Temporal Dynamics of Uncultured Viruses: a New Dimension in Viral Diversity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Knowles2020 Naturecomm.Pdf
ARTICLE https://doi.org/10.1038/s41467-020-18078-4 OPEN Temperate infection in a virus–host system previously known for virulent dynamics ✉ Ben Knowles 1 , Juan A. Bonachela 2, Michael J. Behrenfeld3, Karen G. Bondoc 1, B. B. Cael4, Craig A. Carlson5, Nick Cieslik1, Ben Diaz1, Heidi L. Fuchs 1, Jason R. Graff3, Juris A. Grasis 6, Kimberly H. Halsey 7, Liti Haramaty1, Christopher T. Johns1, Frank Natale1, Jozef I. Nissimov8, Brittany Schieler1, Kimberlee Thamatrakoln 1, T. Frede Thingstad9, Selina Våge9, Cliff Watkins1, ✉ Toby K. Westberry 3 & Kay D. Bidle 1 1234567890():,; The blooming cosmopolitan coccolithophore Emiliania huxleyi and its viruses (EhVs) are a model for density-dependent virulent dynamics. EhVs commonly exhibit rapid viral repro- duction and drive host death in high-density laboratory cultures and mesocosms that simulate blooms. Here we show that this system exhibits physiology-dependent temperate dynamics at environmentally relevant E. huxleyi host densities rather than virulent dynamics, with viruses switching from a long-term non-lethal temperate phase in healthy hosts to a lethal lytic stage as host cells become physiologically stressed. Using this system as a model for temperate infection dynamics, we present a template to diagnose temperate infection in other virus–host systems by integrating experimental, theoretical, and environmental approaches. Finding temperate dynamics in such an established virulent host–virus model system indicates that temperateness may be more pervasive than previously considered, and that the role of viruses in bloom formation and decline may be governed by host physiology rather than by host–virus densities. 1 Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA. -
The Variability of Hop Latent Viroid As Induced Upon Heat Treatment
Virology 287, 349–358 (2001) doi:10.1006/viro.2001.1044, available online at http://www.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector The Variability of Hop Latent Viroid as Induced upon Heat Treatment Jaroslav Matousˇek,* Josef Patzak,† Lidmila Orctova´,* Jo¨rg Schubert,‡ Luka´sˇ Vrba,* Gerhard Steger,§ and Detlev Riesner§,1 *Department of Molecular Genetics, Institute of Plant Molecular Biology Czech Academy of Sciences, Branisˇovska´31, 37005 Cˇ eske´Bude˘jovice, Czech Republic; †Department of Virology, Institute of Hop Research and Breeding, Kadanˇska´2525, 438 46 Zˇatec, Czech Republic; ‡Federal Centre for Breeding Research, Institute for Resistance Research and Pathogen Diagnostics, Theodor-Roemer-Weg 4, 06449 Aschersleben, Germany; and §Institute of Physical Biology, Heinrich-Heine Universita¨t Du¨sseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Germany Received March 28, 2001; returned to author for revision March 30, 2001; accepted June 11, 2001; published online August 2, 2001 We have previously shown that heat treatment of hop plants infected by hop latent viroid (HLVd) reduces viroid levels. Here we investigate whether such heat treatment leads to the accumulation of sequence variability in HLVd. We observed a negligible level of mutated variants in HLVd under standard cultivation conditions. In contrast, the heat treatment of hop led to HLVd degradation and, simultaneously, to a significant increase in sequence variations, as judged from temperature gradient–gel electrophoresis analysis and cDNA library screening by DNA heteroduplex analysis. Thirty-one cDNA clones (9.8%) were identified as deviating forms. -
Virus, Viroids and Mycoplasma
By: Dr. Bibha Kumari Dept. of Zoology Magadh Mahila College, Patna Email: [email protected] Virus •The viruses are non-cellular organisms. • They, in fact, have an inert crystalline structure outside the living cell. • Once they infect a cell, they take over the machinery of the host cell to replicate themselves, killing the host. •Pasteur. D.J. Ivanowsky (1892) gave the name virus. • It means venom or poisonous fluid. • According to his research, certain microbes caused the mosaic disease of tobacco. •These organisms were smaller than bacteria because they passed through bacteria-proof filters. • M.W. Beijerinek (1898) demonstrated that the extract of the infected plants of tobacco could cause infection in healthy plants. • He named the fluid as Contagium vivum fluidum (infectious living fluid). •W.M. Stanley (1935) discovered that viruses could be crystallized. These virus crystals are composed largely of proteins. •They are inert outside their specific host cell. Viruses are nothing but obligate parasites. Genetic Material of Viruses: •In addition to proteins, viruses also contain genetic material, that could be either RNA or DNA. • No virus contains both RNA and DNA. A virus is a nucleoprotein and the genetic material is infectious. •Speaking in strictly general terms, viruses infecting plants have single- stranded RNA. • On the other hand, viruses that infect animals have either single or double-stranded RNA or they might have double-stranded DNA •Bacterial viruses or bacteriophages usually have a double-stranded DNA structure. By bacteriophages, we mean viruses that infect the bacteria. • The protein coat, capsid made of small subunits (capsomeres) protects the nucleic acid. -
