I Throw Itching Powder at Tulips

Total Page:16

File Type:pdf, Size:1020Kb

I Throw Itching Powder at Tulips I Throw Itching Powder at Tulips Richard P. Gabriel IBM Research [email protected] Abstract program. But it also works for physical devices, biological systems, and people too. For example, when we teach a child Programming comes in many shapes & sizes. to add, we are creating a program that builds on the child’s Categories and Subject Descriptors D.2.9 [Software process existing ability to count on fingers. To the child the notion models] of adding is novel, but perhaps counting on fingers is not. At first, addition is a program; later it is an ability. General Terms Experimentation When we describe how to drive from one place to another, Keywords Agile; science; programming; natural language that’s a program that uses the driver’s ability to understand generation directions, to drive, and to recognize telltales to get that per- t son from one place to another. When people try to put together large software systems— I want to remind you of something simple: Programming large enough that teams are needed and dangerous enough and software engineering are not the same things. Neither that safety is crucial—they apply engineering techniques (as is programming the same as algorithm design. We’ve tan- best they can) to the project. That’s the start of software -en gled the several notions of programming—if we try we can gineering. When people wonder whether the program they unweave them, but sometimes we push on too quickly / get have devised really will achieve its desired purpose using the confused. William Griswold ventured this definition of soft- underlying mechanisms of the “computer,” that’s the start of ware engineering: the theory of computation and algorithm design. In recent years the conflict of more traditional software The practice of constructing software to satisfy all engineering approaches and agile have made a muddle of the stakeholder requirements so as to maximize value concept of programming—to a degree where sometimes only –William Griswold, personal communication, 2013 software engineering is considered programming. I think. t Programming is more fundamental. Venturing a guess, I would define programming as designing a set of mechanisms Software engineering is not what I do when I program. I am to enable some device (very broadly construed) to do some- programming. I write software as part of doing science. I use thing it normally could not using mechanisms it already has. software as a machine or instrument to explore how the mind Thinking about computers is the simple case: programming / brain might work. Not when the mind’s thinking—that’s is putting together instructions in a programming language old AI. I mean when people are creating. that is easy for people to understand which cause the under- Software engineering is for producing something that lying mechanisms of the computer—including its physical someone can describe, either using specifications (the old- and electrical components—to realize the purpose of the fashioned way) or a product backlog (or some other suchlike thing in an agile setting). I don’t do anything like that. And Permission to make digital or hard copies of all or part of this work for personal or software engineering is about producing software in a group. classroom use is granted without fee provided that copies are not made or distrib- The way we teach programming makes everything software uted for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others engineering. Pundits’ statements are deceiving: than the author must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior Programmers mediate between the negotiated and un- specific permission and/or a fee. Request permissions from [email protected]. certain truths of business and the crisp, uncompromising Onward!’14, October 20–24, 2014, Portland, Oregon, USA. domain of bits and bytes and higher constructed types. Copyright is held by the author. Publication rights licensed to ACM. ACM 978-1-4503-2585-1/14/10…$15.00. –Kevlin Henney, 97 Things Every Programmer Should Know, http://dx.doi.org/10.1145/2661136.2661155 2010 [1] 1 This looks correct, innocent even. When I program I in- The “matters at hand” are roughly the stuff in the real world deed worry whether the programs I write will do something that the program being built needs to handle, and the theory like what I intend; but there are no “truths of business” in in question is a conceptual framework for understanding the sight. The most progressive teachers reinforce this and other means by which software achieves that handling. stereotypes, like this programming assignment: In my case, the theory is a scientific theory to be discovered, and the software is an instrument to help discover / forge that Develop a function that when given an initial amount theory, which the software does by reacting to or revealing of money (called the principal), a simple annual inter- something about the material agency of the world. The re- est rate, and a number of months will compute the bal- sulting software may or may not be interesting by itself. My ance at the end of that time. Assume that no additional model of doing science with software can be used to discover deposits or withdrawals are made and that a month is the Naurish theories programmers build to create software, 1/12 of a year. Total interest is the product of the prin- and it might happen that the software created in my model cipal, the annual interest rate expressed as a decimal, is the software the programmers eventually create. and the number of years. t –Felleisen et al, How To Design Programs [3] Productivity and value are