May 2007 [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Leaf Anatomy and C02 Recycling During Crassulacean Acid Metabolism in Twelve Epiphytic Species of Tillandsia (Bromeliaceae)
Int. J. Plant Sci. 154(1): 100-106. 1993. © 1993 by The University of Chicago. All rights reserved. 1058-5893/93/5401 -0010502.00 LEAF ANATOMY AND C02 RECYCLING DURING CRASSULACEAN ACID METABOLISM IN TWELVE EPIPHYTIC SPECIES OF TILLANDSIA (BROMELIACEAE) VALERIE S. LOESCHEN,* CRAIG E. MARTIN,' * MARIAN SMITH,t AND SUZANNE L. EDERf •Department of Botany, University of Kansas, Lawrence, Kansas 66045-2106; and t Department of Biological Sciences, Southern Illinois University, Edwardsville, Illinois 62026-1651 The relationship between leaf anatomy, specifically the percent of leaf volume occupied by water- storage parenchyma (hydrenchyma), and the contribution of respiratory C02 during Crassulacean acid metabolism (CAM) was investigated in 12 epiphytic species of Tillandsia. It has been postulated that the hydrenchyma, which contributes to C02 exchange through respiration only, may be causally related to the recently observed phenomenon of C02 recycling during CAM. Among the 12 species of Tillandsia, leaves of T. usneoides and T. bergeri exhibited 0% hydrenchyma, while the hydrenchyma in the other species ranged from 2.9% to 53% of leaf cross-sectional area. Diurnal malate fluctuation and nighttime atmospheric C02 uptake were measured in at least four individuals of each species. A significant excess of diurnal malate fluctuation as compared with atmospheric C02 absorbed overnight was observed only in T. schiedeana. This species had an intermediate proportion (30%) of hydrenchyma in its leaves. Results of this study do not support the hypothesis that C02 recycling during CAM may reflect respiratory contributions of C02 from the tissue hydrenchyma. Introduction tions continue through fixation of internally re• leased, respired C02 (Szarek et al. -
General Information Bromeliaceae Family
General Information Bromeliads are a unique and fascinating family of hundreds of extremely diversified and exotic plants, which are amazingly adaptable, tough and relatively easy to grow. People often say that Bromeliads thrive on neglect. The species can tolerate a huge variety of growing conditions including heat, light, air and moisture. No Bromeliads are native to Australia and therefore have all been imported and introduced here. The plants are native to the Southern States of the USA, Central America and deep into South America, with regions like Florida, Mexico, the West Indies, parts of Brazil and as far south as Chile having many and various species. One very primitive species is also found in Africa and has survived since the two continents separated. Bromeliaceae Family The entire bromeliad family called Bromeliaceae, is divided into three subfamilies containing many genera, with the Bromelioideae and Tillandsioideae subfamilies being the most popular bromeliads for enthusiasts and collectors. The subfamily Bromelioideae is distributed from Mexico to Argentina and has the greatest number of genera. They are mostly epiphytic, tank-type plants with spiny leaves and berry-like fruit containing wet seeds. The subfamily Pitcairnioideae are the most primitive bromeliads, descended from the grass family. Nearly all are terrestrial. Most have spiny leaves. The seeds are dry and usually winged. The subfamily Tillandsioideae has few genera, but includes about half of the species of bromeliads. Growing throughout the Americas, they are mostly epiphytes. All have spineless leaves. Seeds are dry, with feathery "parachutes" and are blown and float in the wind. The most notable and commercially developed of the family is the edible pineapple (Ananus comosus). -
Filogenia De Tillandsia Subgen. Diaphoranthema Y Evolución De La Autogamia Y La Poliembrionía
