Early History of Gauge Theories and Kaluza-Klein Theories, With
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abdus Salam United Nations Educational, Scientific and Cultural International XA0101583 Organization Centre
the 1(72001/34 abdus salam united nations educational, scientific and cultural international XA0101583 organization centre international atomic energy agency for theoretical physics NEW DIMENSIONS NEW HOPES Utpal Sarkar Available at: http://www.ictp.trieste.it/-pub-off IC/2001/34 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS NEW DIMENSIONS NEW HOPES Utpal Sarkar1 Physics Department, Visva Bharati University, Santiniketan 731235, India and The Abdus Salam Insternational Centre for Theoretical Physics, Trieste, Italy. Abstract We live in a four dimensional world. But the idea of unification of fundamental interactions lead us to higher dimensional theories. Recently a new theory with extra dimensions has emerged, where only gravity propagates in the extra dimension and all other interactions are confined in only four dimensions. This theory gives us many new hopes. In earlier theories unification of strong, weak and the electromagnetic forces was possible at around 1016 GeV in a grand unified theory (GUT) and it could get unified with gravity at around the Planck scale of 1019 GeV. With this new idea it is possible to bring down all unification scales within the reach of the next generation accelerators, i.e., around 104 GeV. MIRAMARE - TRIESTE May 2001 1 Regular Associate of the Abdus Salam ICTP. E-mail: [email protected] 1 Introduction In particle physics we try to find out what are the fundamental particles and how they interact. This is motivated from the belief that there must be some fundamental law that governs ev- erything. -
Arxiv:1809.08749V3 [Quant-Ph] 5 Dec 2018 a General Guiding Principle in Building the Theory of Fun- Damental Interactions (See, E.G., [1,3])
Resolution of Gauge Ambiguities in Ultrastrong-Coupling Cavity QED Omar Di Stefano,1 Alessio Settineri,2 Vincenzo Macr`ı,1 Luigi Garziano,1 Roberto Stassi,1 Salvatore Savasta,1, 2, ∗ and Franco Nori1, 3 1Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan 2Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Universit`adi Messina, I-98166 Messina, Italy 3Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA Gauge invariance is the cornerstone of modern quantum field theory [1{4]. Recently, it has been shown that the quantum Rabi model, describing the dipolar coupling between a two-level atom and a quantized electromagnetic field, violates this principle [5{7]. This widely used model describes a plethora of quantum systems and physical processes under different interaction regimes [8,9]. In the ultrastrong coupling regime, it provides predictions which drastically depend on the chosen gauge. This failure is attributed to the finite-level truncation of the matter system. We show that a careful application of the gauge principle is able to restore gauge invariance even for extreme light- matter interaction regimes. The resulting quantum Rabi Hamiltonian in the Coulomb gauge differs significantly from the standard model and provides the same physical results obtained by using the dipole gauge. It contains field operators to all orders that cannot be neglected when the coupling strength is high. These results shed light on subtleties of gauge invariance in the nonperturbative and extreme interaction regimes, which are now experimentally accessible, and solve all the long-lasting controversies arising from gauge ambiguities in the quantum Rabi and Dicke models [5, 10{18]. -
Physics Beyond the Standard Model (BSM)
Vorlesung 10: Search for Physics Beyond the Standard Model (BSM) • Standard Model : success and problems • Grand Unified Theories (GUT) • Supersymmetrie (SUSY) – theory – direct searches • other models / ideas for physics BSM Tevatron and LHC WS17/18 TUM S.Bethke, F. Simon V10: BSM 1 The Standard Model of particle physics... • fundamental fermions: 3 pairs of quarks plus 3 pairs of leptons • fundamental interactions: through gauge fields, manifested in – W±, Z0 and γ (electroweak: SU(2)xU(1)), – gluons (g) (strong: SU(3)) … successfully describes all experiments and observations! … however ... the standard model is unsatisfactory: • it has conceptual problems • it is incomplete ( ∃ indications for BSM physics) Tevatron and LHC WS17/18 TUM S.Bethke, F. Simon V10: BSM 2 Conceptual Problems of the Standard Model: • too many free parameters (~18 masses, couplings, mixing angles) • no unification of elektroweak and strong interaction –> GUT ; E~1016 GeV • quantum gravity not included –> TOE ; E~1019 GeV • family replication (why are there 3 families of fundamental leptons?) • hierarchy problem: need for precise cancellation of –> SUSY ; E~103 GeV radiation corrections • why only 1/3-fractional electric quark charges? –> GUT indications for New Physics BSM: • Dark Matter (n.b.: known from astrophysical and “gravitational” effects) • Dark Energy / Cosmological Constant / Vacuum Energy (n.b.: see above) • neutrinos masses • matter / antimatter asymmetry Tevatron and LHC WS17/18 TUM S.Bethke, F. Simon V10: BSM 3 Grand Unified Theory (GUT): • simplest symmetry which contains U(1), SU(2) und SU(3): SU(5) (Georgi, Glashow 1974) • multiplets of (known) leptons and quarks which can transform between each other by exchange of heavy “leptoquark” bosons, X und Y, with -1/3 und -4/3 charges, ± 0 as well as through W , Z und γ. -