essentials for business program- A business-related problem; a problem posed to the stu- ming. Jeff Sutherland wrote this about Scrum: dent by an outsider; a problem. Everything that the program should accomplish is spelled out, by an expert instructor or Scrum is a simple framework used to organize teams “customer”—of course it is solvable, of course it is achievable, and get work done more productively with higher qual- of course all thinking is reduced to whether the program ity. It allows teams to choose the amount of work to be achieves its intended purpose using the underlying mecha- done and decide how best to do it, thereby providing a nisms of the computer at hand. Programming happens, but more enjoyable and productive working environment. in a limited context. A very well-respected professor ventured Scrum focuses on prioritizing work based on business this opinion to me: value, improving the usefulness of what is delivered, and increasing revenue, particularly early revenue. I think the biggest mistake we make with the starting –Jeff Sutherland, A Brief Introduction to Scrum, 2007 [4] point for undergraduate education is that we introduce programming at all. The right starting point, IMHO, is Notice that the assumed context is business, creating value requirements and specification together with the asso- for a customer who drives requirements and judges accept- ciated mathematics that they require. ability, and programming while consuming cash slowly and –anonymous, ruminating on a first course producing revenues quickly. After being taught (implicitly) that programming begins when someone (a teacher) tells Problem solving; being told what to solve, what goals to you to start, and that the goal / topic / domain / problem for achieve. This is hammered into students and job seekers programming is given (by that teacher), working as part of who are asked repeatedly to solve problems (homework / someone else’s machine is not foreign. Sutherland continues: job interviews). The idea of “a problem” doesn’t necessar- ily encompass the certitude of solution, but as taught in the Designed to adapt to changing requirements during the context of programming, the unintended implication is that development process at short, regular intervals, Scrum a problem is a puzzle, and puzzles have solutions. A puzzle allows teams to prioritize customer requirements and is a test of ingenuity. adapt the work product in real time to customer needs. t By doing this, Scrum provides what the customer wants at the time of delivery (improving customer satisfaction) My characterization of why I program—building a software while eliminating waste (work that is not highly valued machine to explore nature and create a theory—might remind by the customer). you of Peter Naur’s “Programming as Theory Building” [2]. –Jeff Sutherland, A Brief Introduction to Scrum, 2007 [4] Naur is talking about a related but different task—the creation of software as the final goal: Agile’s contribution was to turn on its head the follow- ing premise of earlier software engineering methodologies: …the primary aim of programming is to have the change is expensive and needs to be avoided. Or at least lim- programmers build a theory of the way the matters at ited to the earliest possible parts of requirements gathering hand may be supported by the execution of a program. and design. The idea is that making a change to a design is –Peter Naur [2] cheaper than making a change to an implementation. Steve McConnell tells it this way: 2 In the worst case, reworking a software requirements without a specific subject in mind, preferring instead problem once the software is in operation typically costs to let the subject emerge as they work. Experimental 50 to 200 times what it would take to rework the problem painters rarely make elaborate preparatory sketches. in the requirements stage (Boehm and Papaccio 1988).
Recommended publications
  • Little Languages for Little Robots
    Little Languages for Little Robots Matthew C. Jadud Brooke N. Chenoweth Jacob Schleter University of Kent Canterbury Indiana University Gibson High School Canterbury, UK Bloomington Fort Branch, IN [email protected] Bloomington, IN [email protected] ABSTRACT where students learn by building personally meaningful With serendipity as our muse, we have created tools that artifacts in the world. allow students to author languages of their own design for robots of their own construction. In developing a Scheme 2. JACKLL: A NEW LANGUAGE compiler for the LEGO Mindstorm we realized that there In building up to the evolution of Jackll and the philoso- is great educational potential in the design and creation phies its creation embodies, we feel it is appropriate to of new languages for small robotics kits. As a side effect first introduce the LEGO Mindstorm, the target for our of bringing Scheme and the Mindstorm together in a cre- Scheme compiler, and situate Jackll with respect to other ative context, we have begun an exploration of teaching languages intended for beginner programmers. language design that is fundamentally different from the treatment of the subject in traditional literature. 2.1 What is the LEGO Mindstorm? The LEGO Mindstorm Robotics Invention System is a 1. INTRODUCTION commercial product from the LEGO Group that provides Jacob Schleter, a rising senior at Gibson High School, Fort an inexpensive, reconfigurable platform for exploring robotics. Branch, Indiana, took part in the Indiana University Col- It comes standard with two motors, two touch sensors, one lege of Arts and Sciences Summer Research Experience for light sensor, and hundreds of pieces for assembling all sorts six weeks during the summer of 2002.