Cell Size Homeostasis and Optimal Viral Strategies
CELL SIZE HOMEOSTASIS AND OPTIMAL VIRAL STRATEGIES FOR HOST EXPLOITATION by Cesar Augusto Vargas-Garcia A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering Fall 2017 c 2017 Cesar Augusto Vargas-Garcia All Rights Reserved ACKNOWLEDGEMENTS I want to thank my advisor Abhyudai Singh. He discovered my professional potential and helped me to achieve this important goal in my life. I am grateful to the Dean, the Faculty, and the Staff of the Department of Electrical and Computer Engineering for providing their assistance and support through the years of my Ph.D. program. I want to thank also my co-advisor and friend, Dr. Ryan Zurakowski. He gave me the opportunity to start and enjoy this field. Also he encouraged me to be resilient in pursuing my degree in the hard days. I want to thank to professor and close friend Henry Arguello for all his support and advice through this years. I also want to thank my wife and daughter, Neyla Johanna and Victoria for their support and encouragement during my studies. They provided me the home to rest after every hard day. My students and alma-mater group HDSP gave me the motivation and encour- agement to make the best effort in my research. They have been my friends and part of my family during this time. I appreciate their collaboration and company in this part of my life. Special thanks to my friends and colleagues Mohammad Soltani and Khem Ghusinga for their support, friendship and collaborations in uncountable and exciting projects which are nowadays the core of my research. -
Hammerhead Ribozymes Against Virus and Viroid Rnas
Hammerhead Ribozymes Against Virus and Viroid RNAs Alberto Carbonell, Ricardo Flores, and Selma Gago Contents 1 A Historical Overview: Hammerhead Ribozymes in Their Natural Context ................................................................... 412 2 Manipulating Cis-Acting Hammerheads to Act in Trans ................................. 414 3 A Critical Issue: Colocalization of Ribozyme and Substrate . .. .. ... .. .. .. .. .. ... .. .. .. .. 416 4 An Unanticipated Participant: Interactions Between Peripheral Loops of Natural Hammerheads Greatly Increase Their Self-Cleavage Activity ........................... 417 5 A New Generation of Trans-Acting Hammerheads Operating In Vitro and In Vivo at Physiological Concentrations of Magnesium . ...... 419 6 Trans-Cleavage In Vitro of Short RNA Substrates by Discontinuous and Extended Hammerheads ........................................... 420 7 Trans-Cleavage In Vitro of a Highly Structured RNA by Discontinuous and Extended Hammerheads ........................................... 421 8 Trans-Cleavage In Vivo of a Viroid RNA by an Extended PLMVd-Derived Hammerhead ........................................... 422 9 Concluding Remarks and Outlooks ........................................................ 424 References ....................................................................................... 425 Abstract The hammerhead ribozyme, a small catalytic motif that promotes self- cleavage of the RNAs in which it is found naturally embedded, can be manipulated to recognize and cleave specifically -
Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280 -
Evaluation of a Potential Bacteriophage Cocktail for the Control of Shiga-Toxin Producing Escherichia Coli in Food
fmicb-11-01801 July 23, 2020 Time: 17:24 # 1 ORIGINAL RESEARCH published: 24 July 2020 doi: 10.3389/fmicb.2020.01801 Evaluation of a Potential Bacteriophage Cocktail for the Control of Shiga-Toxin Producing Escherichia coli in Food Nicola Mangieri, Claudia Picozzi*, Riccardo Cocuzzi and Roberto Foschino Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy Shiga-toxin producing Escherichia coli (STEC) are important foodborne pathogens involved in gastrointestinal diseases. Furthermore, the recurrent use of antibiotics to treat different bacterial infections in animals has increased the spread of antibiotic-resistant bacteria, including E. coli, in foods of animal origin. The use of bacteriophages for the control of these microorganisms is therefore regarded as a valid alternative, especially considering the numerous advantages (high specificity, self-replicating, self-limiting, harmless to humans, animals, and plants). This study aimed to isolate bacteriophages Edited by: Lin Lin, active on STEC