom Leech Pattie Waldt, Executive Editor Chris Forrester, Broadgate Publications Don Buchman Hartley Lesser Jill Durfee, Sales Director, Editorial Assistant Karl Fuchs, iDirect Government Services Eyal Copitt Timothy Logue Simon Payne, Development Director Bob Gough, 21 Carrick Communications Rich Currier Jay Monroe Jos Heyman, TIROS Space Information Tommy Konkol Dybvad Tore Morten Olsen Donald McGee, Production Manager David Leichner, Gilat Satellite Networks Chris Forrester Kurt Peterhans Dan Makinster, Technical Advisor Giles Peeters, Track24 Defence Sima Fishman Jorge Potti Bert Sadtler, Boxwood Executive Search Simen K. Frostad Sally-Anne Ray David Gelerman Susan Sadaat Samer Halawi Bert Sadtler Jos Heyman Patrick Shay Jack Jacobs Mike Towner Casper Jensen Serge Van Herck Alexandre Joint Pattie Waldt Pradman Kaul Ali Zarkesh Published 11 times a year by SatNews Publishers 800 Siesta Way Sonoma, CA 95476 USA Phone: (707) 939-9306 Fax: (707) 838-9235 © 2013 SatNews Publishers We reserve the right to edit all submitted materials to meet our content guidelines, as well as for grammar or to move articles to an alternative issue to accommodate publication space requirements, or removed due to space restrictions. Submission of content does not constitute acceptance of said material by SatNews Publishers. Edited materials may, or may not, be returned to author and/or company for review prior to publication.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Spire's Cubesat Constellation of GNSS, AIS, and ADS-B Sensors
    Seizing Opportunity: Spire’s CubeSat Constellation of GNSS, AIS, and ADS-B Sensors Dallas Masters, Director of GNSS, Spire Global, Inc. Stanford PNT Symposium, 2018-11-08 WHO & WHAT IS SPIRE? We’re a new, innovative satellite & data services company that you might not have heard of… We’re what you get when you mix agile development with nanosatellites... We’re the transformation of a single , crowd-sourced nanosatellite into one of the largest constellations of satellites in the world... Stanford PNT Symposium, 2018-11-08 OUTLINE 1. Overview of Spire 2. Spire satellites and PNT payloads & products a. AIS ship tracking b. GNSS-based remote sensing measurements: radio occultation (RO), ionosphere electron density, bistatic radar (reflections) c. ADS-B aircraft tracking (early results) 3. Spire’s lofty long-term goals Stanford PNT Symposium, 2018-11-08 AN OVERVIEW OF SPIRE Stanford PNT Symposium, 2018-11-08 SPIRE TODAY • 150 people across five offices (a distributed start-up) - San Francisco, Boulder, Glasgow, Luxembourg, and Singapore • 60+ LEO 3U CubeSats (10x10x30 cm) in orbit with passive sensing payloads, 30+ global ground stations - 16 launch campaigns completed with seven different launch providers - Ground station network owned and operated in-house for highest level of security and resilience • Observing each point on Earth 100 times per day, everyday - Complete global coverage, including the polar regions • Deploying new applications within 6-12 month timeframes • World’s largest ship tracking constellation • World’s largest weather
    [Show full text]
  • Landsat Data Continuity Mission (LDCM)
    National Aeronautics and Space Administration —PHOTO BY NASA Landsat Data Continuity Mission (LDCM) VOLUME 11, NUMBER 3 | SUMMER 2013 IN THIS ISSUE: 2 From the Chief 16 SBIR/STTR Success Story 3 Landsat Data Continuity Mission 18 Patenting Perspectives 5 Applications for Landsat Data 20 Networking and Outreach 9 Interview with Dr. James Irons and 23 NASA Goddard in the News Dr. Murzy Jhabvala 25 Disclosures and Patents 13 Landsat Technology Transfer NASA Goddard Tech Transfer News | volume 11, number 3 | summer 2013 [ 1 Landsat 8 [ FROM THE Chief Nona Cheeks Landsat represents a highly visible and compelling success story, both for NASA in general and NASA Goddard Space Flight Center in particular. Since the launch of Landsat 1 in 1972, this ongoing program has provided an incomparable wealth of data about the land surface of our planet. A complete review of all the benefi ts Landsat has provided to humanity over the years would require far more space than we have available to us here; a few examples include climate research, environmental monitoring, agriculture, and disaster recovery just to name a few. The Landsat Data Continuity Mission (LDCM) is the latest satellite in the Landsat series. Successfully launched on February 11, 2013, LDCM – which is now known throughout the world as Landsat 8 – carries onboard two primary instruments, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The former observes the Earth in visible light, while the latter operates in the infrared. These instruments signifi cantly enhance Landsat’s ability to collect and process vast amounts of high-quality data.