Tesis Doctoral Filogenia de Tillandsia subgen. Diaphoranthema y evolución de la autogamia y la poliembrionía Donadío, Sabina 2013-03-21 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Donadío, Sabina. (2013-03-21). Filogenia de Tillandsia subgen. Diaphoranthema y evolución de la autogamia y la poliembrionía. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Donadío, Sabina. "Filogenia de Tillandsia subgen. Diaphoranthema y evolución de la autogamia y la poliembrionía". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2013-03-21. Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Ecología, Genética y Evolución Filogenia de Tillandsia subgen. Diaphoranthema y evolución de la autogamia y la poliembrionía Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área: CIENCIAS BIOLOGICAS Sabina Donadío Director de tesis: Dr. Raúl Ernesto Pozner Directora Asistente: Dra. Liliana Mónica Giussani Consejera de estudios: Dra. Viviana A. -
Bromeletter the Official Journal of the Bromeliad Society of Australia Inc
BROMELETTER THE OFFICIAL JOURNAL OF THE BROMELIAD SOCIETY OF AUSTRALIA INC. bromeliad.org.au Vol. 55 No. 3, May - June 2017. CONTENTS Management Details - - - - 2, 3, 18, 22. Plant of the Month Competition, MDAC March - - 4-5. 2017 Events Diary - - - - - 4. Meeting News March - - - - - 6-8. The Tillandsioideae DNA Project - 9-10, 16-17, 19-20, 23. BSA 2017 Autumn Show - - - - 11. Quilling in Bromeliads: Kerry McNicol - - - 12-13. Bromeliad Crossword Solution - - - - 13. Plant of the Month Competition, MDAC April - - 14-15. Meeting News April - - - - - 15. New Members - - - - - - 18. Seed Bank - - - - - - 22. Time is running out to RENEW your 2017 MEMBERSHIP Members who have not renewed by the end of the Autumn Show will become unfinancial. Please renew at the Autumn Show and remember to update any details which have changed. The Membership Renewal form can be found online at www.bromeliad.org.au BROMELETTER is published bi-monthly at Sydney by The Bromeliad Society of Australia Incorporated. Deadlines for articles: 15th of February, April, June, August, October and December. To allow for publishing in the first week of March, May, July, September, November and January. 2 COMMITTEE President Ian Hook 0408 202 269 ([email protected]) Vice President (1) Kerry McNicol 0439 998 049 & Assistant Editor ([email protected]) Vice President (2) Meryl Thomas 0401 040 762 & Editor ([email protected]) Secretary Carolyn Bunnell 02 9649 5762 Treasurer Alan Mathew 02 9516 5976 Member Helga Nitschke 0447 955 562 Member Pat Sharpley 0439 672 826 Member Bob Sharpley 0409 361 778 Member Joy Clark 02 4572 3545 Member John Noonan 02 9627 5704 Member Ron Farrugia 02 9533 2546 BROMELIAD SOCIETIES AFFILIATED WITH THE BROMELIAD SOCIETY OF AUSTRALIA INC. -
Entry Worksheet - Bromeliad Society of South Florida
BromeliAdvisory March 2017 InThis Issue President’s Message . 2 Michalski’s Suggestions for Show . 2 The Show is Just Around the Corner . 3-5 In Case You Missed It . 6 Upcoming Events . 6-7 News From Florida Council . 7 Murder in Corbin . 7-8 Renewal of Membership Form . 9 Show Entry Sheet . 10 BromeliAdvisory Stop and Smell the Bromeliads March 2017 MARCH 21, 2017 WEBPAGE: http://www.bssf-miami.org/ SPEAKER: Dave Johnston http://www.facebook.com/groups/BromeliadS RAFFLE TABLE: Barbara Partagas SF/?bookmark_t=group FOOD: Usual Suspects http://www.facebook.com/pages/Bromeliad-S ociety-of-South-Florida/84661684279 Alex Bello, President Dave Johnston Sandy Roth, VP Dave’s interest in Bromeliads began in 1985 when he Fred Sussenberger, Treasurer purchased two bromeliads that Frank’s Lenny Goldstein, Secretary nursery had for sale. A cryptanthus Pink _________________ Starlight and a neoregelia carolinae type. DIRECTORS Soon thereafter, he learned there were Past Pres.: Sandy Roth bromeliad clubs that shared similar Directors: interests. He joined some. By 1990, Barbara Sparling ’16 –’17 Dave had acquired so many bromeliads Karen Bradley ’17 –’18 that he launched Bromeliads Galore – a Ellis Brown’17 –’18 collector’s nursery. Stephanie LaRusso ‘17-‘18 Over the past 32 years, Dave has Editor: Robert Meyer acquired over 2,000 different species and hybrids. As time passes, he became more sensible and has since significantly scaled back the number of plants – now he Advertising: Robert Meyer has perhaps 1200 different species or hybrids. Door Prize: Alan Herndon Education: Alan Herndon Dave has served five terms as President of The Bromeliad Hospitality: Elaine Mills Guild of Tampa and two terms as President of the Florida Library: Barbara Partagas West Coast Bromeliad Society. -