strains and to set up a suspension of viral particles that can be potentially Jiangsu University, China used to control STEC food contamination. Thirty-one STEC of different serogroups Reviewed by: (O26; O157; O111; O113; O145; O23, O76, O86, O91, O103, O104, O121, O128, Kim Stanford, Alberta Ministry of Agriculture and O139) were investigated for their antibiotic resistance profile and sensitivity to phage and Forestry, Canada attack. Ten percent of strains exhibited a high multi-resistance profile, whereas ampicillin Nancy Ann Strockbine, was the most effective antibiotic by inhibiting 65% of tested bacteria. On the other Centers for Disease Control and Prevention (CDC), United States side, a total of 20 phages were isolated from feces, sewage, and bedding material of *Correspondence: cattle. -
Impact of Nucleic Acid Sequencing on Viroid Biology
International Journal of Molecular Sciences Review Impact of Nucleic Acid Sequencing on Viroid Biology Charith Raj Adkar-Purushothama * and Jean-Pierre Perreault * RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada * Correspondence: [email protected] (C.R.A.-P.); [email protected] (J.-P.P.) Received: 5 July 2020; Accepted: 30 July 2020; Published: 1 August 2020 Abstract: The early 1970s marked two breakthroughs in the field of biology: (i) The development of nucleotide sequencing technology; and, (ii) the discovery of the viroids. The first DNA sequences were obtained by two-dimensional chromatography which was later replaced by sequencing using electrophoresis technique. The subsequent development of fluorescence-based sequencing method which made DNA sequencing not only easier, but many orders of magnitude faster. The knowledge of DNA sequences has become an indispensable tool for both basic and applied research. It has shed light biology of viroids, the highly structured, circular, single-stranded non-coding RNA molecules that infect numerous economically important plants. Our understanding of viroid molecular biology and biochemistry has been intimately associated with the evolution of nucleic acid sequencing technologies. With the development of the next-generation sequence method, viroid research exponentially progressed, notably in the areas of the molecular mechanisms of viroids and viroid diseases, viroid pathogenesis, viroid quasi-species, viroid adaptability, and viroid–host interactions, to name a few examples. In this review, the progress in the understanding of viroid biology in conjunction with the improvements in nucleotide sequencing technology is summarized. -
Introduction to Viroids and Prions
Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College Introduction to Viroids and Prions Viroids – Viroids are plant pathogens made up of short, circular, single-stranded RNA molecules (usually around 246-375 bases in length) that are not surrounded by a protein coat. They have internal base-pairs that cause the formation of folded, three-dimensional, rod-like shapes. Viroids apparently do not code for any polypeptides (proteins), but do cause a variety of disease symptoms in plants. The mechanism for viroid replication is not thoroughly understood, but is apparently dependent on plant enzymes. Some evidence suggests they are related to introns, and that they may also infect animals. Disease processes may involve RNA-interference or activities similar to those involving mi-RNA. Prions – Prions are proteinaceous infectious particles, associated with a number of disease conditions such as Scrapie in sheep, Bovine Spongiform Encephalopathy (BSE) or Mad Cow Disease in cattle, Chronic Wasting Disease (CWD) in wild ungulates such as muledeer and elk, and diseases in humans including Creutzfeld-Jacob disease (CJD), Gerstmann-Straussler-Scheinker syndrome (GSS), Alpers syndrome (in infants), Fatal Familial Insomnia (FFI) and Kuru. These diseases are characterized by loss of motor control, dementia, paralysis, wasting and eventually death. Prions can be transmitted through ingestion, tissue transplantation, and through the use of comtaminated surgical instruments, but can also be transmitted from one generation to the next genetically. This is because prion proteins are encoded by genes normally existing within the brain cells of various animals. Disease is caused by the conversion of normal cell proteins (glycoproteins) into prion proteins. -
Potato Spindle Tuber Viroid