    [Show full text]
  • Processing Image to Geographical Information Systems (PI2GIS)—A Learning Tool for QGIS
    education sciences Article Processing Image to Geographical Information Systems (PI2GIS)—A Learning Tool for QGIS Rui Correia 1 ID , Lia Duarte 1,2,* ID , Ana Cláudia Teodoro 1,2 ID and António Monteiro 3 ID 1 Department of Geosciences, Environment and Land Planning, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; [email protected] (R.C.); [email protected] (A.C.T.) 2 Earth Sciences Institute (ICT), Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal 3 Research Center in Biodiversity and Genetic Resources, University of Porto, 4169-007 Porto, Portugal; [email protected] * Correspondence: [email protected] Received: 26 April 2018; Accepted: 31 May 2018; Published: 6 June 2018 Abstract: Education, together with science and technology, is the main driver of the progress and transformations of a country. The use of new technologies of learning can be applied to the classroom. Computer learning supports meaningful and long-term learning. Therefore, in the era of digital society and environmental issues, a relevant role is provided by open source software and free data that promote universality of knowledge. Earth observation (EO) data and remote sensing technologies are increasingly used to address the sustainable development goals. An important step for a full exploitation of this technology is to guarantee open software supporting a more universal use. The development of image processing plugins, which are able to be incorporated in Geographical Information System (GIS) software, is one of the strategies used on that front. The necessity of an intuitive and simple application, which allows the students to learn remote sensing, leads us to develop a GIS open source tool, which is integrated in an open source GIS software (QGIS), in order to automatically process and classify remote sensing images from a set of satellite input data.
    [Show full text]
  • Characterization of Landsat-7 to Landsat-8 Reflective Wavelength And
    *Revised Manuscript with no Changes Highlighted Click here to download Revised Manuscript with no Changes Highlighted: rev_rev_L7_L8_paper_Royetal.docx 1 Characterization of Landsat-7 to Landsat-8 reflective wavelength and 2 normalized difference vegetation index continuity 3 Roy, D.P. 1, Kovalskyy, V.1, Zhang, H.K. 1, Vermote, E.F. 2, 4 Yan, L. 1, Kumar, S.S. 1, Egorov, A. 1 5 6 1 Geospatial Science Center of Excellence, 7 South Dakota State University Brookings, SD 57007, USA 8 2 NASA Goddard Space Flight Center, 9 Terrestrial Information Systems Branch, MD 20771, USA 10 11 At over 40 years, the Landsat satellites provide the longest temporal record of space-based land 12 surface observations, and the successful 2013 launch of the Landsat-8 is continuing this legacy. 13 Ideally, the Landsat data record should be consistent over the Landsat sensor series. The 14 Landsat-8 Operational Land Imager (OLI) has improved calibration, signal to noise 15 characteristics, higher 12-bit radiometric resolution, and spectrally narrower wavebands than the 16 previous Landsat-7 Enhanced Thematic Mapper (ETM+). Reflective wavelength differences 17 between the two Landsat sensors depend also on the surface reflectance and atmospheric state 18 which are difficult to model comprehensively. The orbit and sensing geometries of the Landsat- 19 8 OLI and Landsat-7 ETM+ provide swath edge overlapping paths sensed only one day apart. 20 The overlap regions are sensed in alternating backscatter and forward scattering orientations so 21 Landsat bi-directional reflectance effects are evident but approximately balanced between the 22 two sensors when large amounts of time series data are considered.