    [Show full text]
  • Compiler Error Messages Considered Unhelpful: the Landscape of Text-Based Programming Error Message Research
    Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk Compiler Error Messages Considered Unhelpful: The Landscape of Text-Based Programming Error Message Research Brett A. Becker∗ Paul Denny∗ Raymond Pettit∗ University College Dublin University of Auckland University of Virginia Dublin, Ireland Auckland, New Zealand Charlottesville, Virginia, USA [email protected] [email protected] [email protected] Durell Bouchard Dennis J. Bouvier Brian Harrington Roanoke College Southern Illinois University Edwardsville University of Toronto Scarborough Roanoke, Virgina, USA Edwardsville, Illinois, USA Scarborough, Ontario, Canada [email protected] [email protected] [email protected] Amir Kamil Amey Karkare Chris McDonald University of Michigan Indian Institute of Technology Kanpur University of Western Australia Ann Arbor, Michigan, USA Kanpur, India Perth, Australia [email protected] [email protected] [email protected] Peter-Michael Osera Janice L. Pearce James Prather Grinnell College Berea College Abilene Christian University Grinnell, Iowa, USA Berea, Kentucky, USA Abilene, Texas, USA [email protected] [email protected] [email protected] ABSTRACT of evidence supporting each one (historical, anecdotal, and empiri- Diagnostic messages generated by compilers and interpreters such cal). This work can serve as a starting point for those who wish to as syntax error messages have been researched for over half of a conduct research on compiler error messages, runtime errors, and century. Unfortunately, these messages which include error, warn- warnings. We also make the bibtex file of our 300+ reference corpus ing, and run-time messages, present substantial difficulty and could publicly available.
    [Show full text]
  • How to Design Co-Programs
    JFP, 15 pages, 2021. c Cambridge University Press 2021 1 doi:10.1017/xxxxx EDUCATIONMATTERS How to Design Co-Programs JEREMY GIBBONS Department of Computer Science, University of Oxford e-mail: [email protected] Abstract The observation that program structure follows data structure is a key lesson in introductory pro- gramming: good hints for possible program designs can be found by considering the structure of the data concerned. In particular, this lesson is a core message of the influential textbook “How to Design Programs” by Felleisen, Findler, Flatt, and Krishnamurthi. However, that book discusses using only the structure of input data for guiding program design, typically leading towards structurally recur- sive programs. We argue that novice programmers should also be taught to consider the structure of output data, leading them also towards structurally corecursive programs. 1 Introduction Where do programs come from? This mystery can be an obstacle to novice programmers, who can become overwhelmed by the design choices presented by a blank sheet of paper, or an empty editor window— where does one start? A good place to start, we tell them, is by analyzing the structure of the data that the program is to consume. For example, if the program h is to process a list of values, one may start by analyzing the structure of that list. Either the list is empty ([]), or it is non-empty (a : x) with a head (a) and a tail (x). This provides a candidate program structure: h [ ] = ::: h (a : x) = ::: a ::: x ::: where for the empty list some result must simply be chosen, and for a non-empty list the result depends on the head a and tail x.
    [Show full text]
  • Panel: NSF-Sponsored Innovative Approaches to Undergraduate Computer Science
    Panel: NSF-Sponsored Innovative Approaches to Undergraduate Computer Science Stephen Bloch (Adelphi University) Amruth Kumar (Ramapo College) Stanislav Kurkovsky (Central CT State University) Clif Kussmaul (Muhlenberg College) Matt Dickerson (Middlebury College), moderator Project Web site(s) Intervention Delivery Supervision Program http://programbydesign.org curriculum with supporting in class; software normally active, but can be by Design http://picturingprograms.org IDE, libraries, & texts and textbook are done other ways Stephen Bloch http://www.ccs.neu.edu/home/ free downloads matthias/HtDP2e/ or web-based NSF awards 0010064 http://racket-lang.org & 0618543 http://wescheme.org Problets http://www.problets.org in- or after-class problem- applet in none - teacher not needed, Amruth Kumar solving exercises on a browser although some adopters use programming concepts it in active mode too NSF award 0817187 Mobile Game http://www.mgdcs.com/ in-class or take-home PC passive - teacher as Development programming projects facilitator to answer Qs Stan Kurkovsky NSF award DUE-0941348 POGIL http://pogil.org in-class activity paper or web passive - teacher as Clif Kussmaul http://cspogil.org facilitator to answer Qs NSF award TUES 1044679 Project Course(s) Language(s) Focus Program Middle school, Usually Scheme-like teaching problem-solving process, by pre-AP CS in HS, languages leading into Java; particularly test-driven DesignStephen CS0, CS1, CS2 has also been done in Python, development and use of data Bloch in college ML, Java, Scala, ... types to guide coding & testing Problets AP-CS, CS I, CS 2. C, C++, Java, C# code tracing, debugging, Amruth Kumar also as refresher or expression evaluation, to switch languages predicting program state in other courses Mobile Game AP-CS, CS1, CS2 Java core OO programming; DevelopmentSt intro to advanced subjects an Kurkovsky such as AI, networks, security POGILClif CS1, CS2, SE, etc.