This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2015. The annex is a prescriptive part of ISPM 27. ISPM 27 Annex 7 INTERNATIONAL STANDARDS FOR PHYTOSANITARY MEASURES ISPM 27 DIAGNOSTIC PROTOCOLS DP 7: Potato spindle tuber viroid (2015) Contents 1. Pest Information ............................................................................................................................... 3 2. Taxonomic Information .................................................................................................................... 4 3. Detection ........................................................................................................................................... 4 3.1 Sampling ........................................................................................................................... 6 3.2 Biological detection .......................................................................................................... 6 3.3 Molecular detection ........................................................................................................... 7 3.3.1 Sample preparation ............................................................................................................ 7 3.3.2 Nucleic acid extraction ...................................................................................................... 8 3.3.3 Generic molecular methods for pospiviroid detection ..................................................... -
Biological and Genomic Characterization of a Novel Jumbo Bacteriophage, Vb Vham Pir03 with Broad Host Lytic Activity Against Vibrio Harveyi
pathogens Article Biological and Genomic Characterization of a Novel Jumbo Bacteriophage, vB_VhaM_pir03 with Broad Host Lytic Activity against Vibrio harveyi Gerald N. Misol, Jr. 1,2 , Constantina Kokkari 1 and Pantelis Katharios 1,* 1 Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; [email protected] (G.N.M.J.); [email protected] (C.K.) 2 Department of Biology, University of Crete, 71003 Heraklion, Crete, Greece * Correspondence: [email protected] Received: 18 October 2020; Accepted: 14 December 2020; Published: 15 December 2020 Abstract: Vibrio harveyi is a Gram-negative marine bacterium that causes major disease outbreaks and economic losses in aquaculture. Phage therapy has been considered as a potential alternative to antibiotics however, candidate bacteriophages require comprehensive characterization for a safe and practical phage therapy. In this work, a lytic novel jumbo bacteriophage, vB_VhaM_pir03 belonging to the Myoviridae family was isolated and characterized against V. harveyi type strain DSM19623. It had broad host lytic activity against 31 antibiotic-resistant strains of V. harveyi, V. alginolyticus, V. campbellii and V. owensii. Adsorption time of vB_VhaM_pir03 was determined at 6 min while the latent-phase was at 40 min and burst-size at 75 pfu/mL. vB_VhaM_pir03 was able to lyse several host strains at multiplicity-of-infections (MOI) 0.1 to 10. The genome of vB_VhaM_pir03 consists of 286,284 base pairs with 334 predicted open reading frames (ORFs). No virulence, antibiotic resistance, integrase encoding genes and transducing potential were detected. Phylogenetic and phylogenomic analysis showed that vB_VhaM_pir03 is a novel bacteriophage displaying the highest similarity to another jumbo phage, vB_BONAISHI infecting Vibrio coralliilyticus. -
The Simple Emergence of Complex Molecular Function
The simple emergence of complex molecular function Susanna Manrubia Department of Systems Biology, National Centre for Biotechnology (CSIC). c/ Darwin 3, 28049 Madrid, Spain Interdisciplinary Group of Complex Systems (GISC), Madrid, Spain (Dated: May 26, 2021) At odds with a traditional view of molecular evolution that seeks a descent-with-modification relationship between functional sequences, new functions can emerge de novo with relative ease. At early times of molecular evolution, random polymers could have sufficed for the appearance of incipi- ent chemical activity, while the cellular environment harbors a myriad of proto-functional molecules. The emergence of function is facilitated by several mechanisms intrinsic to molecular organization, such as redundant mapping of sequences into structures, phenotypic plasticity, modularity, or co- operative associations between genomic sequences. It is the availability of niches in the molecular ecology that filters new potentially functional proposals. New phenotypes and subsequent levels of molecular complexity could be attained through combinatorial explorations of currently available molecular variants. Natural selection does the rest. I. INTRODUCTION ble genotypes coding for comparable phenotypes [20, 21]. Further, function is flexible, so phenotypes admit a range Half a century ago, the idea that gene specificity could of variation, and phenotypes are plastic, so their ex- rely on a unique protein sequence raised concerns regard- pression adapts to different environments [22, 23]. Be- ing the come into being of functional genes. Natural se- yond multiple inconsequential variations in genotypes, lection would be ineffective if the raw material on which also changes in molecular structure or composition might it had to act were random sequences, given that a myriad be irrelevant for the functionality of a phenotype.