The Grand Unified Theory of the Firm and Corporate Strategy: Measures to Build Corporate Competitiveness
THE GRAND UNIFIED THEORY OF THE FIRM AND CORPORATE STRATEGY: MEASURES TO BUILD CORPORATE COMPETITIVENESS by Hong Y. Park Professor of Economics Department of Economics College of Business and Management Saginaw Valley State University University Center, MI 48710 e-mail: [email protected] Geon-Cheol Shin Professor School of Business Kyung Hee University Seoul, Korea e-mail: [email protected] This study was funded by the Fulbright Foundation, the Korea Economic Research Institute (KERI), and Saginaw Valley State University. Abstract A good understanding of the nature of the firm is essential in developing corporate strategies, building corporate competitiveness, and establishing sound economic policy. Several theories have emerged on the nature of the firm: the neoclassical theory of the firm, the principal agency theory, the transaction cost theory, the property rights theory, the resource-based theory and the evolutionary theory. Each of these theories identify some elements that describe the nature of the firm, but no single theory is comprehensive enough to include all elements of the nature of the firm. Economists began to seek a theory capable of describing the nature of the firm within a single, all- encompassing, coherent framework. We propose a unified theory of the firm, which encompasses all elements of the firm. We then evaluate performances of Korean firms from the unified theory of the firm perspective. Empirical evidences are promising in support of the unified theory of the firm. Introduction A good understanding of the nature of the firm is essential in developing corporate strategies and building corporate competitiveness. Several theories have emerged on the nature of the firm: The neoclassical theory of the firm, the principal agency theory, the transaction cost theory, the property rights theory, the resource-based theory and the evolutionary theory. -
Gauge Principle and QED∗
Gauge Principle and QED¤ Norbert Straumann Institute for Theoretical Physics University of Zurich,¨ Switzerland August, 2005 Abstract One of the major developments of twentieth century physics has been the gradual recognition that a common feature of the known fundamental inter- actions is their gauge structure. In this talk the early history of gauge theory is reviewed, emphasizing especially Weyl’s seminal contributions of 1918 and 1929. 1 Introduction The organizers of this conference asked me to review the early history of gauge theories. Because of space and time limitations I shall concentrate on Weyl’s seminal papers of 1918 and 1929. Important contributions by Fock, Klein and others, based on Kaluza’s five-dimensional unification attempt, will not be dis- cussed. (For this I refer to [30] and [31].) The history of gauge theories begins with GR, which can be regarded as a non- Abelian gauge theory of a special type. To a large extent the other gauge theories emerged in a slow and complicated process gradually from GR. Their common geometrical structure – best expressed in terms of connections of fiber bundles – is now widely recognized. It all began with H. Weyl [2] who made in 1918 the first attempt to extend GR in order to describe gravitation and electromagnetism within a unifying geomet- rical framework. This brilliant proposal contains the germs of all mathematical ¤Invited talk at PHOTON2005, The Photon: Its First Hundred Years and the Future, 31.8- 04.09, 2005, Warsaw. 1 aspects of non-Abelian gauge theory. The word ‘gauge’ (german: ‘Eich-’) trans- formation appeared for the first time in this paper, but in the everyday meaning of change of length or change of calibration. -
Unified Equations of Boson and Fermion at High Energy and Some
Unified Equations of Boson and Fermion at High Energy and Some Unifications in Particle Physics Yi-Fang Chang Department of Physics, Yunnan University, Kunming, 650091, China (e-mail: [email protected]) Abstract: We suggest some possible approaches of the unified equations of boson and fermion, which correspond to the unified statistics at high energy. A. The spin terms of equations can be neglected. B. The mass terms of equations can be neglected. C. The known equations of formal unification change to the same. They can be combined each other. We derive the chaos solution of the nonlinear equation, in which the chaos point should be a unified scale. Moreover, various unifications in particle physics are discussed. It includes the unifications of interactions and the unified collision cross sections, which at high energy trend toward constant and rise as energy increases. Key words: particle, unification, equation, boson, fermion, high energy, collision, interaction PACS: 12.10.-g; 11.10.Lm; 12.90.+b; 12.10.Dm 1. Introduction Various unifications are all very important questions in particle physics. In 1930 Band discussed a new relativity unified field theory and wave mechanics [1,2]. Then Rojansky researched the possibility of a unified interpretation of electrons and protons [3]. By the extended Maxwell-Lorentz equations to five dimensions, Corben showed a simple unified field theory of gravitational and electromagnetic phenomena [4,5]. Hoffmann proposed the projective relativity, which is led to a formal unification of the gravitational and electromagnetic fields of the general relativity, and yields field equations unifying the gravitational and vector meson fields [6]. -