    [Show full text]
  • The Next 700 Semantics: a Research Challenge Shriram Krishnamurthi Brown University [email protected] Benjamin S
    The Next 700 Semantics: A Research Challenge Shriram Krishnamurthi Brown University [email protected] Benjamin S. Lerner Northeastern University [email protected] Liam Elberty Unaffiliated Abstract Modern systems consist of large numbers of languages, frameworks, libraries, APIs, and more. Each has characteristic behavior and data. Capturing these in semantics is valuable not only for understanding them but also essential for formal treatment (such as proofs). Unfortunately, most of these systems are defined primarily through implementations, which means the semantics needs to be learned. We describe the problem of learning a semantics, provide a structuring process that is of potential value, and also outline our failed attempts at achieving this so far. 2012 ACM Subject Classification Software and its engineering → General programming languages; Software and its engineering → Language features; Software and its engineering → Semantics; Software and its engineering → Formal language definitions Keywords and phrases Programming languages, desugaring, semantics, testing Digital Object Identifier 10.4230/LIPIcs.SNAPL.2019.9 Funding This work was partially supported by the US National Science Foundation and Brown University while all authors were at Brown University. Acknowledgements The authors thank Eugene Charniak and Kevin Knight for useful conversations. The reviewers provided useful feedback that improved the presentation. © Shriram Krishnamurthi and Benjamin S. Lerner and Liam Elberty; licensed under Creative Commons License CC-BY 3rd Summit on Advances in Programming Languages (SNAPL 2019). Editors: Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi; Article No. 9; pp. 9:1–9:14 Leibniz International Proceedings in Informatics Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany 9:2 The Next 700 Semantics: A Research Challenge 1 Motivation Semantics is central to the trade of programming language researchers and practitioners.
    [Show full text]
  • Proceedings of the 8Th European Lisp Symposium Goldsmiths, University of London, April 20-21, 2015 Julian Padget (Ed.) Sponsors
    Proceedings of the 8th European Lisp Symposium Goldsmiths, University of London, April 20-21, 2015 Julian Padget (ed.) Sponsors We gratefully acknowledge the support given to the 8th European Lisp Symposium by the following sponsors: WWWLISPWORKSCOM i Organization Programme Committee Julian Padget – University of Bath, UK (chair) Giuseppe Attardi — University of Pisa, Italy Sacha Chua — Toronto, Canada Stephen Eglen — University of Cambridge, UK Marc Feeley — University of Montreal, Canada Matthew Flatt — University of Utah, USA Rainer Joswig — Hamburg, Germany Nick Levine — RavenPack, Spain Henry Lieberman — MIT, USA Christian Queinnec — University Pierre et Marie Curie, Paris 6, France Robert Strandh — University of Bordeaux, France Edmund Weitz — University of Applied Sciences, Hamburg, Germany Local Organization Christophe Rhodes – Goldsmiths, University of London, UK (chair) Richard Lewis – Goldsmiths, University of London, UK Shivi Hotwani – Goldsmiths, University of London, UK Didier Verna – EPITA Research and Development Laboratory, France ii Contents Acknowledgments i Messages from the chairs v Invited contributions Quicklisp: On Beyond Beta 2 Zach Beane µKanren: Running the Little Things Backwards 3 Bodil Stokke Escaping the Heap 4 Ahmon Dancy Unwanted Memory Retention 5 Martin Cracauer Peer-reviewed papers Efficient Applicative Programming Environments for Computer Vision Applications 7 Benjamin Seppke and Leonie Dreschler-Fischer Keyboard? How quaint. Visual Dataflow Implemented in Lisp 15 Donald Fisk P2R: Implementation of
    [Show full text]
  • Application and Interpretation
    Programming Languages: Application and Interpretation Shriram Krishnamurthi Brown University Copyright c 2003, Shriram Krishnamurthi This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. If you create a derivative work, please include the version information below in your attribution. This book is available free-of-cost from the author’s Web site. This version was generated on 2007-04-26. ii Preface The book is the textbook for the programming languages course at Brown University, which is taken pri- marily by third and fourth year undergraduates and beginning graduate (both MS and PhD) students. It seems very accessible to smart second year students too, and indeed those are some of my most successful students. The book has been used at over a dozen other universities as a primary or secondary text. The book’s material is worth one undergraduate course worth of credit. This book is the fruit of a vision for teaching programming languages by integrating the “two cultures” that have evolved in its pedagogy. One culture is based on interpreters, while the other emphasizes a survey of languages. Each approach has significant advantages but also huge drawbacks. The interpreter method writes programs to learn concepts, and has its heart the fundamental belief that by teaching the computer to execute a concept we more thoroughly learn it ourselves. While this reasoning is internally consistent, it fails to recognize that understanding definitions does not imply we understand consequences of those definitions. For instance, the difference between strict and lazy evaluation, or between static and dynamic scope, is only a few lines of interpreter code, but the consequences of these choices is enormous.