    [Show full text]
  • Investigating the Potential of Landsat 8 OLI Satellite Imagery for Geological Mapping in Namibia
    Investigating the Potential of Landsat 8 OLI Satellite Imagery for Geological Mapping in Namibia Landsat 5-7(1999-2011) and especially Landsat 8 (2013+) offer new potential for Landsat 8 Operational Land Landsat 7 Enhanced Thematic Mapper Plus Imager (OLI) and (ETM+) spectral mapping of lithologies and structures. Reference spectral graphs for individual Only two academic papers relating to geological remote sensing in Namibia have Thermal Infrared Sensor (TIRS) been published (Lord et al., 1996, Gomez et al., 2005) despite the complex and minerals have been available for decades (Hunt and Salisbury 1970) but the spectral Wavelength Resolution Wavelength Resolution Bands Bands discrimination of rocks with variable types and quantities of mineral, variable varied geology, cloud free atmospheres, and the almost ideal surface conditions of (micrometres) (metres) (micrometres) (metres) Band 1 - Coastal 0.43 - 0.45 30 weathering, surface crusts, hybrids of rock types (shaly limestones) and frequently bedrock exposure. These two publications used moderate resolution sensors, aerosol Band 1 - blue 0.45-0.52 30 Landsat MSS (1972-82, 4 - 8 spectral bands - VIS/VNIR, 80m pixels) – and ASTER Band 2 - Blue 0.45 - 0.51 30 Band 2 - green 0.52-0.60 30 altering atmospheres is problematical for lithological discrimination. The capacity to Band 3 - Green 0.53 - 0.59 30 Band 3 - red 0.63-0.69 30 perform spectral mapping or spectral stratigraphy(Prost,1994) can assist field Band 4 – near ( 2000+ complex 14 spectral bands - VNIR/SWIR/TIR s 15-90m spatial resolution). Band 4 - Red 0.64 - 0.67 30 0.77-0.90 30 Infrared (NIR) mapping by using a mixture of spectral reflectance (colour), brightness and erosional Band 5 - Near 0.85 - 0.88 30 Band 5 - SWIR 1.55-1.75 30 Infrared (NIR) texture associated with lithologies.
    [Show full text]
  • IFC-AMC Motion to Dismiss
    Case 1:17-cv-01494-VAC-SRF Document 34-1 Filed 02/16/18 Page 1 of 1 PageID #: 1030 IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE JUANA DOE I et al., § § Plaintiffs, § § vs. § § C.A. No. 17-1494-VAC-SRF IFC ASSET MANAGEMENT COMPANY, § LLC, § § Defendant. § [PROPOSED] ORDER WHEREAS, Defendant IFC Asset Management Company, LLC, having moved to dismiss the claims in Plaintiff Juana Doe I et al.’s Complaint (D.I. 1); and, WHEREAS, the Court having considered the briefs and arguments in support of and in opposition to said Motion; IT IS HEREBY ORDERED this _______ day of ____________, 2018, that the Motion is GRANTED. Plaintiffs’ Complaint is dismissed with prejudice. _______________________________ United States District Judge RLF1 18887565v.1 Case 1:17-cv-01494-VAC-SRF Document 34-1 Filed 02/16/18 Page 1 of 1 PageID #: 1030 IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE JUANA DOE I et al., § § Plaintiffs, § § vs. § § C.A. No. 17-1494-VAC-SRF IFC ASSET MANAGEMENT COMPANY, § LLC, § § Defendant. § [PROPOSED] ORDER WHEREAS, Defendant IFC Asset Management Company, LLC, having moved to dismiss the claims in Plaintiff Juana Doe I et al.’s Complaint (D.I. 1); and, WHEREAS, the Court having considered the briefs and arguments in support of and in opposition to said Motion; IT IS HEREBY ORDERED this _______ day of ____________, 2018, that the Motion is GRANTED. Plaintiffs’ Complaint is dismissed with prejudice. _______________________________ United States District Judge RLF1 18887565v.1 Case 1:17-cv-01494-VAC-SRF Document 35 Filed 02/16/18 Page 1 of 51 PageID #: 1031 IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE JUANA DOE I et al., § § Plaintiffs, § § vs.