Supersymmetry Min Raj Lamsal Department of Physics, Prithvi Narayan Campus, Pokhara Min [email protected]
Supersymmetry Min Raj Lamsal Department of Physics, Prithvi Narayan Campus, Pokhara [email protected] Abstract : This article deals with the introduction of supersymmetry as the latest and most emerging burning issue for the explanation of nature including elementary particles as well as the universe. Supersymmetry is a conjectured symmetry of space and time. It has been a very popular idea among theoretical physicists. It is nearly an article of faith among elementary-particle physicists that the four fundamental physical forces in nature ultimately derive from a single force. For years scientists have tried to construct a Grand Unified Theory showing this basic unity. Physicists have already unified the electron-magnetic and weak forces in an 'electroweak' theory, and recent work has focused on trying to include the strong force. Gravity is much harder to handle, but work continues on that, as well. In the world of everyday experience, the strengths of the forces are very different, leading physicists to conclude that their convergence could occur only at very high energies, such as those existing in the earliest moments of the universe, just after the Big Bang. Keywords: standard model, grand unified theories, theory of everything, superpartner, higgs boson, neutrino oscillation. 1. INTRODUCTION unifies the weak and electromagnetic forces. The What is the world made of? What are the most basic idea is that the mass difference between photons fundamental constituents of matter? We still do not having zero mass and the weak bosons makes the have anything that could be a final answer, but we electromagnetic and weak interactions behave quite have come a long way. -
Super Symmetry
MILESTONES DOI: 10.1038/nphys868 M iles Tone 1 3 Super symmetry The way that spin is woven into the in 1015. However, a form of symmetry very fabric of the Universe is writ between fermions and bosons called large in the standard model of supersymmetry offers a much more particle physics. In this model, which elegant solution because the took shape in the 1970s and can quantum fluctuations caused by explain the results of all particle- bosons are naturally cancelled physics experiments to date, matter out by those caused by fermions and (and antimatter) is made of three vice versa. families of quarks and leptons, which Symmetry plays a central role in are all fermions, whereas the physics. The fact that the laws of electromagnetic, strong physics are, for instance, symmetric in and weak forces that act on these time (that is, they do not change with particles are carried by other time) leads to the conservation of particles, such as photons and gluons, energy. These laws are also symmetric The ATLAS experiment under construction at the which are all bosons. with respect to space, rotation and Large Hadron Collider. Image courtesy of CERN. Despite its success, the standard relative motion. Initially explored in model is unsatisfactory for a number the early 1970s, supersymmetry is a of reasons. First, although the less obvious kind of symmetry, which, graviton. Searching for electromagnetic and weak forces if it exists in nature, would mean that supersymmetric particles will be a have been unified into a single force, the laws of physics do not change priority when the Large Hadron a ‘grand unified theory’ that brings when bosons are replaced by Collider comes into operation at the strong interaction into the fold fermions, and fermions are replaced CERN, the European particle-physics remains elusive. -
Atoms and Molecules in Intense Laser Fields: Gauge Invariance of Theory and Models
Atoms and Molecules in Intense Laser Fields: Gauge Invariance of Theory and Models A. D. Bandrauk1, F. Fillion-Gourdeau3 and E. Lorin2 1 Laboratoire de chimie th´eorique, Facult´edes Sciences, Universit´ede Sherbrooke, Sherbrooke, Canada, J1K 2R1 2 School of Mathematics & Statistics, Carleton University, Canada, K1S 5B6 3 Centre de Recherches Math´ematiques, Universit´ede Montr´eal,Montr´eal,Canada, H3T 1J4 Abstract. Gauge invariance was discovered in the development of classical electromagnetism and was required when the latter was formulated in terms of scalar and vector potentials. It is now considered to be a fundamental principle of nature, stating that different forms of these potentials yield the same physical description: they describe the same electromagnetic field as long as they are related to each other by gauge transformations. Gauge invariance can also be included into the quantum description of matter interacting with an electromagnetic field by assuming that the wave function transforms under a given local unitary transformation. The result of this procedure is a quantum theory describing the coupling of electrons, nuclei and photons. Therefore, it is a very important concept: it is used in almost every fields of physics and it has been generalized to describe electroweak and strong interactions in the standard model of particles. A review of quantum mechanical gauge invariance and general unitary transformations is presented for atoms and molecules in interaction with intense short laser pulses, spanning the perturbative to highly nonlinear nonperturbative interaction regimes. Various unitary transformations for single spinless particle Time Dependent Schr¨odinger Equations (TDSE) are shown to correspond to different time-dependent Hamiltonians and wave functions. -