    [Show full text]
  • Programming Languages As Operating Systems (Or Revenge of the Son of the Lisp Machine)
    Programming Languages as Operating Systems (or Revenge of the Son of the Lisp Machine) Matthew Flatt Robert Bruce Findler Shriram Krishnamurthi Matthias Felleisen Department of Computer Science∗ Rice University Houston, Texas 77005-1892 Abstract reclaim the program’s resources—even though the program and DrScheme share a single virtual machine. The MrEd virtual machine serves both as the implementa- To address this problem, MrEd provides a small set of tion platform for the DrScheme programming environment, new language constructs. These constructs allow a program- and as the underlying Scheme engine for executing expres- running program, such as DrScheme, to run nested programs sions and programs entered into DrScheme’s read-eval-print directly on the MrEd virtual machine without sacrificing loop. We describe the key elements of the MrEd virtual control over the nested programs. As a result, DrScheme machine for building a programming environment, and we can execute a copy of DrScheme that is executing its own step through the implementation of a miniature version of copy of DrScheme (see Figure 1). The inner and middle DrScheme in MrEd. More generally, we show how MrEd de- DrSchemes cannot interfere with the operation of the outer fines a high-level operating system for graphical programs. DrScheme, and the middle DrScheme cannot interfere with the outer DrScheme’s control over the inner DrScheme. 1 MrEd: A Scheme Machine In this paper, we describe the key elements of the MrEd virtual machine, and we step through the implementation The DrScheme programming environment [10] provides stu- of a miniature version of DrScheme in MrEd.
    [Show full text]
  • Essentials of Compilation an Incremental Approach
    Essentials of Compilation An Incremental Approach Jeremy G. Siek, Ryan R. Newton Indiana University with contributions from: Carl Factora Andre Kuhlenschmidt Michael M. Vitousek Michael Vollmer Ryan Scott Cameron Swords April 2, 2019 ii This book is dedicated to the programming language wonks at Indiana University. iv Contents 1 Preliminaries 5 1.1 Abstract Syntax Trees and S-expressions . .5 1.2 Grammars . .7 1.3 Pattern Matching . .9 1.4 Recursion . 10 1.5 Interpreters . 12 1.6 Example Compiler: a Partial Evaluator . 14 2 Integers and Variables 17 2.1 The R1 Language . 17 2.2 The x86 Assembly Language . 20 2.3 Planning the trip to x86 via the C0 language . 24 2.3.1 The C0 Intermediate Language . 27 2.3.2 The dialects of x86 . 28 2.4 Uniquify Variables . 28 2.5 Remove Complex Operators and Operands . 30 2.6 Explicate Control . 31 2.7 Uncover Locals . 32 2.8 Select Instructions . 32 2.9 Assign Homes . 33 2.10 Patch Instructions . 34 2.11 Print x86 . 35 3 Register Allocation 37 3.1 Registers and Calling Conventions . 38 3.2 Liveness Analysis . 39 3.3 Building the Interference Graph . 40 3.4 Graph Coloring via Sudoku . 42 3.5 Print x86 and Conventions for Registers . 48 v vi CONTENTS 3.6 Challenge: Move Biasing∗ .................... 48 4 Booleans and Control Flow 53 4.1 The R2 Language . 54 4.2 Type Checking R2 Programs . 55 4.3 Shrink the R2 Language . 58 4.4 XOR, Comparisons, and Control Flow in x86 . 58 4.5 The C1 Intermediate Language .