Catalogue of the Vascular Epiphytic Flora of Uruguay
Acta Botanica Brasilica doi: 10.1590/0102-33062019abb0059 Catalogue of the vascular epiphytic flora of Uruguay Patricia Mai1* , Andrés Rossado2 , José Mauricio Bonifacino2,3 and Jorge Luiz Waechter4 Received: February 21, 2019 Accepted: June 17, 2019 . ABSTRACT We provide an updated list of the vascular epiphytic flora occurring in native environments of Uruguay based on literature review, herbarium specimens, and fieldwork throughout the country. The catalogue provides standardized information for each species, including accepted name, synonyms used within Uruguay, epiphytic category, distribution within the country, habitat, conservation status, observations, and a voucher citation. The effort documented 73 species for the epiphytic flora of Uruguay (3 % of the flora), distributed among 29 genera and 12 families. Bromeliaceae was the richest family (17), followed by Polypodiaceae (16) and Orchidaceae (12). Tillandsia stood out as the most speciose genus with 15 species. Characteristic holoepiphytes was the most diverse ecological category. More than half of the epiphytic species documented for Uruguay (53 %) reach their southernmost geographic distribution in the country, whereas only two mostly epipetric species of Tillandsia — T. arequitae and T. uruguayensis — are endemic to the country. Almost half of the epiphytic species found are presently under categories of threat of extinction, with 60 % of them occurring in national protected areas. Both the richest epiphytic families and the predominance of characteristic holoepiphytes coincide with findings from floristic and ecological studies previously carried out in humid subtropical regions. Keywords: conservation status, epiphytic category, geographic distribution, hemiepiphytes, holoepiphytes, subtropical forests, Uruguay, vascular epiphytes The most recent estimation of vascular epiphytes in the Introduction world reports 27,614 species, distributed in 73 families and 913 genera. -
February 2017 P.O
S.F.V.B.S. SAN FERNANDO VALLEY BROMELIAD SOCIETY FEBRUARY 2017 P.O. BOX 16561, ENCINO, CA 91416-6561 sfvbromeliad.homestead.com [email protected] Elected OFFICERS & Volunteers Pres: Bryan Chan and Carole Scott V.P.: John Martinez Secretary: Leni Koska Treasurer: Mary Chan Membership: Joyce Schumann Advisors/Directors: Steve Ball, Bryan Chan, Richard Kaz –fp, Mike Wisnev Sunshine Chair: Georgia Roiz, Web: Mike Wisnev, Editors: Mike Wisnev & Mary K., Snail Mail: Nancy P-Hapke next meeting: Saturday Feb. 4, 2017 @ 10:00 am Sepulveda Garden Center 16633 Magnolia Blvd. Encino, California 91316 AGENDA 9:30 – SET UP & SOCIALIZE 11:15 - Refreshment Break and Show and Tell: 10:00 - Door Prize – one member who Will the following members please provide arrives before 10:00 gets a Bromeliad refreshments this month: Stacey Phelps, Chris 10:05 -Welcome Visitors and New Members. Rogers, Georgia Roiz, Joyce Schumann Make announcements and Introduce Speaker &Rosemary Polito, ,Carole Scott, Jane Shultz, Raquel Smith, Peter Speciale, Scott 10:15 –SpeakerTom Glavich Spreckman, Vuthya Suor Program: “The High Drakensberg in and anyone else who has a snack they would like Summer” Tom Glavich is a long time grower of to share. If you can’t contribute this month don’t bulbs and succulent plants including some stay away…. just bring a snack next time you bromeliads. He is a member of the Board of come. Directors of the Cactus and Succulent Society of Questions about refreshments? Call Mary K. America and author of the Beginner's Guide series (818-705-4728) Leave message - she will call back. -