GRAND UNIFIED THEORIES Paul Langacker Department of Physics
GRAND UNIFIED THEORIES Paul Langacker Department of Physics, University of Pennsylvania Philadelphia, Pennsylvania, 19104-3859, U.S.A. I. Introduction One of the most exciting advances in particle physics in recent years has been the develcpment of grand unified theories l of the strong, weak, and electro magnetic interactions. In this talk I discuss the present status of these theo 2 ries and of thei.r observational and experimenta1 implications. In section 11,1 briefly review the standard Su c x SU x U model of the 3 2 l strong and electroweak interactions. Although phenomenologically successful, the standard model leaves many questions unanswered. Some of these questions are ad dressed by grand unified theories, which are defined and discussed in Section III. 2 The Georgi-Glashow SU mode1 is described, as are theories based on larger groups 5 such as SOlO' E , or S016. It is emphasized that there are many possible grand 6 unified theories and that it is an experimental problem not onlv to test the basic ideas but to discriminate between models. Therefore, the experimental implications are described in Section IV. The topics discussed include: (a) the predictions for coupling constants, such as 2 sin sw, and for the neutral current strength parameter p. A large class of models involving an Su c x SU x U invariant desert are extremely successful in these 3 2 l predictions, while grand unified theories incorporating a low energy left-right symmetric weak interaction subgroup are most likely ruled out. (b) Predictions for baryon number violating processes, such as proton decay or neutron-antineutnon 3 oscillations. -
The Quantum Vacuum and the Cosmological Constant Problem
The Quantum Vacuum and the Cosmological Constant Problem S.E. Rugh∗and H. Zinkernagely To appear in Studies in History and Philosophy of Modern Physics Abstract - The cosmological constant problem arises at the intersection be- tween general relativity and quantum field theory, and is regarded as a fun- damental problem in modern physics. In this paper we describe the historical and conceptual origin of the cosmological constant problem which is intimately connected to the vacuum concept in quantum field theory. We critically dis- cuss how the problem rests on the notion of physically real vacuum energy, and which relations between general relativity and quantum field theory are assumed in order to make the problem well-defined. 1. Introduction Is empty space really empty? In the quantum field theories (QFT’s) which underlie modern particle physics, the notion of empty space has been replaced with that of a vacuum state, defined to be the ground (lowest energy density) state of a collection of quantum fields. A peculiar and truly quantum mechanical feature of the quantum fields is that they exhibit zero-point fluctuations everywhere in space, even in regions which are otherwise ‘empty’ (i.e. devoid of matter and radiation). These zero-point fluctuations of the quantum fields, as well as other ‘vacuum phenomena’ of quantum field theory, give rise to an enormous vacuum energy density ρvac. As we shall see, this vacuum energy density is believed to act as a contribution to the cosmological constant Λ appearing in Einstein’s field equations from 1917, 1 8πG R g R Λg = T (1) µν − 2 µν − µν c4 µν where Rµν and R refer to the curvature of spacetime, gµν is the metric, Tµν the energy-momentum tensor, G the gravitational constant, and c the speed of light. -
Grand Unified Theory
Grand Unified Theory Manuel Br¨andli [email protected] ETH Z¨urich May 29, 2018 Contents 1 Introduction 2 2 Gauge symmetries 2 2.1 Abelian gauge group U(1) . .2 2.2 Non-Abelian gauge group SU(N) . .3 3 The Standard Model of particle physics 4 3.1 Electroweak interaction . .6 3.2 Strong interaction and color symmetry . .7 3.3 General transformation of matter fields . .8 4 Unification of Standard Model Forces: GUT 8 4.1 Motivation of Unification . .8 4.2 Finding the Subgroups . .9 4.2.1 Example: SU(2) U(1) SU(3) . .9 4.3 Branching rules . .× . .⊂ . 10 4.3.1 Example: 3 representation of SU(3) . 11 4.4 Georgi-Glashow model with gauge group SU(5) . 14 4.5 SO(10) . 15 5 Implications of unification 16 5.1 Advantages of Grand Unified Theories . 16 5.2 Proton decay . 16 6 Conclusion 17 Abstract In this article we show how matter fields transform under gauge group symmetries and motivate the idea of Grand Unified Theories. We discuss the implications of Grand Unified Theories in particular for proton decay, which gives us a tool to test Grand Unified Theories. 1 1 Introduction In the 50s and 60s a lot of new particles were discovered. The quark model was a first successful attempt to categorize this particle zoo. It was based on the so-called flavor symmetry, which is an approximate symmetry. This motivated the use of group theory in particle physics [10]. In this article we will make use of gauge symmetries, which are local symmetries, to explain the existence of interaction particles and show how the matter fields transform under these symmetries, section 2.