    [Show full text]
  • A Python Implementation for Racket
    PyonR: A Python Implementation for Racket Pedro Alexandre Henriques Palma Ramos Thesis to obtain the Master of Science Degree in Information Systems and Computer Engineering Supervisor: António Paulo Teles de Menezes Correia Leitão Examination Committee Chairperson: Prof. Dr. José Manuel da Costa Alves Marques Supervisor: Prof. Dr. António Paulo Teles de Menezes Correia Leitão Member of the Committee: Prof. Dr. João Coelho Garcia October 2014 ii Agradecimentos Agradec¸o... Em primeiro lugar ao Prof. Antonio´ Leitao,˜ por me ter dado a oportunidade de participar no projecto Rosetta com esta tese de mestrado, por todos os sabios´ conselhos e pelos momentos de discussao˜ e elucidac¸ao˜ que se proporcionaram ao longo deste trabalho. Aos meus pais excepcionais e a` minha mana preferida, por me terem aturado e suportado ao longo destes quase 23 anos e sobretudo pelo incondicional apoio durante estes 5 anos de formac¸ao˜ superior. Ao pessoal do Grupo de Arquitectura e Computac¸ao˜ (Hugo Correia, Sara Proenc¸a, Francisco Freire, Pedro Alfaiate, Bruno Ferreira, Guilherme Ferreira, Inesˆ Caetano e Carmo Cardoso), por todas as sug- estoes˜ e pelo inestimavel´ feedback em artigos e apresentac¸oes.˜ Aos amigos em Tomar (Rodrigo Carrao,˜ Hugo Matos, Andre´ Marques e Rui Santos) e em Lisboa (Diogo da Silva, Nuno Silva, Pedro Engana, Kaguedes, Clara Paiva e Odemira), por terem estado pre- sentes, duma forma ou doutra, nos essenciais momentos de lazer. A` Fundac¸ao˜ para a Cienciaˆ e Tecnologia (FCT) e ao INESC-ID pelo financiamento e acolhimento atraves´ da atribuic¸ao˜ de uma bolsa de investigac¸ao˜ no ambitoˆ dos contratos Pest-OE/EEI/LA0021/2013 e PTDC/ATP-AQI/5224/2012.
    [Show full text]
  • Efficient Applicative Programming Environments for Computer Vision
    Efficient Applicative Programming Environments for Computer Vision Applications Integration and Use of the VIGRA Library in Racket Benjamin Seppke Leonie Dreschler-Fischer University of Hamburg University of Hamburg Dept. Informatics Dept. Informatics Vogt-Kölln-Str. 30 Vogt-Kölln-Str. 30 22527 Hamburg, Germany 22527 Hamburg, Germany [email protected] [email protected] ABSTRACT 1. INTRODUCTION Modern software development approaches, like agile soft- Although applicative programming languages have a long ware engineering, require adequate tools and languages to tradition, they still do not belong to the scrap heap. In- support the development in a clearly structured way. At stead, they have proven to support state-of-the-art devel- best, they shall provide a steep learning curve as well as opment approaches by means of an interactive development interactive development environments. In the field of com- cycle, genericity and simplicity. The influence of applicative puter vision, there is a major interest for both, general re- programming paradigms is even observable in modern lan- search and education e.g. of undergraduate students. Here, guages, like Python, Dart and Go. However, there are some one often has to choose between understandable but compa- research areas, which are computationally of high costs and rably slow applicative programming languages, like Racket are thus currently less supported by applicative program- and fast but unintuitive imperative languages, like C/C++. ming languages. In this paper we present a system, which combines the best of each approaches with respect to common tasks in com- In this paper, we select the research field of computer vision puter vision, the applicative language Racket and the VI- and show how to connect applicative languages to a generic GRA C++ library.
    [Show full text]
  • Kent Academic Repository Full Text Document (Pdf)
    Kent Academic Repository Full text document (pdf) Citation for published version Chitil, Olaf (2009) Functional Programming. In: Wah, Benjamin W., ed. Encyclopedia of Computer Science and Engineering. John Wiley & Sons, Hoboken, NJ, pp. 1334-1344. ISBN 978-0-471-38393-2. DOI Link to record in KAR https://kar.kent.ac.uk/24064/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html Functional Programming Olaf Chitil University of Kent, United Kingdom Abstract Functional programming is a programming paradigm like object-oriented pro- gramming and logic programming. Functional programming comprises both a spe- cific programming style and a class of programming languages that encourage and support this programming style. Functional programming enables the programmer to describe an algorithm on a high-level, in terms of the problem domain, without having to deal with machine-related details.
    [Show full text]