Bromeliads Bromeliads Are a Family of Plants (Bromeliaceae, the Pineapple Family) Native to Tropical North and South America
A Horticulture Information article from the Wisconsin Master Gardener website, posted 19 March 2012 Bromeliads Bromeliads are a family of plants (Bromeliaceae, the pineapple family) native to tropical North and South America. Europeans fi rst found out about bromeliads on Columbus’ second trip to the New World in 1493, where the pineapple (Ananas sp.) was being cultivated by the Carib tribe in the West Indies. The commercial pineapple (Ananas comosus) is native to southern Brazil and Paraguay. After the colonization of the New World it was rapidly transported to all areas of the tropics, and now is widely grown in tropical and sub- tropical areas. The only A collection of bromeliads placed on a tree at Costa Flores, Costa Rica. bromeliad to occur north of the tropics is Spanish “moss” (Tillandsia usneoides). It is neither Spanish nor a moss, but an epiphytic bromeliad. It doesn’t look much like a typical Commercial pineapple, Ananas comosus, bromeliad, though, with its long scaly stems and reduced in the fi eld. fl owers. Bromeliads are monocots, many of which, like their grass relatives, have a special form of photosynthesis that uses a variation of the more usual biochemical pathways to allow them to use water more effi ciently. Even though they come from the tropics, this helps those that are epiphytes contend with life in the treetops where there is limited water and a real danger of drying out. There are about 2500 species Many bromeliads are tropical and several thousand hybrids epiphytes. and cultivars. Many have brightly colored leaves, fl owers or fruit, and range in size from moss-like species of Tillandsia to the enormous Puya raimondii from the Andes which produces a fl owering stem up to 15 feet tall. -
Supplementary Material What Do Nectarivorous Bats Like? Nectar Composition in Bromeliaceae with Special Emphasis on Bat-Pollinated Species
Supplementary Material What do nectarivorous bats like? Nectar composition in Bromeliaceae with special emphasis on bat-pollinated species Author: Thomas Göttlinger, Michael Schwerdtfeger, Kira Tiedge, Gertrud Lohaus* *Correspondence: Gertrud Lohaus ([email protected]) Supplementary Figure S1: Concentration of sugars (glucose, fructose, sucrose) in nectar of seven genera of Bromeliaceae (Alcantarea (A), Guzmania (B), Pitcairnia (C), Puya (D), Tillandsia (E), Vriesea (F), Werauhia (G)) which include bat-pollinated species. The box plots show medians (horizontal line in box) and means (x in box). Supplementary Material What do nectarivorous bats like? Nectar composition in Bromeliaceae with special emphasis on bat-pollinated species Author: Thomas Göttlinger, Michael Schwerdtfeger, Kira Tiedge, Gertrud Lohaus* *Correspondence: Gertrud Lohaus ([email protected]) Supplementary Figure S2: Concentration of amino acids (ala, arg, asn, asp, gaba, gln, glu, gly, his, iso, leu, lys, met, phe, pro, ser, thr, trp, tyr, val) in nectar of seven genera of Bromeliaceae (Alcantarea (A), Guzmania (B), Pitcairnia (C), Puya (D), Tillandsia (E), Vriesea (F), Werauhia (G)), which include bat-pollinated species. The box plots show medians (horizontal line in box) and means (x in box). Supplementary Material What do nectarivorous bats like? Nectar composition in Bromeliaceae with special emphasis on bat-pollinated species Author: Thomas Göttlinger, Michael Schwerdtfeger, Kira Tiedge, Gertrud Lohaus* *Correspondence: Gertrud Lohaus ([email protected]) Supplementary Figure S3: Cation concentrations (Ca2+, K+, Na+, Mg2+) in nectar of seven genera of Bromeliaceae (Alcantarea (A), Guzmania (B), Pitcairnia (C), Puya (D), Tillandsia (E), Vriesea (F), Werauhia (G)), which include bat-pollinated species. The box plots show medians (horizontal line in box) and means (x in box). -