    [Show full text]
  • Quantification of Surface Water Volume Changes in the Mackenzie Delta
    Hydrol. Earth Syst. Sci., 22, 1543–1561, 2018 https://doi.org/10.5194/hess-22-1543-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License. Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data Cassandra Normandin1, Frédéric Frappart2,3, Bertrand Lubac1, Simon Bélanger4, Vincent Marieu1, Fabien Blarel3, Arthur Robinet1, and Léa Guiastrennec-Faugas1 1EPOC, UMR 5805, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France 2GET-GRGS, UMR 5563, CNRS/IRD/UPS, Observatoire Midi-Pyrénées, 31400 Toulouse, France 3LEGOS-GRGS, UMR 5566, CNRS/IRD/UPS, Observatoire Midi-Pyrénées, 31400 Toulouse, France 4Dép. Biologie, Chimie et Géographie, groupe BOREAS and Québec-Océan, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Qc, G5L 3A1, Canada Correspondence: Cassandra Normandin ([email protected]) Received: 22 March 2017 – Discussion started: 29 May 2017 Revised: 5 December 2017 – Accepted: 11 January 2018 – Published: 28 February 2018 Abstract. Quantification of surface water storage in exten- the surface water extents are produced. Results indicate a sive floodplains and their dynamics are crucial for a bet- high variability of the water height magnitude that can reach ter understanding of global hydrological and biogeochemi- 10 m compared to the lowest water height in the upstream cal cycles. In this study, we present estimates of both surface part of the delta during the flood peak in June. Furthermore, water extent and storage combining multi-mission remotely the total surface water volume is estimated and shows an sensed observations and their temporal evolution over more annual variation of approximately 8.5 km3 during the whole than 15 years in the Mackenzie Delta.
    [Show full text]
  • PROBA-V Satellite for Global Vegetation Monitoring Stefan Livens
    Comparison between Landsat-8 OLI and PROBA-V over Libya-4 Pseudo Invariant Calibration Site (PICS) Stefan Adriaensen(1), Mishra Nischal(2), Sindy Sterckx(1), Dennis Helder(2) (1) Vito, BELGIUM (2) South Dakota State University, USA Libya 4 scene with Region Of Interest PV Instrument Landsat 8 OLI and PROBA-V Sensor intercomparison is a technique often used for vicarious calibration. It is essential to estimate the performance of a spectral instrument with respect to others. Different initiatives exist, like the ESA/CEOS IVOS intercomparison workgroup, giving calibration and validation teams the opportunity to intercompare methods and sensors [1]. It is obvious to make a comparison between instruments that have equal or even overlapping response curves. With the Landsat8 OLI and PROBA-V instruments, such overlap is present for three visible (BLUE, RED,NIR) and one SWIR band. Direct comparison of both instruments is done using the OSCAR desert method. For OLI, the model of the South Dakota State University applied to all bands, as well the OSCAR method. The comparison has been done over the so called Lybia-4 PICS site. It is a well known site, often used for vicarious calibration. Figure 1 : overlapping RSR for PV and OLI. Comparison of both models applied to OLI Comparison between PROBA-V and OLI using OSCAR Method Method The method used in the comparison between PROBA-V and OLI is described in [2] and is part of the This empirical method is described in [4] and [5] and uses Terra MODIS as a calibrated radiometer OSCAR facilities developed at Vito [3].
    [Show full text]