VARIEGATION in BROMELIADS (By Luiz Felipe Nevares De Carvalho)
VARIEGATION IN BROMELIADS (by Luiz Felipe Nevares de Carvalho) Editorial comment (Bob Reilly) Reprinted, with permission of the Bromeliad Society International, from the Journal of The Bromeliad Society, 2000, volume 50 (4), pp. 182-185. Variegated bromeliads are often keenly sought after by collectors. In this article, the author discusses the causes and types of variegation, as well as the propagation of variegated bromeliads. Note that the process of naming a particular variegated plant can sometimes be more complex than might be inferred from the article. Variegation is a rather common phenomenon in the plant kingdom, and is found in many plant families. It is especially pronounced in Bromeliaceae. The word “variegata” comes from Latin – variegatuus, variegata, variegatum – meaning variable coloration with patches of different colors. A bromeliad is known as “variegata” when it has two or more different colors. Over 60% of cultivated bromeliads have bands, dots, lines, and streaks, and can therefore be considered variegated. However, the term is accepted in horticulture, when applied to bromeliads that have lines, streaks and longitudinal bands of contrasting colors, especially those that show differences in pigmentation between the green chlorophyll-containing tissues and albino tissues. On the other hand, if we look at the many bromeliads that grow in the wild, it appears that variegation is a rare phenomenon. As a general rule, patently variegated plants are less hardy and slower growing than normal, and those that arise spontaneously in nature normally survive the competition for space and light only when man intervenes, taking them from the wild for cultivation. Variegation is rarely found in the subfamily Pitcairnioideae, and is not particularly common in Tillandsioideae. -
Epilist 1.0: a Global Checklist of Vascular Epiphytes
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong. -
The Genus Guzmania (Bromeliaceae) in Venezuela
The genus Guzmania (Bromeliaceae) in Venezuela Compiled by Yuribia Vivas Fundación Instituto Botánico de Venezuela Bruce Holst & Harry Luther Marie Selby Botanical Gardens The genus Guzmania was described by Hipólito Ruiz and José Pavón in 1802 in the "Flora Peruviana et Chilensis." The type species is Guzmania tricolor Ruiz & Pav. The name honors Spanish naturalist Anastasio Guzmán, a student of South American plants and animals (Grant & Zijlstra 1998). Species of Guzmania are distributed from the southern USA (Florida) and Mexico to Brazil and Peru, including the Most species of Guzmania are found in cloud forests at middle elevations. Antilles; they are largely absent from lowland Amazonia. Photograph by Yuribia Vivas. Figure modified from Smith & Downs, Flora Neotropica. Guzmania is placed in the subfamily Tillandsioideae, and is distinguished from other members of the subfamily (Vriesea,Tillandsia, Catopsis, Racinaea, Alcantarea, Mezobromelia, and Werauhia) by having polystichously arranged flowers (that is, arranged in many planes on the inflorescence axis), white, whitish, yellow, or greenish petals that lack nectar scales, and having generally reddish brown-colored seeds. In general aspect, Guzmania is difficult to distinguish from Mezobromelia since both are polystichously flowered and may have similar color schemes, but the presence of nectar scales in Mezobromelia and absence inGuzmania separates them. Approximately 200 species and 17 varieties of Guzmania are known, making it the third largest genus in the subfamily, after Tillandsia and Vriesea. The table below is a listing of Guzmania in Venezuela, with synonymy, types, phenology, and distribution. Column two contains photographs of live plants and the third column, type specimens. Click on the photos for enlarged images.